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For a large class of nonlinear stochastic processes with pure multiplicative fluctuations the corresponding
time-dependent Fokker-Planck-equation is solved exactly by .analytic methods. A universal eigenvalue
spectrum and the corresponding set of eigenfunctions are obtained in closed form. The eigenvalue spectrum
consists of a discrete as well as a continuous part. To emphasize the significance of the model proposed for
the description of more-general stochastic processes the authors investigate its stability with respect to the
inclusion of weak additive fluctuations. A discussion of the differences in the static as well as the dynamic
behavior of multiplicative and additive stochastic processes is given in detail. It is shown explicitly how
internal as well as externally imposed fluctuations can lead to multiplicative stochastic processes. The
applications of the results to various fields such as nonlinear optics—subharmonic generation, parametric
three-wave mixing, Raman scattering—electronic devices, autocatalytic chemical reactions, and population
dynamics are given. In particular, a comparison with recent experiments by S. Kabashima et al., who
investigated the statistical properties of electronic parametric oscillators driven by external noise, is carried
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I. INTRODUCTION

One can often describe the physics of macro-
scopic systems very well by a small number
of collective variables and their deterministic time
evolution, disregarding thereby the many-particle
aspects of their microscopic structure. If the
system is in a globally stable state, the statistical
nature of the macroscopic dynamics is of minor
importance and can safely be neglected. When,
however, by changing, e.g., some external para-
meters the state of the system approaches the
limit of stability, large excursions about the de-
terministically described values occur and fluctua-
tions are-enhanced to a degree where they play a
role important to any understanding of the macro-
scopic evolution. The equilibrium phase transi-
tions are one class of examples—another class of
phenomena consists of the various phase-transi-
tion analogs that have been found in such non-
equilibrium systems as the laser and many sys-
tems in nonlinear optics in the threshold region,'?
hydrodynamic instabilities,*® instabilities in the
spatial or temporal homogeneity of autocatalytic
chemical reactions,” ' current instabilities (e.g.,
tunnel diodes, Gunn effect),'®'* and self-excited
electronic circuits with noise.’ In order to
analyse these systems a deterministic macro-
scopic description is no longer adequate, and one
.must go one step further towards the many-particle
picture by including fluctuations.

In a variety of problems these fluctuations can
be taken into account by adding a “fluctuating
force” to the deterministic equations of motion.
Starting from a microscopic description, these
fluctuations arise from the elimination of the ir-
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relevant degrees of freedom in favor of a small
number of macroscopic variables. Probably the
most familiar example of this type of additive
fluctuations are the vacuum fluctuations of the
electromagnetic field that trigger spontaneous
emission of atoms, allowing them to relax to the
equilibrium population. The most important char-
acteristic of additive fluctuations is the fact that
they do not depend on the values of the collective
variables of the system —the fluctuations jiggle
the particles about irrespective of their position.

But there also exist processes where the fluctua-
tions do depend on the values of the macroscopic
variables. This can be seen very easily by con-
sidering an example from chemical reaction
dynamics. In an autocatalytic chemical reaction
the production of a molecule of some type is en-
hanced by the presence of other molecules of the
same type that have been produced already. How-
ever, the probability of the spontaneous formation
of these molecules in question is so extremely low
that “vacuum fluctuations” do not play an impor-
tant role. Therefore the only possible reaction
channel is the autocatalytic reproduction of the
molecules according to the “blueprint” provided
by the molecules of the same kind already present.
In these types of processes the fluctuations of the
number of molecules must die away when the con-
centration of the autocatalytic molecules approaches
zero. As a result, the fluctuations in this case do
depend on the state of the system. If this depen-
dence can be described by a function of the macro-
scopic variables multiplying the “fluctuating
stochastic forces,” we call such process a “mul-
tiplicative stochastic process.”

We will now give a precise definition of what we
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summarized qualitatively above in two of the basic
languages used in the theory of stochastic proces-
ses.

A. Langevin formalism

Let us consider a system of many degrees of
freedom defined by the Hamiltonian H, the macro-
scopic behavior of which can be characterized by
a set of collective variables {x;}. Nonlinear inter-
nal interactions as well as linear couplings to
other degrees of freedom like external reservoirs
create dissipative as well as fluctuation processes
which make the time evolution of the variables
{x,} irreversible on the one hand, and call for a
statistical description on the other hand. The re-
sulting equations of motion are of the Langevin
form and can be derived in a straightforward way
by several methods.'®**® A typical equation of this
kind reads

d (L) (NL) ©)
gxlzl"“.x,JrI‘“k Xy %yt +F

+x,F¥, i=1,2,3,..., 1.1)

where the [’s are time-independent matrices and
the F’s are the fluctuating forces defined by their
statistical properties,e.g.,

(FPOFPE) =G0 -t)
(F{PE)=0vj.

When the fluctuations stem from a reservoir close
to equilibrium, G,, depends only on the time dif-
ference (t —t’). If it is sufficient for the dynamical
description of the collective variables {x; (¢)} to
consider a coarse-grained time scale, large com-
pared to the correlation time of the fluctuations
themselves, G can be reasonably approximated

by a & correlation '

(FPE+nFP ) =q40(r), (1.3)

(1.2)

where @ is a measure of the fluctuations, inde-

pendent of the variables {x,}. InthislimitEq. (1.1)
describes a multidimensional Markovian process.
In the case where F{"'=0,i=1,2,3,...,F{®+0,

we call (1.1) an additive stochastic process

%@&)=L,(,}) + F, , (1.4)

while for vanishing F,“” the process is called
multiplicative® % 19-2

%, ()= Ly(fe,}) + G, (x,DF,,

Gy, # const .

(1.5)

These equations can hardly ever be solved exactly
when L({x,}) is a nonlinear function; and one must

then resort to approximation methods. So far,
however, the fluctuating forces are not character-
ized sufficiently by Eq. (1.2) or (1.3). A complete
definition of a stochastic variable must include
correlations to all orders. If higher-order cor-
relations allow a factorization according to a
Gaussian assumption, we can resort to another
description of this process which is equivalent to
(1.1) or (1.4) and (1.5), butone having amathemati-
cal formalism which is linear in nature.

B. Fokker-Planck formalism

In the case of Gaussian white noise Eq. (1.5) is
stochastically equivalent to the following Fokker-
Planck equation for the probability density??®

P({x,},2):

2 P, 0)= —517 (=D x,)P)

1 8 @)
e (&5 {xDP), (1.6)
where the coefficients £’ and k%’ are related to
the coefficients of the Langevin Eq. (1.5) by the
following relations:

B (x D) = Ly (x, D) + % %G;C!;f- Gy, .7
and
ki(?)({xk}): Gll({xh})Gn({xh}) . (1.8)

Summation over repeated indices is always im-
plied if not stated otherwise. Without loss of
generality we have assumed that the forces F; are
not crosscorrelated. For an additive stochastic
process k“f’ is a constant positive semidefinite
matrix independent of the variables {x,,}, while for
multiplicative processes k{f’ is an explicit matrix
function of the {x,,} A Langevin description .
emerging directly from the microscopic formalism
of a specific problem always allows an intuitive
physical interpretation of the process and the role
of the fluctuations. In this paper we will therefore
characterize a given example from physics or
chemistry in the language of the Langevin descrip-
tion first and then we will switch over to the Fok-
ker-Planck picture for the explicit solution of the
dynamics by the correspondence (1.7)—(1.8).

In Sec. II we will give several examples from
physics and chemistry and derive the correspond-
ing statistical equations of motion in order to show
how multiplicative fluctuations come about. In
Sec. III some formal tools useful in dealing with
stochastic processes are collected, with special
emphasis on multiplicative fluctuations. Light is
shed on the similarities as well as on the differ-
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ences of additive and multiplicative processes in
Sec. IV, Sections V-VII are the heart of the
paper where we solve some relevant problems in
one and more dimensions and discuss the station-
ary as well as the time-dependent properties in
detail. What makes these parts especially inter-
esting is the fact that we can derive exact analyti-
cal solutions without resorting to numerical com-
putations for a whole class of stochastic processes
which are of significant importance for realistic
physical and chemical problems. Besides gaining
a complete understanding of these special proces-
ses, the existence of exact solutions is always of
great importance because those processes can
serve as standard models on which the discussion
of more complicated problems can be based.

In many problems with dominant multiplicative
fluctuations additive ones are still inevitable and
cannot be neglected entirely, even when by some
physical arguments we can consider them tobe very
small. The influence of weak additive fluctuationson
the eigenvalue spectrum of the Fokker-Planck equa-
tion is discussed in Sec. VIII. Finally, compari-
son with experimental results, especially with
some very ingenious and detailed experiments
by the Kabashima group'® on fluctuations of para-
metric oscillators, is made.

II. PHYSICAL MOTIVATION

Before going into the computational details of
nonlinear stochastic processes with multiplicative
fluctuations it seems appropriate first to give
examples of physical processes in which these
fluctuations emerge in a natural way. It will be
seen that in a realistic model we must always deal
with various sources for fluctuations acting upon
the collective variables, resulting in very complex
stochastic processes.

However, the different physical origin of the
fluctuations allows the discrimination of various
limiting cases where one type of fluctuations
dominates the others. For a number of different
processes taken from the field of nonlinear optics
as well as chemical reaction dynamics, we will
derive in the limit of large external fluctuations a
fundamental type of multiplicative process which
is the motivation for the investigation of this class
of processes in detail in the subsequent para-
graphs. )

All the examples discussed here start from a
system of nonlinear processes with additive fluc-
tuations, which can be derived from first princi-
ples by standard methods. '**® Eliminating all but
one or two degrees of freedom by, e.g., an adia-
batic-approximation argument, we are in general
left with a mixed stochastic process. Depending

on the parameters of the problem, the additive or
the multiplicative part will play the dominant role.
In this paper we will focus our attention on the
latter because these processes, having attracted
very little attention so far, seem to be rather in-
teresting.

A. Maxwell-Bloch equations

An ensemble of homogeneous two-level atoms
interacting with a single traveling mode of the
electromagnetic field is described by the well -
known system of Maxwell-Bloch equations. In-
troducing quantum as well as various thermody -
namic fluctuations and the corresponding relaxa-

tion processes, we may write these equations® 2324
P*=(iA = 1/T,)P* ~2igWE*+T* @.1)
W= —1/T, (W - W,) —ig(P'E" ~E*P") + I°,

2.2)
E*= —mE*+igP* +=E}+ F* @.3)

where A characterizes the frequency mismatch of
the polarization and the field mode. The coupling
constants g and g are proportional to the dipole
matrix element between the two levels, while g
contains, besides some fundamental constants,
the additional intensive factor N/V, the density of
the atoms. Here P* describes the collective po-
larization of the ensemble of atoms and W, |W|
<1 its inversion; E* is the complex slowly varying
amplitude of the electromagnetic field. The dis-
sipative processes resulting in longitudinal as
well as transverse relaxation are characterized
by the damping constants T;*, T;! and the corre-
sponding fluctuating forces I'°, I'*, while the

finite lifetime of the photons in the optical cavity
is characterized by = and F*. The connection be-
tween the damping constant and the forces is given
by the fluctuation-dissipation theorem. For the
properties of the field fluctuations, e.g., we have

(F*R)F-@")y=2=(e" /™8T —1)5@¢ —-t'). (2.4)

The details of the statistical properties have been
derived by a number of authors®* and will there-
fore not be rederived here.

In order to cover several fields of application,
we have included two fundamental pumping proces-
ses: W, characterizes incoherent pumping utilizing
real or virtual transition levels, while E} accounts
for resonant coherent pumping from a monochrom-
atic outside source introducing external fluctua-
tions. .

To derive the statistical properties of the elec-
tromagnetic field it is a tedious but straightforward
procedure to eliminate the atomic variables step
by step, and we end up with a third-order equation
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for the complex field amplitudes. The resulting
equation looks rather unwieldy and it is difficult
if not impossible to draw any physical information
from it intuitively. Restricting ourselves to the
good-cavity limit, we gain a small parameter in
the model § =2 T, <1, which allows a drastic re-
duction of the complexity of the equations. Keep-
ing only the lowest-order terms in §, we arrive
at the following first-order equation of motion:

3E* . =+ 0 1=
F(ZATz—l)—%E '5;_- IEI2
=EY(|E|*- LE;E - LE,E*+1+ I _iAT,)
+Ei(iAT, -1+ K, , (2.5)

where we have made use of the normalized varia-
bles

®=T,
E*=FE*(4gT,T,)*'?, (2.6)
E:=E4(4g>T,T,1/?;
I’? is an abbreviation for
I’= —2ggT,W,/2, W,Z0.

The fluctuating terms K,, contain the following
contributions: (i) Fluctuations of the field,

4°T, T [F 1+ L |E[)+LFEY]. (2.7

(ii) A totally identical term is contributed by the
fluctuations of the external, partially coherent
source where only F* has to be replaced by the
external fluctuations Fg. (iii) The inversion
fluctuations contribute a simple multiplicative
term of the form

—(T2T,/W)E'T, (2.8)

while the fluctuations of the polarization bring
along

[ DT, T ) ?/W T 2.9)

Neglecting higher-order terms in the field ampli-
tude, we can condense the fluctuating forces for-
mally into

F:+E'F;,

where Fj is the collection of all additive and F;
is the sum of the leading multiplicative fluctua-
tions.

This equation is the starting point for a statis-
tical model of the laser as well as the recently
discussed problem of optical bistability,?"?° con-
taining additive and multiplicative processes. In-
vestigating the formal properties of Eq. (2.5),
one can easily see that the multiplicative terms
cannot be neglected without causing serious in-

consistencies, resulting in the unphysical diver -
gence of the field amplitude. The most elementary
multiplicative process can be derived from (2.5)
by dropping the coherent pumping term Ej and
neglecting the fluctuations of the polarization and
of the field F*. Keeping, e.g., only the inversion
fluctuations, we find

3 o _(1+T?)E +T?|E|’E'+ EF, 2.10)
ar 2 .
where we have expanded the saturation term up to
first order in the field intensity. This is a model
for the laser transition with pure multiplicative in-
version fluctuations. The laser threshold is desig-
nated by I'’= -1. For the comparison with re-
sults to be derived subsequently we want to em-
phasize that Eq. (2.10) is a special case of the
more general process

%X*(t)=dX*—b|X|2”X"+X"F, @.11)

where X* is a complex variable and Y a real posi-
tive exponent.

B. Subharmonic generation

The interaction of electromagnetic field modes
in a nonlinear dielectric medium can be described
by a set of nonlinear field equations assuming that
the complex dynamics of the nonresonant medium
can be eliminated adiabatically. The generation
of the subharmonic frequency in a nonlinear cry-
stal which lacks inversion symmetry leads by
means of the rotating-wave approximation to the

following set of equations®*3S:
d' + + + A= +
S AL(t)= —=, A +2gAL AT+ FY, @.12)
d + + +\2 + +
EAz(t)z -, A —g(AD2+ P*+ F}; (2.13)

A7 and A; characterize the complex field ampli-
tudes of frequency w and 2w, respectively. We
assume that the nonlinear crystal is located within
an optical cavity with different optical qualities
for the two frequencies indicated by the two damp-
ing constants @, and #2,. These inverse lifetimes
are connected with the reflection coefficients R;

of the mirrors in the following way:

®; = (C;/L)(l - R;) 5

where c¢;/L is the transit time of the light beam
through the cavity —the corresponding fluctuations
are indicated by F;. The pump force P’ couples
the field inside the cavity to an outside coherent
pump source. The field equations for the genera-
tion of the subharmonic and the generation of the
second-harmonic field are the same, the only dif-
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ference that distinguishes these two processes is
the presence of the driving term P*in Eq. (2.13).
Assuming that the quality of the cavity for the
field A, is much lower than for the subharmonic
field A,, we can eliminate A, adiabatically under
the condition
dA;

= (2.14)

«m,4;

and end up with a closed equation for the subhar-
monic wave A, alone:

d . R - .
A= 2, A]+2gA TP -2g2|A, AL

+F{+2gA F;. (2.15)
In a realistic situation, however, the pump field
is provided by a light source which is itself sub-
ject to fluctuations, and P* can be separated into
a coherent and a fluctuating part:

P*=P;+Fi2g)r.

If the fluctuations of the external field dominate
the internal thermodynamic and quantum fluctua-
tions, we arrive at the simplified equation

iA1= (2gPy—=)A, -2g%A3+AF,

P (2.16)

where the phase fluctuations have been neglected —
an assumption which is very reasonable owing to
the breaking of phase symmetry by the external
coherent field. The Eq. (2.16) describing the
amplitude fluctuations of the subharmonic field
driven by a partially coherent pump source is
again a special case of the class of multiplicative
processes characterized above by Eq. (2.11).

C. Parametric three-wave mixing

In the more general case where the subharmonic
photons are not degenerate we describe the para-
metric generation of two partially coherent fields
with frequencies w, and w, driven by an incoming
laser field of frequency 2w. At resonance, the
frequencies obey the conservation law

20=w,;+ w,.

Including the additional degree of freedom—the so-
called idler mode —in the field equations, we arrive
at the following description®®3%36;

dA;

— = —® AL+ gAT A+ T, 2.17)
dzz =, AL+ gAL A} + F}, (2.18)
dA+ + + + + +

a’t3 = —@;A; ~gAJA; + P'+ Fy, 2.19)

which is an obvious generalization of Eqs. (2.12)
and (2.13).

Assuming now again that the optical quality of
the cavity containing the nonlinear medium is only
high for the signal mode A,, we can eliminate the
fields A, and A, adiabatically and find, after ex-
panding the saturation term up to lowest order in
the field intensities, the Langevin equation
dA+ 2 . 4
Li=(rol - =) 4 [Pl

2
+£%0 42 p

gy (2.20)

In order to arrive at this simplified form we have
assumed as above that the quantum fluctuations
can be neglected compared with the fluctuations
F, of the pump source

P=P,+F,.

With the definition of the generalized potential

U(AI,A'I)
g® g*1P,1?
== (1Pl i - I+ £ T,
2.21)
we can write (2.20) in the form
AL _ 2 par Ay + &Py ge
= o VALA) + At 2.22)

and find again an example of a multiplicative pro-
cess of the formal structure of Eq. (2.11).

D. Raman scattering

In a crystal with inversion symmetry, in liquid
as well as in gaseous samples, three-wave mixing
is forbidden by symmetry arguments, whereas
four-wave mixing processes with considerably
smaller cross sections are compatible with the
symmetry conditions. Because the variety of pos- -
sible four-wave processes is quite large, we want
to restrict ourselves here only to one typical
mechanism, the generation of Stokes-shifted light
in Raman-type processes.

Using a formalism analogous to the description
of the parametric mixing above, we can write the
following field equations®™%:

A§ = -2 A% +g°T,|A, PA; + F§,
A= -y A - g°T,|As|?AL + F; + P

2.23)
(2.24)

Aj describes the Stokes-scattered light amplitude,
while A% characterizes the laser mode inside the
cavity coupled to the resonant external source P*,
Again eliminating the laser field adiabatically,
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we find the following equation of motion for the
Stokes field Ag:

. g°T, 2 ) . o 8T
At = Plz- At 928 T2
s (mi [ ! Xg S 2 wi

x |P[*|As|?A5 + A F?, (2.25)
where we considered only the fluctuations of the
pump field, neglecting quantum fluctuations en-
tirely. This equation is obviously again a multi-
plicative nonlinear process of the above -mentioned
category (2.11).

E. Autocatalytic reactions

To show that multiplicative fluctuations are not
restricted to the field of quantum optics, we
would like to given an elementary example from
chemical reaction kinetics. As a basic model of
an autocatalytic reaction we think of the production
of a chemical substance X in an autocatalytic step
like7' 10,21

A+X=NX, B+X - C.

By chemical means, the concentrations 7, and 7y
are kept constant on the average, leaving inevit-
able fluctuations around these fixed average values

nA=n91+6A’ <6A>:O’ nan()B+6B; (53>:0'
(2.26)

Introducing the chemical rate constants El, El, Ez
that control the velocity of the individual reaction
channels above, wefind the following rate equation

for the concentration #,: ‘

-‘-i—n,‘:lzlnAnx -k, )Y ~Kyngn, . (2.27)

dt
Separating the deterministic from the fluctuating
terms and using the abbreviation

F=E154 —Ez% ’

we find the puré multiplicative process

d - - -
— n,= (k% -kn3m, -k, @) +n, F (2.28)

dt
with the deterministic threshold condition
d=kn% ~kn3>0.

With these examples we feel that we have shown
that the standard nonlinear multiplicative process
described by Eq. (2.11) plays a fundamental role
in the description of systems driven by external
fluctuations. The list of examples is certainly not
complete and we can think of many fields of appli-
cation where these processes play an important
role. To mention just one more example, we want

to recall that the mathematical description of elec- -

tronic devices like self-excited circuits and many
other applications first called for a stochastic
picture® to allow the proper treatment of signals
with noise. The reader who is not primarily in-
terested in the formal aspects may skip the next
three sections and go directly to Sec. VI,

III. FORMAL CONCEPT

For the mathematical description of stochastic
processes there exist two fundamental concepts:
the method of the stochastic differential equation
as introduced by Itd in the 1950’s and which has
been generalized and developed further by a num-
ber of authors (cf. Refs. 40-42) and the Stratono-
vich interpretation of stochastic differential equa-
tions. While the Itd interpretation has a number
of valuable advantages, the rules of differential
and integral calculus must be redefined. The ad-
vantage of Stratonovich’s method, however, is that
it allows us to retain the usual rules of differential
calculus, and we will therefore use this interpreta-
tion throughout the present paper.

The general solution P(x,¢) of the Fokker-Planck
equation (1. 6) subject to natural boundary condi-
tions, and the arbitrary initial condition P(x,¢=0)
describes completely the dynamical evolution of
the stochastic process. The only systematic way
to derive an exact analytical solution utilizes the
eigenfunction expansion. With the ansatz P({xk}, t)
=P({x,})e™* the problem consists in solving the
following eigenvalue equation:

LP,({x, D= -, P,{xD, (3.1)

where the eigenvalues A, can form a discrete as
well as a continuous spectrum.

A. Properties of the eigenfunctions

In general the Fokker-Planck operator L is not
self-adjoint. However, when L satisfies the'con-
dition of detailed balance*® we can always find a
transformation** T which brings L into self-adjoint
form:

H({xk}) =T -1({xk})L T({xk}) . (3.2)
With the definition
Wlx) =T ({x )P {x,}) (3.3)

we can write the eigenvalue problem in the equiva-
lent form

HWﬂ:Kn Wn' ‘ (3-4)

The so-far unspecified transformation function
T({x,}) can now be defined by requiring the opera-
tor H to be self-adjoint: H=H", leaving the fol-
lowing equations [for the notation see Eq. (1.6)]:
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T 1 k3
AN R (ko _%)T. (3.5)
This set of equations for the scalar potential InT
has a solution only when the compatibility equa-
tions are satisfied.
In one dimension this problem has a unique and
general solution given up to a quadrature by

T2 (x) = P, (x)

2 * B(x")
b1 =2 1 ’ 3
=k (x)exp(Q fo k_—z(x’) dx > s (3.6)
where P (x) is the steady-state solution of (3.1)
for A,=0. The self-adjointness of Eq. (3.4)

guarantees that (i) A, is real. (i) The eigenfunc-
tions W, form an orthonormal set

fW(x

whereas the eigenfunctions of the Fokker-Planck
operator L itself satisfy the relation

dx 8,1t 3.7)

[ PP, 0P, (ix=0,, . (3.8)
For n=n' we have the normalization condition

[ Prepzar=1 (3.9)
and for n'=0

f P, (x)dx=5,
(iii) Assuming the completeness of the set of
eigenfunctions of the self-adjoint problem (3.4)
we conclude that the Fokker-Planck eigenfunctions
P, will satisfy the completeness relation

I Pz,l/2(X)P;,(X)Pn,(x')Pal/z(x'): 5(x —x').

(3.10)

B. Correlation functions

Assuming that the eigenfunctions P,(x) form a
complete set according to the relation (3. 10), we
“can expand the general solution P(x,¢) in the form

P(x,t):i f dx'PH(x")P, (x")

X Plx’,t=t,)P,(x)e ™%t | (3.11)

satisfying the arbitrary initial condition P(x,t=¢,).

With the aid of the conditional probability
P(x,t,/x,t,) satisfying the special initial condition
P(x,t')=06(x —x’), we can write the general two-
time probability density in the form

P(xyty, x,8,) = P(x,t, /%8 )P(x,t,) (3.12)

and expand it into the eigenfunctions of L

P P, (x'
Plxyty,x,t 1)—2 fd IW

X P, (x,)P, (x,)P,(x,)
X e b2 Pm )y (3,13)

With the system initially (at £,=0) in the station-
ary state Py(x) according to (3.9), Eq. (3.13)
gives the stationary two-time distribution P,
Pyt %,ty) = Z P, (0P (x )e™n 4270 (3.14)
n

depending only on the time difference ¢, -¢,.

These results allow the explicit calculation of
all dynamical statistical properties of the Gaussian
Markov process. The most fundamental and ex-
perimentally important characterization of the
statistical properties is given by the stationary
two-time correlation function

G,()=(x(t +tx ("), . (3.15)

which by using (3. 14) can be written in the general
form

G,{t)= Zgz b (3.16)

where g, is the first moment of the stochastic
variable x evaluated with the nth eigenfunction
P, (x)

g,= f P (x)dx . (3.17)

If the eigenvalue spectrum is partly discrete and
partly continuous, special care must be taken with
the definitions above and the question of complete-
ness. In this case the correlation function (3. 16)
reads

N L
G,(t)= Z gl Mt +j; g
n=1

1

200)e™ dx . (3.18)

The analytic behavior of G,(¢) for large times will
show a simple exponential time dependence if

LR S

whereas in the opposite case %, <), or even if
¥,=0, the analytic properties of the asymptotic
dependence will be given by the second term on
the right-hand side of Eq. (3.18) and may be
rather complicated.

We will see that the multiplicative processes do
have continuous branches in their eigenvalue spec-
trum even when the corresponding deterministic
problem is globally stable.



C. Transformation properties of the Langevin and
Fokker-Planck equations

For practical purposes it is important to know
how the solutions of two Fokker-Planck equations
transform into each other when we know the trans-
formation that connects the two corresponding
Langevin equations. A given Langevin equation

X=L(x) +Gx)F (3.19)

may be transformed by the definition of a new
variable y, x=g(y) into the equivalent equation

y=L(»)+G(y)F, (3.20)
which in general is again a multiplicative process.
The transformed functions L(y) and G(v) are
given by

L= L(g(y»("g(yy’) , (3.21)

d,
S=ctsn(EL)", 6.22)
From these transformation properties it is obvious
that in general a multiplicative process remains
multiplicative under the transformation of the
stochastic variable x, while the additive proces-

ses with G(x)=1 remain additive only under linear

transformations.

Given a general multiplicative process we can
always find an associated additive one by the im-
plicit transformation

xX= g(y) y= J G(gl)

In all physically motivated problems the Langevin
equation will be the starting point. Therefore, if
we know the transformation connecting two Lange-
vin equations, we would like to know the solution
of the Fokker-Planck equation corresponding to
Eq. (3.20), provided that the solution of the Fok-
ker-Planck equation of the process (3.19) has been
established. The Fokker-Planck equation corre-
sponding to the process (3. 19) is

-2 (0 855)] +§ o,

(3.23)

whereas the process (3.20) is described by an
analoguous equation for the probability distribution
P(y). By just comparing the equations of motion
it is straightforward to prove the transformation
rule
~ dg
P (y)=P(g(y)g’(y), g'=5 (3.24)

or, schematically,

. striking differences.
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x=Lx)+Gx)F —*% _ 5-L(y)+G(y)F
} . }

2 = pwPw) 22— b(y»)B(y)

ot

} : o

P(x) = P(g(y)=P(y)=P(y)/g'(y) ~ P(y).
We will utilize these results in Sec. VI to general-
ize the solutions of one specific problem to a whole
class of processes which are equivalent to each
other under a group of transformations g,(y).

IV. ADDITIVE VERSUS MULTIPLICATIVE PROCESSES

Additive and multiplicative processes have a
number of common features as well as some
In this section we want to
emphasize some properties that are typical for
multiplicative processes. In order to have the
same terminology for both types of stochastic
processes, we use the general definitions of Egs.
(1.5) and (1.6), which in principle include additive
processes as well when we allow G;; and K 2 also
to be independent of x. In order not to overburden
the formalism we restrict ourselves for the mo-
ment to one-dimensional problems.

A. Stationary points

In the deterministic limit with fluctuations neg-
lected for a moment the Langevin equation (1.5)
has the stationary solutions x ] given by the roots
of the equation

Lix)=0. | (4.1)

Depending on the local and global stability of these
points the fluctuations will either smear the dis-
tribution out over the neighborhood of the station-
ary points or cause large macroscopic excursions
to a stable state. This is a common feature of ad-
ditive as well as multiplicative processes, pro-
vided that

GGd)#0. 4.2)

In the case where L(x) and G(x) have a zero point
%, in common, this point plays a somewhat singu-
lar role because if the system is initially pre-
pared to be at x =x, it will stay there for all
times, in spite of fluctuations. The value x=0 in
Eq. (2.11), e.g., is one such stationary point and
P(x)=05(x) is a stationary solution. As will be
shown in Sec. V, we can also find another, more
general, steady-state solution P,(x) for this pro-
cess so that the lowest eigenvalue is continuously
degenerate:

Py =c, Pylx) + c0(x —x,) . (4.3)

For the special processes to be discussed here in
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detail this degeneracy is of no importance at all,
because the d-function distribution does not take
part in the dynamics of the system, owing to the
fact that the eigenfunctions of the Fokker-Planck
equation vanish at x =x,, excluding this point

from the time evolution. This property guarantees
especially that the probability distribution is not
piling up at x=0 in the course of time.

B. Most-probable values

In one dimension, the steady-state distribution
of the general multiplicative processes is given
up to a quadrature by the expression

- 2 (* L") )
— 1 = ’
Py(x)=G (x)exp<Q reEPm) dx’ ) . (4.4)
The peaks of this distribution are the values most
likely to be observed in a trial experiment. From
dP(x) d?P(x)
dx ’ o dx?

<0 (4.5)

~
X=¥0

-
x=X0

we have the necessary condition

=0. 4.6)

~

x=%q

L) -2 £ 6%0)

Here lies a drastic difference between additive
and multiplicative processes.®!° While the most
probable value of an additive random process co-
incides with the deterministic steady-state value
G -

Z_st:L(xo):O, (4.7)
they do depend explicitly on the strength of the
fluctuations in a multiplicative process

Ro=%e@), (4.8)

approaching the deterministic value only in the
limit @ ~ 0. This is a striking new feature of
multiplicative processes which allows to change
the properties of the system even qualitatively by
changing the strength of the fluctuations, while for
additive processes @ affects only the quantitative
properties, i.e., additive processes:

Py(x)= [e@(zfo(x")dx’ﬂ ”0,

multiplicative processes:
_ x T, (xl) 1/Q
Po(x) =G 1(x) [exp(Z f mdx'\)] .

As an example, we may consider a system under-
going a bifurcation and define the threshold by an
order parameter X approaching zero at the transi-
tion point. If we identify the order parameter with
the most probable value of the stochastic process
5(0, we recognize that the threshold itself depends
on the fluctuations in the case of the multiplicative

process, while additive fluctuations do not enter
the threshold condition. This observation predicts
the remarkable effect that a multiplicative random
process can be driven through the threshold region
by only changing the strength of the fluctuations.

C. Stability

‘An additive stochastic process is already stable
when the associated deterministic problem has a
globally stable steady state with respect to arbi-
trarily large fluctuations. - For a one-dimension-
al system we can formulate this statement quite
generally: The additive process x=L(x) + F has
a stable stationary solution and all its moments
{x™ exist up to the nth order when L(x) satisfies
the inequality

_% f"L(x')dx'>(n+1)1nx+‘3°nSt (4.9)

in the asymptotic limit x > x, where x, is arbitrar-
ily large but finite. For a multiplicative process,
however, the proof of the stability of the deter-
ministic problem is not enough to guarantee sta-
bility when fluctuations are present.

The most simple multiplicative process we can
think of makes this point quite obvious. Consider,
e.g., the linear Gaussian Markov process

%= —dx+xF, (4.10)

for which we can derive all statistical properties
immediately. The moments are given by the re-
lation

(xn>‘:(xn>'=oexp[—nt(d—%nQ)], (4.11)
while the the stationary distribution reads
P (x)=x"12/9, (4.12)

Unfortunately this distribution is not normalizable
for any value of the parameter d.

For this process only those moments {x") for
which 7 <2d/Q remain bounded as t —~«, If d
< % @ the multiplicative fluctuations overcome the
restoring force —dx and distribute the random
variable over the whole range of definition. The
corresponding deterministic problem, however,
has a stable steady-state solution.

For a multiplicative process we must replace
the condition (4.9) by the more general relation

E x L(x')
) G*(x’)

dx"+1InG(x) > (n+ 1)lnx + const,

for x >x,, with x, arbitrarily large but finite. If
we can replace L and G asymptotically by a single
power law

limL(x)=ax', limG(x)=bxf,

x-o0 x =
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then the system is stable and all its stationary
moments exist when the following inequality is met:

1>2g-1.

With these remarks we would like to close the
discussion of the general properties of multiplica-
tive stochastic processes and now turn to the de-
tailed description of some special model systems.

V. STEADY-STATE RESULTS

After having derived some general properties
and tools in the preceding sections, we will now
start to present the explicit analytic solutions of
some model systems, the most important of
which—with respect to applications in physics—is
the process (2.11). We will therefore discuss
here the corresponding Fokker-Planck equations
and their solutions in detail and add the results of
some other exactly solvable processes without
further detailed derivations. In Sec. V we will
present the stationary-state or equilibrium prop-
erties, while the explicit dynamics will be devel-
oped in subsequent sections.

A,

The process x =dx - bx'*” + xF, with F represent-
ing a 6-correlated Gaussian process, corresponds
to the Fokker-Planck equation

P 2
a—t 2 (xzp).

_____22_ 1+7 1
= ax[(dx—bx + 3 Q0P+ —

[S1Ea)
Q)IQ)

(5.1)

The steady-state solution 3P,/3t =0 is given after
performing a straightforward integration by the
following expression'®?* :
4
P, (x)= Nx~1*28/9 exp (_Z_b x—), (5.2)
Q@ v
where N is a suitably defined normalization con-
stant. We will see in Sec. VI that the probabil-
ity current j at the origin x =0 vanishes not only
for the steady-state solution, but also for all
higher eigenfunctions of the Fokker-Planck opera-
tor. Therefore, if the variable x is found at one
time to be positive, it will remain in this half
space for all times. The proper normalization
constant N is therefore given by

N=y@b/y@)*/"°T™(2d/7Q). (5.3)
1. Most probable values
The most probable value x, is given by
~ (0, d<3Q,
° { [(1/6)d - L Q17 , d>1q.

This behavior is reminiscent of an equilibrium
phase transition when we interpret x, as some kind
of order parameter. The parameters d and §1-Q
will then play the role of an inverse temperature
and an inverse critical temperature @=2/T,.

The nonequilibrium phase-transition analogies
have been pointed out for many interesting systems
using additive stochastic processes. Probably the
classical example of this kind is the laser, where
d plays the role of the pump parameter, and x
characterizes the amplitude of the coherent laser
field.!":18:4° Phase-transition models with multi-
plicative fluctuations have recently attracted con-
siderable attention and are under investigation
theoretically®? as well as experimentally.!® The
relation (5.4) demonstrates explicitly the depen-
dence of 3:0 on the strength of the fluctuations,
while in the deterministic problem without fluctua-
tions the threshold is reached when the stationary
solution approaches zero

dp=0.

A suitable definition of the threshold with fluctua-
tions is given by ¥%,=0, resulting in the threshold
condition

dp=1Q.

This is one of the remarkable specific properties
of multiplicative processes which is not known
from processes with additive fluctuations.

A demonstration of this behavior is given in Fig.
1, where we show how the stationary distribution
changes qualitatively with the strength @ of the
fluctuations. The observation that the probability
density becomes narrower when the fluctuations
are reduced is common to all statistical processes.

FIG. 1. Stationary solution Py(x) plotted for d =16, p =3y
as a function of the strength of the fluctuations. For
@ =1 the distribution peaks at x=4, When @ is increaseq
(@ =4, @ =6) the distribution shifts to smaller values
and broadens, until the threshold is reached at @ =32.
If @ is increased further, the coherent motion is finally
suppressed (Q =80).
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d=85 11.s

FIG. 2. Stationary distribution P;(x) as defined in Eq. (5.2) plotted for three different précesses with the exponents:

(@).p=3% ().p=1, (c). p=3.

The pump parameter d has been varied from below threshold to well above. The strength

of the fluctuations @ has been kept constant at the value @ =1. It is obvious that the processes fall into three classes
according to their asymptotic behavior: with increasing pump parameter d the variance increases for p< 1, decreases

for p>1, and approaches a constant value for p=1.

The shift of the peak, however, is characteristic
of multiplicative processes. This result has been
discussed theoretically by several authors!®?' and
has been demonstrated in a series of experiments
by S. Kabashima et al.'®

2. Moments

The equilibrium properties can be characterized
as well by the hierarchy of stationary moments
which, for the class of probability densities de-
scribed above, can be given in closed analytical
form for arbitrary vy:

o= (B)" o (H)p(2 1)

M,= (x")_<yQ> r(3)r(%+7) . 6.5
For rational exponents y the moments of the order
n=my, with m a natural number, assume the
simple algebraic form

26 \"" [ 2d 2d
=(3) " (Fem-1)-(%)

3. Asymptotic behavior

(5.6)

Close to the transition region d/Q <2 the dis-
tribution undergoes rapid changes, while for large
pump parameters d — , P (x) may approachalimit-
ing configuration. In this respect the processes
with different exponents y behave quite differently,
and it is interesting to note that the exponent y=2
which, according to the examples in Sec. II is
found in many physical applications, plays a spe-

cial role. .

The stationary distribution Py(x) in the limit
d/Q — = can be approximated by the following
Gaussian®®:

Lim Py () = Nexp[ -(1/6%)(x - (x))’] (5.7)
located around
(x)=(d/b-Q/2b)"'" , (5.8)
with a variance given by the relation
2 1 (_b_ -2/V(E L @2=7/r
=72 \9 0" % . (5.9)

While the center of the distribution shifts to the
right irrespective of the exponent y, the width o?
shows a pronounced dependence on this parameter.
In the limit d — « we find

o, y<2,
limo®=¢ (6/Q", r=2,
0, v>2

This behavior is shown for three values of y in
Fig. 2.

B.

The process ¥ = —d/x +b/x*+ (1/x)F is statis-
tically equivalent to the Fokker-Planck equation



2P _af(d_ b @\, Q2 £)
ot ox [(x _x3+2x3) P] *3 axz(x2 )
(5.10)

We describe here the stationary properties of this
process because it is one of the few examples
which, as we will demonstrate in Sec. VII, allows
an exact analytical solution of its time-dependent
Fokker-Planck equation. The stationary distribu-
tion is given by

d b/Q+1 _ b .
Po(x):2<6) r1<6+1) 520/ Q41

xexp(-g xz)

Because of the similarity of the two stationary
solutions (5.3) and (5.11) we can skip further de-
tailed discussions of the properties. One remark-
able difference should be mentioned, however:
The most probable value 3:0 of this distribution,

ECOZd'I/Z(b‘F-;-Q)UZ,

(5.11)

shifts to the right with increasing fluctuations,
while in the previous examples we found the op-
posite tendency. In the dynamic behavior, how-
ever, as will be shown in Sec. VII, we will find no
further similarities between the processes (5.1)
and (5. 10).

VI. SOLUTION OF THE DYNAMICAL EVOLUTION
OF THE PROCESS %=dx-bx3 +xF
After discussion of the steady-state properties
we are now prepared to solve the time-dependent
Fokker-Planck equation by analytical methods,
expressing the general solution in terms of the
eigenfunction expansion (3.11). We will see that
the eigenvalue spectrum consists of a discrete
as well as a continuous branch,* which we will
discuss separately in the following sections.

A. Discrete eigenvalue spectrum

The eigenvalue Eq. (3.1) for the special exponent
y=2 assumes the form

2 1p()] - 2l + £ Qe -bx1P}= P,

(6.1)
supplemented by the normalization condition (3.9)
= P2(x)
= dx=1 6.2
o Polx) ’ (6.2)

where we have restricted ourselves to the positive
half space. With the product transformation

P(x)= W(x)S(x), 6.3)
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where S is given by
S(x)=5"3"2*4 exp(-(b/2Q)x?), (6.4)
we can transform Eq. (6.1) into normal form:

S @/QF -1 -22/Q . b(d
0= W (x)+W(x)[— : +22 (Q +1>

by 2]
(=) #*. 6.5)
(3) (
With the additional transformations of the depen-
dent as well as the independent variable

W=2z""%(z), x=2'"2, (6.6)
we arrive at the Whittaker differential equation®’
1( da® 2 )
u"(z)+ %u(z)[? (-—Q—é— +5 +1
20 d/Q+1 b2 ]
s rait il RF (6.7)

which can be solved in terms of the confluent
hypergeometric functions

wor—ron (45) o3 (8 5)n .
(6.8)
with :

_Luf(gy 2]
’1)1’2._2 :1:2[ 5) —-5— .

After inserting definitions (6.3) and (6. 6) into (6. 8)
we find the two linearly independent solutions

. (6.9)

2
Pli2(x) = x~ 24/ 201,32 exp (-— %— )

1 d b
><1F1[v1,2 -3 <1+§): 2”1,2; 6 xa] .
(6.10)

From this continuous set of solutions only a finite
number of functions satisfies the normalization
condition (6.2). The convergence in the asymp-
totic region x — « can only be guaranteed for the
discrete set of eigenvalues

Am=2mQd/Q —m),

while the convergence of the normalization integral
(6.2) at the origin requires the inequality

d/Q=2m. (6.12)

Both conditions can only be fulfilled simultaneous-
ly by the eigenfunction P'(x). An illustration of
the lowest eigenfunctions P,(x) is given in Fig.
3(b). The eigenvalue spectrum consists according
to (6.11) and (6. 12) of a finite number of discrete
values that become more and more numerous with
increasing “pump parameter” d.

(6.11)
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FIG. 3. Steady-state solution Pj(r) and first three eigenfunctions (2 =1, 2, 3) of the Fokker-Planck Eq, (5.1) are
plotted for three different exponents p: (a) p=3%, d=7.5, @=1; (b) p=1, d=9.5, @=1; (c) p=2, d=27.5, @=1.

Considering the index m for a moment to be
continuous, we can find an envelope function, a
parabola i

rx=1d%/Q, (6.13)

on which the discrete eigenvalues )\, terminate in
a tangential direction as a function of the pump
parameter d. A plot of the eigenvalue spectrum is
given in Fig. 4. In agreement with (6.12), the
envelope defined in (6. 13) separates the area of

d—

FIG. 4. On the left-hand side, the eigenvalues A, [see
Eq. (6.11)] have been plotted as a function of the pump
parameter d, while the right-hand side shows a typical
eigenvalue spectrum for a given value of d.

real parameters v, from that of complex ones.
The real values of v correspond to eigenvalues
below the envelope

A, <A

and lead to a system of real eigenfunctions.

So far we have obtained the discrete branch of
the eigenvalue spectrum suspecting, however,
that it cannot be complete. The plot of the eigen-
values (Fig. 4) already indicates that the curve
x(d) not only serves as an envelope of the discrete
values A, but also separates them from the con-
tinuous branch of the eigenvalue spectrum.

B. Continuous branch

The general solution of the differential equation
(6.1) is a linear combination of the two fundamental
solutions (6.10). To satisfy the normalization
condition for the continuous branch,

f p, (x)P,;. (x)
Py(x)

it is not necessary that each partial solution
P%2(x) separately approaches zero in the asymptotic
limit. It is sufficient, however, to find a suitable
linear combination of P!(x) and P?(x) which satis-
fies this requirement. The linear combination

dx=56( =1"), (6.14)



that fulfills the normalization condition for the

asymptotic region x — « is the Kummer function?®*’

P(x)
'3/2"‘""( 2Q "2>

D(-28)  oua )
X[I‘(.;-—u—se)x lFl(u—ze+ s 2u+1, 'Q

+(u-—u)] ) (6.15)

where we have used the abbreviations

e-3{@ 23], = (5

To avoid divergencies at the origin x =0 we must
require that the eigenvalues have a lower limit

>L1q%/q. (6.16)

All the real values of A that satisfy (6.16) make up
the continuous branch of the spectrum. In Fig. 4
this branch lies inside the dashed parabola. The
eigenfunctions (6. 15) can be properly normalized
onto the 6 function by means of the Meijer func-
tion.®®

We want to close this section by summarizing
the results: (i) For A < %—dz/Q we find the eigen-
functions

P"(x) :x-1+2d/0-2n exp[_(b/Q )xz]

X Fy(-n,2v,, (b/Q)x?), (6.17)

with
20,=1+d/Q -2n >0

and the eigenvalue spectrum
A, =2Q(d/Q -

(ii) For A > +d?/Q we find the eigenfunctions
Px(x)

. b
— -l*d/Qe (_._xz)
X xp\-2

+ (u-'—u)] , (6.18)
with
=[i/@Q)" ] -d2/2Q)"/?, ==1(/Q+1),

and fhe eigenvalue spectrum which consists of
all real values of )\ subject to the restriction

A>1d?/Q.
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C. Correlation functions

For comparison with experimentally observable
results we can use the analytical solutions ob-
tained above to calculate all desired correlations
and so describe in measurable terms the statistics
of the underlying stochastic processes completely.
With the general expressions listed in Sec. III we
can calculate, e.g., the stationary two-time cor-
relation function from

G, ()= (x(t +¢")x (")

"mayx

=3, gret [, gertan, 6.19)
a?/2Q

with the generalized flrst moments defined as
x - »
ga= f xP, (x)dx

0

The continuous part of the spectrum contributes in
general a rather complicated time dependence. In
the threshold region d/Q <2, where the correla-
tion function is entirely given by the integral part
of (6.19), the analytical structure of G, is not
known exactly, and the integration must be carried
out numerically. Apart from this regime, how-
ever, in the asymptotic limit ¢ — « the continuous
part is dominated by a finite number of exponen-
tials from the discrete spectrum.

In the derivation of (6.20) we assumed that the
eigenfunctions are normalized according to (3.9).
Because the results of Eqs. (6.10) and (6.17) in
the present form have not yet been properly
normalized, we must introduce an additional factor
N;'2%into Eq. (6.20),

Q 2d/Q-2n 2n
Nn:4(3) ( ) Z c,""l"( +l-—2n>,

(6.21)

(6.20)

with

(n) i ( n)t ("n)!-t (6.22)

@v,); @v,),., °’
where

(@),=ala+1) **(a+n-1).

" Substituting the definition form (6.17) into (6.20)

and integrating, we find in the regime d/Q >2n

1/2
£=(%)
dT@/Q+1-n+ 1)
*T@/Q Z),,OC,""F(d/Q +1-2n)t/2

where d™ is an abbreviation for
aim = (-n),/(2v,),

It should be recognized that, in spite of its un-

(6.23)



1642 A. SCHENZLE AND H. BRAND 20

wieldy appearance, (6.23) is up to a prefactor a
simple rational expression containing only powers
of d/Q. The definition of the coefficient ¢’
guarantees that when d/Q approaches an even
number 27, the corresponding moment g, drops
out of the expansion (6.20) quite naturally [cf. also

(6.12)]: ,
g,—0 for d/Q —2n—0*, (6.24)

To illustrate this behavior, we write the first two
moments explicitly:

oo, st (3 (A (53)
R =

\

The ratio of these moments is given by

g |*_ 1 _d/Q-2 (6.25)

& | 4 @e-3r"

and approaches zero for increasing pump parame-
ter. In the long-time limit outside the threshold
regime we can express the correlation function by
the leading terms

60— % [P@/Q+ LT
[T@/@P

1 d/Q@-2  _suon,...

(145 oy e ).

(6.26)

and obtain a pure exponential decay. An interest-
ing and remarkable prediction of the model con-
sidered is the explicit dependence of the relaxation
rates on the strength of the fluctuations . This
linear dependence of X, on @ as well as on the
pump parameter d is open to experimental verifi-
cation. For an electronic parametric oscillator
driven by external multiplicative fluctuations

S. Kabashima et al. found that the damping constant
governing the approach to equilibrium decreased
linearly with increasing fluctuations and increased
linearly with the pump parameter. This result
finds its natural explanation in the eigenvalue
spectrum (6.11).

D. Generalization of previous results

Utilizing the transformation properties derived
in Sec. OIC, we can generalize the processes
under investigation towards more general non-
linearities. The Langevin equation

x=dx - bx*+xF (6.27)
can be transformed into the more general equation

S}Zdly __bly2p+l +yFI (6. 28)

by using the definition x =y” where the primed
terms in (6.28) are equal to the unprimed terms
in (6.27) divided by the exponent p.

Without further calculations we can write im-
mediately the explicit solution of the Fokker-
Planck equation corresponding to the whole class
of processes (6.28) by using the transformation
rules (3.25). For the class of Langevin equations

X =dx —bx**1+xF

with arbitrary exponent p> 0 the corresponding
Fokker-Planck equation .
oP d

_9 . Q
=5 [(d+ £ Q)x —bx*]|P} + e (x%P)

(6.29)

can be solved exactly by means of the transforma-
tion properties (3.24) and the explicit results
(6.10). The stationary solution has been given
already in Sec. V. For the eigenfunctions we

find

P2 () =124/ 9% exp[ —(b/pQ)x™]
X \Fil-m, 202, (6/pQ)x*],
20 =1-d/pQ -2m .
The corresponding eigenvalues are given by
AP =2mp(d/Q —pm), d/Q>2pm .

It should be mentioned that the exponent p can be
chosen quite arbitrarily, but some care has to be
taken not to violate normalizability. In many
physical systems symmetry arguments determine
the possible exponents p. Inversion symmetry

(x— -x), e.g., requiresthat p can assume only integer
values, whereas for a system without any internal
symmetry p can be quite arbitrary. An interesting
example is given by the autocatalytic chemical
reactions described in Sec. IIE,

(6.30)

A+x—2x,

This standard reaction step is an example of a
fractional exponent, p=1/2. The stationary dis-
tribution of this process has been plotted in Fig.
2(a).

E. Amplitude and phase fluctuations

It is possible to generalize the problem above
even further by allowing the random variable x
to assume complex values. This generalization
is important for applications in which the variable
x contains amplitude as well as phase information,
like the complex field amplitudes in the exam-
ples of quantum optics mentioned above. We start
from the Langevin description of the following
process
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¥ =dz* - b|z|Tz* +2*F*, (6.31)

assuming F to-describe a Gaussian §-correlated
process with vanishing cross correlations char-
acterizing thermodynamical fluctuations; d and b
are taken to be real. Decomposing Eq. (6.30) into
real and imaginary parts, we obtain the following
system of stochastic equations for z =x, +ix,:
Xy=dx, —bx, (3 +x) 2+ x F, —x,F,,
Kp=dx, —bx, (63 +x2) 2+ x F, + x,F,,
where we split the fluctuating force into real and
imaginary parts: F=F,+iF,. F is characterized
by the correlation functions

<F1,2(t)F1,z(t')>= Qs -t'),
<F1,2(t)F2,1(t')) =0.

It is now straightforward to derive, from the gen-
eral rules given in Egs. (1.5)—(1.8) the corre-
sponding Fokker-Planck equation

aP({x,})
ot

- ([ ) )

i=1

&5 (5 ) pen).

§=1

(6.32)

(6.33)

The notation used in Eq. (6. 33) already indicates
that the generalization to arbitrary dimensions
can be carried out easily.

The symmetry of the Fokker-Planck equation
suggests the use of polar coordinates

X,=7%C0SQ, X,=%sing,

leading to the equation

2 _1 2 ( wa_Q 2 ) ]
atP('V,qp,t)__y 81'[7 dr —=br* -5 5 7 P
+Q§f£ (6.34)

2597 " .

Making use of the rotational invariance of this
equation, we find with the ansatz
P(r, @,t)=P(r)e'™ %™t (6.35)

the following one-dimensional eigenvalue problem:

li 2¥ +1 Q__Zi_ 2) ]
-5 ar[v(dv-—br 27 P

+(-L@m*)P=0. (6.36)
In the special case x=0, m =0, Eq. (6.36) can be
integrated immediately, yielding the steady-state
solution

b-\¢/7? _ d B
P3(7,¢)=%(%> rl(;a)rm”"

X exp (—-;% v”) .

In analogy to the procedure of Sec. VIA we can
solve the time-dependent equation in full generality
and find for the discrete branch of the spectrum
the eigenfunctions

. (6.37)

b
-2+2 @/ Q-
P’:()’(p)__’) 22 @/Q-m) exp( ),Q 27)

xelme F, (—n,% -2n+1, % 1’”)
(6.38)
with the corresponding eigenvalues
A =Q[Lm?* +2ny(d/Q -vn)], (6.39)

subject to the restriction
d/Q=2yn.

It is interesting to note that the eigenvalues Aj do
not depend on the pump parameter d at all, but are
determined completely by the fluctuations @.

This is one of the few examples in statistical
physics where the Fokker-Planck equation of a
relevant nonlinear process in more than one di-
mension can be solved completely by analytical
methods. Besides the relevance of these results
for the explanation of the physical examples de-
scribed in Sec. II it is also valuable to have a
class of standard statistical processes that allow
an exact solution which can be used, e.g., to esti-
mate the power of various approximation methods.

VII. DYNAMICAL PROPERTIES OF THE PROCESS
,\’=%+}I’T +;—F

In the previously discussed examples the fluc-
tuations increased with the stochastic variable x.
In contrast to this process here we want to solve
another model with multiplicative fluctuations that
decrease while x increases.

The equilibrium solution of the associated
Fokker -Planck’equation has been derived already
in Sec. VB [Eq. (5.11)], corresponding to a
bound state of the “two-particle” system. Here
we will summarize without explicit derivations
the properties of the eigenvalue problem. The
eigenfunctions of the Fokker-Planck operator
(5.16) are given by '

pior=r e - (1 gy )

b dx?
X1F1<“”’25’ (1 +2Qn/b)>’ @.1)
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FIG. 5. On the left-hand side, the eigenvalues A, [see
Eq. (7.2)] have been plotted as a function of the pump
parameter d, while the right-hand side shows a typical
eigenvalue spectrum for a given value of d.

while the corresponding eigenvalues can be cast
into the form

A=+ (@%/Q)1 - (1+2Qn/b)?]. (7.2)

The discrete branch of the eigenvalue spectrum
consists of infinitely many states with the point
of accumulation A, where

Ne=d?/2Q, O0sA<)A,.

In Fig. 5 we have plotted the eigenvalue spectrum
as a function of the parameter d/Q. The contin-
uous branch of the spectrum that can be calculated
explicitly by the same arguments as used in Sec.
VIB lies above the parabola

= 14/q.

A cross cut through the spectrum for a fixed pa-
rameter d is given on the right-hand side of Fig. 5.

VIII. ROLE OF WEAK ADDITIVE FLUCTUATIONS

In a real physical system the fluctuations will
in general be neither purely additive nor purely
multiplicative as in the model systems above.

To be of any use, the models must describe a real-
istic limiting case in which, e.g., the multiplica-
tive fluctuations dominate the additive ones. In
this sense we have treated above the extreme limit
by neglecting the additive fluctuations entirely.

In this section we now want to go one step fur-
ther towards a more general and more realistic
system by considering the influence of weak addi-
tive fluctuations on an otherwise purely multiplica-
tive process. As a model system we choose the
process (6. 1) and include an additional fluctuating
term. In the Langevin picture this generalized
process is described by

X¥=dx —bx" +F, +xF,, (8.1)
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where the forces F; represent statistically inde-
pendent Gaussian Markov processes

(F;(OF, (") =Q,5(t —t")5,,

(8.2)
(Fy@y=0.
By weak additive fluctuations we mean the limit
QI/Q2:82<<1, Qz’:‘Q- (8-3)

The Fokker-Planck equation corresponding to
(8.1), using the definitions of (8.2) and (8.3), as-
sumes the following form;

b __ 38 Q @
o= "o Ldx —bx+ L Q0P+ 5 7 [(62+29)P].

(8.4)

In order to have stable stationary solutions for
the deterministic problem, we must assume N to
be an odd integer, that

N:2m+1, m:1,2,3,..-.

The equilibrium properties are characterized by
the stationary distribution which, for arbitrary
fluctuations, takes the form

- - - 2m
P?;(x): N 1(82+x2)‘”Q 1/2-6/Q) €1)™ &

m=1 2 m-y)
xexP(‘z% > (1 i— 82">. (8.5)
520

Comparing this result with the previous distribu-
tion (5.2), we notice that outside a threshold re-
gion, i.e., for d/Q > %, no essential changes in the
functional dependence of P(x) can be expected in
the limit § <1. A considerable effect of the addi-
tive fluctuations however is found in the region
d/Q <%, even for small § .

In the purely multiplicative case the distribution
(5.2) is singular at the origin, while in (8.4) ad-
ditive fluctuations prevent this divergence for any
real x. The essential discrepancy between the
more general result (8.4) and the model calcula-
tion (5.2) is, however, confined to the region

|x|<8.

The finite value of P%(0) is a measure of the
strength of the additive compared to the multiplica-
tive fluctuations. This property allows one to
measure even weak additive fluctuations in the
presence of strong multiplicative ones by examin-
ing the probability distribution in the neighbor -
hood of the origin under weak pumping conditions
d/Q <%. In order to compare this functional de-
pendence with experimental results, we have
plotted in Fig. 6 the stationary distribution and
the experimental points of Kabashima et al.,” and
obtain very good quantitative agreement.
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FIG. 6. Stationary probability distribution Pg(x) [Eq.
(8.5)], including weak including weak additive fluctua-
tions. Circles indicate the experimental results of
Kabashima et al. Contrary to the distribution of the pure

multiplicative process Py(x) (dashedline), Pgu) is non-
singular at x=0.

While the stationary properties of the above
process can be found for arbitrary fluctuations
Q,, Q,, there is no exact solution for the dynamics

of the problem when additive as well as multiplica-
]

tive fluctuations are present.. The aim of this
section therefore is not to search for an exact
solution of Eq. (8.4) but to gain a qualitative un-
derstanding of the influence of weak additive fluc-
tuations on multiplicative processes. For the
results derived in Secs. V-VII to be of any physi-
cal significance it is important that they are not
altered completély when small additive fluctuations

~are included.

Starting from the Fokker-Planck equation (8.4)
we find the normal form of the differential equa-
tion by the product transformation

P=WS, (8.6)
with
S(x) = (8% + x2) @/ Q-3/2- 0/Q) €1 &™) /2

xexp( ZbQ mz:l (=1)x2 =1 S—l)’
(8.7)

and obtain after introducing the new indepehdent
variable z =x/§ the eigenvalue equation

(8.8)

_w”(z)+w((lf 2y - [(d2-d@ -1 Qz)z + 52820122V 4 (pQ —2db)EN N1+ 1 L Q%]
. -
1? T3 g7 @-Nv&™'z N-l)) 3 1+22

The appearance of the denominator 1+ z® suggests
the introduction of a new independent variable Y
according to

z=sinhY. (8.9)

The resulting differential equation for w(Y) can be
transformed to normal form again by the definition

w(Y)=R(Y)G(Y), (8.10)
with
G(Y) = (coshy)'/2, (8.11)

After some elementary transformations we find
the Schrodinger-type equation

-R"+V(Y)R=(2/Q)\ —-d?/2Q)R

with an effective potential given by

V(Y)= < 1

(8.12)

co,hZ [bzsz (N=1) sinhZNY

- b(2d - Q)8 'sinh ™'Y —d2+dQ]

—NbQé’”"sinh”'lY> . (8.13)

The general properties of the potential V(Y) allow
a qualitative discussion of the eigenvalue spec-

I

trum: (i) In the asymptotic limit | ¥|— < the po-
tential can be approximated by the expression

V(Y)=(1/Q)6%(+8)* *Vexpl2V -1)| Y]] . (8.14)
(ii) For Y in the neighborhood of + ¥,
Yo=(1=-Ny'In[6(38)"!/2d+QWN -1)], (8.15)
* the potential assumes the form
Vo (Y)= (1/4@%)[2d + QN - 1)]*.
x(ez(N-nlnrou -2 w-mnrol), (8;16)

with the minimum at Y=+ Y,, (iii) For small \
values of Y we find

Vs(¥) = -(1/@*)d(d - @)sech’Y

In order to regain the previous results for pure
multiplicative fluctuations, i.e., in the limit§—0,
we must bare in mind that the transformation z
=x/§ rescales the independent variable.

Using the terminology of the Schriédinger equa-
tion we will find localized discrete bound states
with negative total energies in the potential wells
V, and V; centered around Y=0 and Y=1+Y,, re-
spectively. Negative total energy means A $d2/2Q,
the regime where we already found the discrete

(8.17)
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spectrum in the case of pure multiplicative proces-
ses. Utilizing the textbook results for the poten-
tials V,(Y) and V,(Y) above, we find the following
eigenvalues:

A =n(N -1)Q[d/Q - 3 WV - 1)n],
A= (n+1)Q[d/Q - (n+1)].

We recognize that the discrete set A®’ is identical
to (6.30). Transforming the corresponding eigen-
functions R,(Y) back to the representation P,(x),
we realize that in the limit §— 0 the functions
P2(x) become identical to the solutions (6.30),
while the functions P3(x) which are localized
around Y=0 are squeezed to an infinitesimally
narrow range around the origin x=0.

One effect of additive fluctuations is therefore
to connect the separate stochastic motions in the
two half spaces x <0 and x > 0 by allowing the
particles to diffuse through the origin. The eigen-
functions corresponding to A <d?/2Q are made up
of the symmetrized eigenfunctions of the pure
multiplicative poocesses with an infinitesimally
small correction due to the potential V, confined
to a narrow range Ix[ <& around the origin. For
X >d?/2Q the particles can diffuse almost freely
in the potential well V,(Y). In the limit § =~ 0 the
eigenfunctions become strongly delocalized and
the difference between neighboring eigenvalues
approaches zero: (A,,, —),)—~ 0, forming a quasi-
continuous spectrum. This behavior explains in a
natural way the appearance of the continuous
branch in the spectrum of pure multiplicative
processes.

Let us summarize the results of this section:

(i) The eigenvalue spectrum contains a discrete
and a quasicontinuous branch with a level separa-
tion of the order of

Axx VX /In§, limAx=0,
&0

(ii) The discrete eigenvalues are twofold degen-
erate owing to the inversion symmetry of the
problem. For small but finite & the degeneracy
is lifted. Besides the eigenvalue A = 0 another
small eigenvalue appears, corresponding to the
diffusion between the two stationary states cen-
tered at Y==Y.

IX. CONCLUSION

The statistical description of macroscopic sys-
tems, when derived from microscopic equations,
in general consists of a system of coupled Lange -
vin-type equations with additive fluctuations. For
many years this approach has been used almost
exclusively for the description of fluctuation phe -
nomena in various fields of statistical physics.

We have shown in Sec. II that multiplicative fluc-
tuations arise in a natural way when a system of
nonlinear Langevin equations is simplified by
using, e.g., the adiabatic principle. While the
formal aspects of linearized multiplicative pro-
cesses have been discussed by several authors,
generalization to the nonlinear regime has so far
not attracted the attention it deserves.

It was the aim of this paper to study in detail
the importance of multiplicative stochastic pro-
cesses in different fields of statistical physics.
Some general properties of multiplicative proces-
ses in comparison with additive ones have been
reported in Sec. IV. A remarkable difference
between these processes was found in the behavior
of the most probable values, which no longer coin-
cide with the deterministic stationary points in the
case of multiplicative fluctuations. An interesting
consequence of this result is the fact, that, e.g.,
threshold conditions are no longer determined by
the deterministi¢ parameters alone but depend .
explicitly on the strength of the fluctuations.

For a more detailed discussion we formulated
a class of nonlinear stochastic equations that can
serve as a basic model in statistical physics be-
cause all statistical properties characterizing
these processes can be calculated exactly by
analytic means. The complete description of the
dynamics of these systems was possible because
the underlying time -dependent Fokker-Planck
equations were found to be exactly soluble. The
mathematical details of the solution are sum-
marized in Sec. VI. A remarkable property of
the eigenvalue spectrum is that it consists of a
discrete as well as a continuous branch. A con-
tinuous branch has also been found for a second
class of multiplicative processes, which we dis-
cussed in Sec. VIII. We have been motivated to
discuss these classes of multiplicative processes
in detail by a number of physical examples from
nonlinear optics and chemical reaction dynamics.

The experiments of S. Kabashima et al., who
investigated the statistics of electronic parametric
oscillators driven by controllable external noise
can be described in terms of multiplicative stoch-
astic processes and allow for comparison of the
present results with experiments. The experi-
mental results concerning the stationary as well
as the dynamical properties are in excellent
agreement with the predictions of the model dis-
cussed here. In particular, the explicit linear
dependence of the relaxation rates on the strength
of the fluctuations as reported by S. Kabashima
et al. finds its natural explanation in the eigen-
value spectrum derived in Sec. VI. We think
that the field of multiplicative stochastic processes
has exciting new characteristics that have not yet



been studied in all their consequences; much work
remains to be done both experimentally and theo-
retically. We hope that the presented analytical
results will stimulate further activities in the
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area of multiplicative stochastic processes,
where interesting new features can be expected
which are unknown to the well-examined field of
additive stochastic processes.
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