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Photon statistics of partially polarized Gaussian light
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Statistical properties of partially polarized Gaussian light were studied experimentally for degrees of
polarization P from 0.03 to 1 by a standard technique of photon counting. The Gaussian light with an
arbitrary degree of polarization was obtained from Rayleigh scattering of orthogonally polarized laser beams.
The factorial moments up to sixth order of the photoelectron distribution were measured with an arbitrary
temporal and spatial coherence. After corrections were taken for the experimental conditions, the theoretical
values of these factorial moments were. compared with the experimental results. It is shown that the
theoretical predictions were quantitatively well verified by the present measurements, The microscopic
process is discussed from the standpoint of the light scattering system used in the present measurements, and
it is shown that the orthogonally polarized components of the scattered light observed are statistically
independent.

I. INTRODUCTION

The statistical and temporal properties of photo-
electrons reflect the fluctuation properties of light
illuminating a photodetector. On the basis of this
correspondence various experimental and theo-
retical works have been carried out on the statisti-
cal properties of Gaussian light. ' Most of these
works have until now been concerned with linearly
polarized light. For a partially polarized beam of
thermal light Mandel has derived the ensemble
distribution for the number of photons' and Saiswal
and Mehta have obtained an expression for the
cumulants of the integrated intensity. ' Martienssen
and Spiller studied experimentally the probability
distributions of photoelectron pulses for depolariz-
ed light and showed a substantial departure from
those of polarized light. 4

We had studied experimentally the statistical
properties of Gaussian light with a Lorentzian
.spectral shape'' and those of a mixture of Gaus-
sian and coherent light' for the case of linear po-
larization. Here we report the measurement of the
statistical properties of Gaussian light with an
arbitrary degree of polar'ization and present a
quantitative comparison of the experimental results
with the theoretical predictions. The scattering
process is discussed and it is shown that the or-
thogonal components of scattered light can be re-
garded as statistically independent in our experi-
mental scheme.

II. EXPERIMENT

Figure 1 shows the experimental setup. A ver-
tically polarized light beam from a 5145-A argon
ion laser was focused into a sample cell which con-
tained latex polystyrene spheres of diameter 4810
A with a standard deviation of 18 A. The light
beam which exitted the cell in the forward direction

was reflected back into the cell along the same
path. A 4 A. Babinet compensator was placed be-
tween the cell and a reflecting mirror and adjusted
so that the reflected beam reentering the cell was
horizontally polarized. The scatterer was there-
fore illuminated by the two incident beams the po-
larizations of which were mutually orthogonal and
propagation vectors of which were opposite. Since
the scattered light was observed in a horizontal-
plane, the scattering efficiency was much smaller
for horizontally polarized light than for vertically
polarized light. The scattering angle 9 was there-
fore chosen such that the same intensities were ob-
tained for both scattered components. The light
beam scattered from the cell entered on the photo-
cathode of a Hamamatsu TV 8300 photomultiplier
through two irises the diameters of which were 60
and 120 pm. The second iris was 30 cm from the
first. Photoelectron pulses from the photomulti-
plier were standardized to a Transistor-Transistor
Logic level after being discriminated by a EGO G
T-105/N dual discriminator. The count-processing
system used is the same as that employed i.n our
previous work. '

With average counting rates (n~) and (n~, ) of
photoelectrons contributed from the vertical and
the horizontal polarization components of the scat-
tered light integrated during a count interval T,
the degree of polarization. P is defined by'

P = ((n,) —(n~~)/(n, ) + (n~, ) ~.

When we chose the scattering angle g to be 63, the
average count rates (n~) and (pg, ~) were V.8xl0»
pulses/sec. For these count rates the average con-
tribution from each component was 3.3 pulses dur-
ing a sampling interval T =4.2 &10 ' sec. The de-
gree of polarization of the light was changed from
0.03 to 1 by reducing the intensity of the horizontal
component of the incident light beams, while the
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vertical component was unchanged. From the val-
ues of g and the diameter of the spheres the cor-
relation times of fluctuations of the scattered light
were evaluated to be 1-.00x10 ' and 3.48 &&10 sec
for the vertical and horizontal components, re-
spectively. 'The number of counting samples was
2 &&10' for each fixed value of P. From the distri-
bution of photoelectrons counted normalized fac-
torial moments were calculated for each value of
I' and plotted in Fig. 2. The experimental disper-
sion of the plot is shown by a bar when greater than
the size of dots. Typical plots of the photoelectron
distribution are shown for the cases of P =0.03 and
I' =1 in Fig. 3.

III. DISCUSSION

We define the kth factorial moment E(k) of the
distribution of photoelectrons by

I'(k) = ( n(n —1)(n —2) (n —k+ 1))
( n)'

1 (k) is equal to the normalized moment M„of the
distribution of the light intensity W integrated dur-
ing a count interval T,

~2 =C2,

~3 = C3+3C2,

~~ =C~+4C3+6C2+3C2,

(4)

(5)

(5)

M, =C, +5C4+10C, +10C, +10C,C, +15C, , ('f)

=C +6C +15C +20C +15C +15C C +10C

+ 60C C + 15C3 + 45C

Each cumulant C~ ~ and C~
~~

can be calculated from
the values of the correlation times ~~ and &~~ and a
count interval T,'

The integrated total intensity W is given by the sum
of W~ and W~~ which are the contributions from the
vertically and horizontally polarized components of
scattered light. It is shown later that these ortho-
gonally polarized components are statistically in-
dependent of each other. In this case the normal-
ized cumulants of the light intensity are given by
the weighted sum of the normalized cumulants of
each polarization component, '

c,= [-.'(1+v)J'c, ,+ —.'$(1-P)]'c,

E(k) = M» —= ( W )/( W) —1 .
'The normalized moments can be written up to sixth
order from the kth and lower-order normalized
cumulants C„'s of W as

[g+ (e + 1)],2

a

12, 2
C, =, e '+I+ —(e ' —1'I),

(10)
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FIG. 3. Typical probability distributions of photoelec-
trons for linearly polarized light (P = 1) and depolarized
light (P =- 0). Solid lines are interpolations of the experi-
mental points. C ount duration: 5 ~ 10 sec. Average
photoelectron count: 12 counts. Sample number: 105.
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FIG. 2. Normalized factorial moment vs degree of
polarization. Count interval is 4.2 &10 5 sec. Each point
consists of 2 X106 samples. Correlation times are 1.00
&&10 and 3.48 &&10 sec for the vertically and horizon-
tally polarized components, respectively. Solid lines
show the theoretical values.

Cy & and Cp II
and 7 stands for 7 ~ and T

II
~ In our

cases, T =4.2 &10 ' sec and ~ and v
II

are 1.00
&10 ' and 3.48&10 ' sec for the vertical and hori-
zontal components, respectively. 'The values of
C, are evaluated from these parameters and given
in Table I.

Before comparing the theoretical values of the
normalized factorial moments with the experi-
mental results a few corrections due to the experi-
mental situations must be considered. First, the
laser light used cannot be completely coherent,
i.e., the argon ion laser used has a small but wide-
band residual fluctuation in its output. A correc-
tion factor f is introduced to correct the cumulants
for this effect. ' We also make another correction
for the influence of spatial coherence. From the
work of Cantrell" a correction factor 9~ of the kth
cumulant was calculated for spatial coherence.

TABLE I. Cumulants of the vertically and horizontally
polarized components calculated from Eqs. (10)-(14),
with 7~=1.00 && 10 sec and ~„=3.48 &&10 sec.

+ —(e "+66e "+495e '- 562)), (14)

with a= T/T. In the above equations C» stands for

0.75
0.86

0.64 0.55
0.79 0.72

0.48
0.68

0.41
0.62
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After these corrections are considered, the kth
cumulant |"k is expressed as

C, =S„f'{[-,'(1+I )l'C, , + [-,'(1+I )]'C,
, &. (15)

The value of the factor f is determined to be 0.96
from an extrapolated value of the autocorrelation
curve of photoelectrons at zero time delay after
eliminating the effect of spatial coherence. ' 'The
values of $k are evaluated to be $, =0.99, $3 0.97,
$~ =0.96, S, =0.95, and $, =0.94 for our experi-
mental setup. Theoretical values of the normalized
factorial moments are therefore evaluated from
Eqs. (8)-(8) and (15) with the values in Table 1 and
plotted in Fig. 2. No systematic disagreement can
be seen between the experimental results and the
theoretical values.

We consider the microscopic process of the scat-
tering of two orthogonally polarized light beams by
Brownian particles and show that the orthogonally
polarized components of scattered light are not
correlated under the present experimental scheme.
The analytic signals' V(t) and Vo (t) [o. (=&, ll) de-
notes a polarization state] represent the light field
scattered and the two light fields incident on a
scattering volume, respectively. When the light
beams incident on the sample cell are scattered by
N Brownian particles the scattered field V(t) on the

V(t) = g g q„V'„(t)exp[i&„(t) +y„],

y„,(t) =(K. -K).r, (t),

(16)

where k denotes the kth particle and g represents
a scattering efficiency and is independent of the
particle and its position. K and K are the wave
vectors of the scattered and the incident light
beams and r~(t) is the relative position vector of
the kth particle. A phase constant y„denotes an
arbitrary phase difference between the incident
fields and is assumed to be stable. Since the po-
larizations of Vo (t) and V08(t) are orthogonal for n
eP, the total intensity I(t) of scattered light is
given by the sum of the intensity contributed from
each polarization component,

I(t) =g q'v'„*(t) v'(t) g e-'~ ' '&

-i 4m~(t)

'Then the temporal correlation of light intensity is
given by

photodetector is given by the sum of the fields with
relative phase differences P which are scattered
from individual particles,

(r(t)r(t+~)) = gg q'„q', (I'„(t)r'.(t+~)),
o. B

& P P g g(exp{-i[y„,(t) —y„,(t)+ ps (t+~) —ys„(t+~))/)
k l m e

r'. (t) =V'„*(t) V'. (t)-,

(18)

where ( )& and ( )~ represent ensemble averages over the systems of the incident light fields and Brown-
ian particles. The ensemble average over the system of particles has nonzero values only for the follow-
ing combinations of indices: k=t and m=n, or k=n and t=m. Equation (18) is therefore reduced to

(r(t)r(t+~)) =g p (I.(t)I8(t+7)),q'„q 8(N'+(N'- N) l(exp{-i [y„(t)—y, (t+~)]j),l'),
a

(19)

where P (t) and ps(t+7) are concerned with an arbitrary particle with indices dropped in the ensemble
average over the system of particles. The second term in the above equation represents the correlation
between the scattering processes of the orthogonal components when n pP. By using the wave vectors of
the incident and the scattered light fields this term can be written

(exp{—i [g„(t)—P8(t+~)]])~= (exp{i [(K —K„) ar(w)]])~(exp{-t [(K„—K8) 'r(t)] j)~,
ar(~) =-r(t) —r(t+7 ) .

(20)

(I(t)I(t+ )) =(q~(I~) + @~~(I[[)) N + q ~N (I )'l exp{—i [PJ (t) —P,(t+&)])l

For o oP this term becomes neglegibly small when lK„-KBl ' is much smaller than the dimension of the
scattering volume. This is the present ease since lK~ —K~~l=2lKol (K, is the wave vector of the incident
light beam) in our experimental scheme. Therefore the cross correlation between the scattered orthogonal
components disappears except for that originating from fluctuations in the incident light beams. When the
incident light beams are stable, as is the case here, Eq. (19) is rewritten as

+ 1', N7'(I', )'l p{e-xi[p (t)- 4 (t+~)]]l', (21)
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TABLE II. Normalized factorial moments measured for various states of the polarizations
and wave vectors of the incident light fields.

E{k

Kj=Ki(, P =0 0.890 72

K1, P=1 0.890 97

Ki= -K(i, P = 0 0.42443

4.11574

1.633 56

4.17035

16.5543

4.8961

17.0886

70.9073

14.5989

74.3452

340.471

46.484

354.931

where N is assumed to be much greater than unity.
When 7 = 0 we obtain the second-order moment of
the total intensity

(I') =2(I,&'+2(I~ &'+2(I,&(I,& (22)

from Eq. (21). Here (I~& (=q~N(I~~&) is the aver-
age intensity of the vertical component of the scat-
tered light. On the other hand, the following equa-
tion generally holds for the intensity summed over
two Gaussian components:

(I') =2(I,)'+ 2(r )'+ 2(I,I ) .
We obtain

(I,Ii~&
= (I,)(Ii~& (24)

= —,
'

(1+ P) '+ —,
' (1 —P) ',

(I,) -(I, )
(Ii&+ (I~i&,

'

(25)

This expression is consistent with the general
form for the normalized cumulant given in Eq.
(9) "

When, on the contrary, two incident light beams
have'the same wave vectors, i.e., K~ =K,~, Eqs.
(21) and (22) are written

(I(t)I(t+~)&
= (I)'(1+ l(exp{-t [P(t) —Q(t+&) jk& I'),
&I'&=2(I&' (7 =o) ~

(28)

(27)

Then one obtains the second-order cumglant as

(28)

from Eqs. (22) and (23). The orthogonal compon-
ents scattered are therefore not correlated and are
thus statistically independent under the experi-
mental scheme of the present measurement.

In this case the normalized second-order cumu-
lant is given from Eq. (22) by

&I,&'+(I &'

(I)' ((I.)+ (I ))'

These results are independent of the-degree of po-
larization P and the same as those for the case of
linearly polarized light (P =1). When light beams
of orthogonally polarized fields propagate with the
same wave vectors, each scattered component can
therefore no longer be statistically independent.
This was easily verified by a measurement with a
slight variation of the original experimental setup.
'The Babinet compensator and the reflecting mirror
were removed from the setup shown in Fig. 1 and
the former was placed in front of the sample cell.
Adjusting the Babinet compensator as a —,'X phase
shifter again we obtained a circularly polarized
incident light beam which consisted of two ortho-
gonally polarized waves with a mutual phase differ-
ence (y~ —q ~~ ( of —,

'
w. In order to obtain a random-

ly polarized (P = 0) scattered wave we observed a
forward scattering (8=—180' in Fig. 1). The factori-
al moments measured with this experimental
scheme are given in Table G. For comparison,
those measured in the original experimental setup
are also given in the table for the cases of P =—0
and P =1. As can be seen from the table, the mag-
nitude of a fluctuation for the case of depolarized
light (P —= 0) recovers the values of linearly polar-
ized Gaussian light (P =1) when K~=K~,.

When ~K~ —K„~ ' has the same order of the mag-
nitude as the dimension of a scattering volume
the second factor in Eq. (20) does not vanish and
the fluctuation properties of scattered light are then
characterized by the difference between the wave
vectors of orthogonally polarized light beams inci-
dent on the Brownian particles.
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