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We define pseudoperturbations as the difference between two Hamiltonians that are related by a
generalized gauge transformation. We state and prove the theorem that such pseudoperturbations cannot
cause any real physical transitions. We also rigorously establish the generalized gauge invariance of physical
transition-matrix elements in real processes. Our theorem also generates some interesting sum rules and on-

shell identities which can serve as useful constraints in variational calculations.

INTRODUCTION

The large number of multiphoton experiments
performed with high-power tunable lasers in rec-
ent years has revived a lot of interest in the the-
oretical calculation of electromagnetic (EM) tran-
sition-matrix elements in atomic and molecular
systems. It is generally accepted' that the two
forms of the EM interaction in the dipole approx-
imation, eE r and (—e/m)p. A+e'A'/2m, sometimes
also referred to as the EM interaction in the length
gauge and velocity gauge, are equivalent. These
two forms of the EM interaction are related to
each other by a gauge transformation. Up to the
second order, the equivalence has been demon-
strated either numerically' or analytically. ' How-
ever, not much has been said about higher-order
transitions. In this paper we shall establish the
equivalence of these two gauges to all orders in
perturbation theory. A similar result has been
established by Hailer and Hailer et al. ' Moreover,
we shall not limit ourselves to the dipole approx-
imation. and our discussion need not be confined to
the EM interaction.

Usually in EM interactions, the gauge transfor-
mation involves a gauge function that depends only
on the spatial and time coordinates. In general the
gauge function may depend also on momenta and
internal variables. The non-Abelian gauge trans-
formation is an example. Unitary transformations
corresponding to this class of general gauge func-
tions will be called generalized gauge transforma-
tions. Unless specified otherwise, henceforth in
this paper a gauge transformation refers to such
a generalized gauge transformation. Our results
extend beyond the EM interaction and are applic-
able to all arbitrary generalized gauges, as long
as they satisfy the conditions specified below.

One can expect general gauge independence of
transition-matrix elements for real physical pro-
cesses on the following grounds. If two interac-
tions that are related to each other by a gauge
transformation can lead to different transition-

matrix elements for a real physical process, then
one can generate a perturbation that can cause
real physical transition by the mere use of this
gauge transformation. Obviously this cannot be
ture if the gauge generation is nonsingular and
vanishes at infinity, ' since this transformation
cannot affect the asymptotic scattering states.
Such gauge functions and the corresponding uni-
tary transformations will be designated as accept-
able. In general, under a unitary transformation
U= exp(ikey-), the Hamiltonian is transformed to
UIIU~, and this differs from the original Hamilto-
nians unless U is the identity transformation.
However, from the argument given above, the dif-
ference UPS-H must not cause any real physical
transition, provided that the gauge function 4 is
acceptable. We therefore define this difference
UIIU~- II as a "pseudoperturbation. " We state
and prove the theorem that such pseudoperturba-
tions cannot cause a real physical transition to
any order in perturbation theory. In real transi-
tions the evolution operator, which is unitary,
has a corresponding gauge function that is singular
on the energy shell.

The scheme of the present paper is as follows.
In Sec. I we establish the theorem that pseudoper-
turbation cannot cause any real physical transition,
to any order. In Sec. II we discuss real transi-
tions. In Sec. III we generalize our discussion to
include time-dependent gauge functions. In Sec.
IV we consider gauge invariance in general. In
Sec. V we discuss the special case in which a sys-
tem is in an external electromagnetic field. In
Sec. VI we consider the equivalence of the electric
dipole transition in the gauges er E and (-e/m)p A
+ e A'/2m, where the field E and the vector poten-
tial A are quantized. In Sec. VII we dispute a re-
cent erroneous claim' that EM transition-matrix
elements are gauge dependent except in the case
when energy shell condition is satisfied. We show
that this discrepancy is entirely due to the incor-
rect use of the bare states of an isolated atom to
describe the true physical states of a realistic
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atom that couples to the radiation field. In Appen-
dix A we shall give a more vigorous and more
lengthy proof of the invariance of the transition-
matrix elements under gauge transformations that
is discussed in Sec. IV. Finally, in Appendix B
we demonstrate that our theorem proved in Sec. I
and further extended in Sec. III leads to interesting
sum rules and on-shell identities.

Our assertion is that on the energy shell, as long
as the gauge function 4 is acceptable, the pseudo-
perturbation does not cause any transition to any
order in A. . The proof goes as follows. From
equation (1.1), the definition of V, and the Lipp-
mann-Schwinger equation, ' we have

(1.5a)

I. PSEUDOPERTURBATONS

= 1y&+ GV1)&+ cvcv1)&+. . .
=(1/1- cv)1q&.

(1.5b)

(1.5c)

Consider a time-independent Hamiltonian H under
a unitary transformation U-=exp(iA. C ) such that the
time-independent gauge function C is regular and
vanishes at infinity. Henceforth, we shall denote
such gauge functions as "acceptable. " The case
involving time-dependent gauge functions will be
discussed in Sec. III. The transformed Hamilton-
ian H' is equal to UPU~. We shall denote the ei-
genstates of H by 1g& and those of H' by 1g'&. Ob-
viously, since H and H' are related by a unitary
transformation U, we have

(1.1)

It is then a trivial identity for a pair of initial
and final states 1g,.& and 1)~& that

The last relation is true provided the series con-
verges. From equation (1.5b) we have

&C~l VUly;& =&0~1 vlq;&+&0~1 vcvle;&

+(g, 1 vcvc1q,.&+.. . ,

and the right-hand side can be identified as the
usual Lippmann-Schwinger perturbation series.
Moreover, the right-hand side 8 can be rearranged
as a power series in A. . The sum of all matrix
elements corresponding to nth-order transitions
can be identified as

(1.8)

However, in general,

V=A. V, +A. V2+A. V3+. .. ,

where

(1.2)

since H'cH unless U is the identity transforma-
tion. Thus we can regard H'-H =—V as a perturba-
tion that results from the unitary transformation.
We call such a perturbation a pseudoperturbation,
and V can be written as

From the definition of V we see that

(y, 1VU1q,.& =(q, 1
(UHU'- H) U1y,.&

=(y, 1
UH- HU1 y,

=&0 l[U, H]II;&

= (~; ~g)&0y I U-lt &,

(1.9)

(1.10)

II. REAL SCATTERING PROCESSES

which is zero on the energy shell for any U that is
acceptable. Thus our assertion is proven.

v, =(i'/2!)[c, [e,H]],

~ 0 ~

(1.4)

In particula. r, if H is of the form p'/2m+ V,(x), and
the gauge function is a function of x alone, then
V„=O for all n~ 3.

According to Fermi's "golden rule, " any real
transition between two states g, and Pz due to any
perturbation V is subject to the energy-conserva-
tion condition: c,- =c&, where e& and e& are the ei-
genvalues of the. eigenvectors P,- and gf of H. We
shall refer to states that satisfy this energy-con-
servation condition as states on the energy shell.

1k„) =1k,&+ cv1k„&,

and can be iterated as

1k„& = [1/(1 —cv)]1k,&.

(2.1)

(2.2)

So, at least formally, the gauge function C can be
written as i In(1 —GV). However, here the gauge
function is singular on the energy shell and the ar-
gument that led us to Eq. (1.10) does not apply.

Consider a scattering potential V being intro-
duced to a system with a Hamiltonian H. Let the
eigenstates of H be denoted as 1k„,g =1k&& and
those of H+ V= H' be denoted as 1k«,«„,d& =1k~&.
Obviously, the transformation j1k„&(k~1dk=Uis-
unitary, and UHY=H', provided H' does not have
any bound state. The scattered state 1k„) satisfies
the Lippmann-Schwinger equation,
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This is analogous to the apparent ambiguity in the
evaluation of the matrix element (x'~i[P, x]~x),
where ~x) is an eigenstate of the position operator.
If we expand the commutator and apply the x op-
erator first, the matrix element vanishes for x
=x', whereas, if we use the fact that the commuta-
tor is 1, the matrix element is equal to 5(x- x').
The singular nature of the evolution operator U

can be seen if we go to the interaction picture and
turn on the scattering potential adiabatically. In
this case U=lim „,[exp(-i 1 „Ve"'dt)]„where
[.. . ], indicates that the quantity inside the brac
kets is time ordered. ' Then, to each order in the
interaction V, the time integrations in the matrix
element (fz~ U~g,-) give an overall energy denomi-
nator (e, —ez) '. Thus, (Pz~ [H, U]g,.), in general,
does not vanish on the energy shell for real scat-
tering processes. On the other hand, when U

=exp(i4) where 4 is acceptable, then (gz~ U~g, ) is
always finite and is thus free from any singularity
when the energy shell condition e,. = c& is met.

III. EXTENSION TO TIME DEPENDENCE

Thus far, we have limited ourselves to time-in-
dependent unitary transformation. It is well known
that under a time-dependent unitary transforma-
tion U the transformed Hamiltonian is UHU +iUU~
In such cases the pseudoperturbation generated is

UHU -H+i UU~, and inthe usualperturbation series
the energy denominator must also include the fre-
quency of the appropriate Fourier component of
the time-dependent interaction. This frequency
can be interpreted as the energy of the quantum
emitted or absorbed. In this section we are going
to show that such explicit time dependence can
still be described by a time-independent forma-
lism with proper inclusion in the Hamiltoniana part
corresponding to a clock. ' Any system that has an
isomorphism between its coordinate and time is,
by definition, a clock. A particle moving in one
dimension with uniform speed obviously consti-
tutes the simplest clock. Let the average momen-
turn of this particle be 7 and the momentum be 7r

+z. Then the kinetic energy of this particle is
equal to (I/2M)(w'+2wn+~'). lf M is sufficiently
large, the first term can be neglected, and the
kinetic energy reduces to w'/2M+m%/M. Since
m /2M is a constant, and T/M, which is the parti-
cle's velocity, can be arbitrarily chosen as one,
the effective kinetic energy of this particle is just

The coordinate conjugate to z, q, is then iso-
morphic to the time t. In this scheme we add to
every Hamiitonian H(p, x, f) the clock part w.

Then any time-dependent unitary transformation
U(P, x, t) —= exp(ig(P, x, t)) may be replaced by
U(p, x, q) —= exp(ip(p, x, q)). When this acts on the
Hamiltonian of the system and the clock, we have

U(P, x, q) [H(P, x, q) + n ]U (P, x, q) = H(P, x, q) + m+ i [4 (P, x, q), H (P, x, q) ] + (i'/2! ) [4, [4,H] ]

+(i'/3!)[4, [4[4,H]]]+.. . +i[4(p, x, q), m]

= U(P, x, q)H(P, x, q) U~(P, x, q) + m —(8/Sq)4 (P, x, q) .
On the other hand,

(3.1)

(3.2)

. BU 8
U(p, x, t ) [H(p, x, t ) + r]Ut(p, x, t ) + i (p, x, t ) Ut(p, x, t ) = U(p, x, t )H(p, x, t ) Ut(p, x, t ) ——4 (p, x, f ) + 1r .

(3.3)

This establishes our assertion.
Another role of this clock Hamiltonian can be

seen as follows. I et e and co denote the eigenval-
ues of H and m. The energy-shell condition E,.
=Ez now becomes e,. +co,. =ez —~& or ez —e,. =co,.

Hence, the change in m is equivalent to the
change in the energy of the free field that causes
a transition in the system described by II. This
will be further discussed in Sec. VI.

tion cannot lead to any real transitions. In this
section we show that if an interaction V that causes
a real. transition is related to another interaction
V' by a regular gauge transformation, then the
transition rate calculated with either of the inter-
actions V and V' will be the same to all orders in
perturbation theory. By assumption there exists
an acceptable gauge function 4 such that U
= exp(i4) and

IV. GAUGE INVARIANCE4 U(H, + V) U~=Ho+ V'. (4.1)

In Sec. I we showed that the pseudoperturba-
tion that arises from a regular gauge transforma-

We denote the eigenstate of H, by ~4), those of H
=H, + Vby ~P), and those of H'=H, + V' by ~P').
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From the relation expressed in Eq. (4.1) we
have

(4.2)

Then, according to the theorem we proved in Sec.
I,

(4.3)

where the states i and f are on the same energy
shelL In particular, we can rewrite Eq. (4.3) as'

(4.4)

»nceff'j0, ' &+=B;jy &+and&qg jff=Bg&yg j A.c-
cording to the Lippmann-Schwinger equation, '

Let us say that Vis linear in A. . However, the in-
teraction V' need not be linear in X. A well-known
example is found in the electromagnetic interac-
tion, when V=A. E x and V'=Xp A+X'A'/2m, where
E, x, p, X, and m have their usual meanings. Nev-
ertheless, both T-matrix elements, whether in the
interaction V or V', can be expressed as a power
series in A. . Thus, our conclusion is that, to each
order in A. , the transition-matrix element is the
same when calculated in both gauges. This is the
meaning of gauge invariance in the context of
scattering theories.

V. SYSTEMS IN EXTERNAL ELECTROMAGNETIC FIELDS

and

(4.5)
In this brief section we consider a system in an

external electromagnetic field. The Hamiltonian,
including that of the clock, is

H = (p —eA,„,)'/2 m + el,„(+v . (5.1)

p f' - Sg

+zn=lim Cf
Ez —H+ig

(4.6)

(4.7)

Hereafter the limiting processes g -0 are as-
sumed understood, and the notation will be
dropped. From Eq. (4.4) we then have

(4.8)

upon using the on-shell condition E,. = Ez. From
the identity

1/A —1/B = (1/B) (B—A) (1/A),

Eq. (4.8) becomes

(4.9)

-&'0 . —,. ; = 0 4.10

or

(4.11)

where &C ~ ji()„)and &4z jP,',), respectively, are the Mdl-
ler scattering matrix elements calculated in the
gauges V and V'. Equation (4.11)implies that the dif-
ference between the scattering matrix elements cal-
culated in the two gauges is not proportional to a
6 function, This implies that the part in the 8 ma-
trix that is proportional to the 5 function, i.e. , the
T matrix elements, is the same in both gauges.
We have thus established that the transition-ma-
trix elements calculated in both gauges are the
same. In Appendix A we shall give a more rigo-
rous and more lengthy proof of invariance of the
transition-matrix elements under gauge transfor-
mations.

In general, the scattering potential is expressed
in terms of a dimensionless coupling constant A. .

This becomes the quantum analog of the classical
gauge transformation on identifying the isomor-
phism between q and the time t. We emphasize
here that no dipole approximation needs to be ta-
ken. This, together with the results in the Sec.
IV, establishes quantum mechanical gauge invari-
ance in electromagnetic interaction. In particular,
if the system is in a pure external electric field,
X,„,= 0, a.nd we can choose a regular gauge function
g' such that sg/sq =4,„„and Vy can be identified
as the vector components of the quantum-mechan-
ica,l electromagnetic field. More discussion fol-
lows in the Sec. VI.

VI. ELECTROMAGNETIC GAUGE INVARIANCE YOUTH

SECOND QUANTIZATION

In Sec. III we mentioned that the clock Hamilto-
nian w is equivalent to the Hamiltonian of the free
field that couples to the system. As an illustra-
tion we consider here a system interacting with
the electromagnetic field. For simplicity we as-
sume the dipole approximation. The Hamiltonian,
including that of the pho. ton field, is, in the "E x"
gauge,

2

P= + V(x)+ (d, a~ ~a„~ —eE x, (6.1)

where E, the electric field, in the second-quantized
form and in the dipole approximation, is

(6.2)

Then, under a unitary transformation U

=-exp(icy(x, q)), where g(x, q) is nonsingular, the
Hamiltonian transforms to

H'= UH(('= [)t —e(A.„,+iy)I*+e(o,„,——y +~. (5.2)
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where A. is the polarization mode and ~ is the
quantization volume. We now introduce a gauge
function 4(x) =X(x) x, where X(x) is the quantized
photon field in the dipole approximation:

1/2

4(x) =g
/

[a +at ]
a. X EA. 'U

x E, ~ x=X(x) x. (6.8)

where we have used

i[C,p']=-(p A+X p),
—,'i'[C, [C,p']]=A X,
[a+at, ata] =a —at,

and

[a —at, a + at] = 2 .

(6.5)

(6.6)

(6.7)

(6.8)

In the dipole approximation the term e'x'/g in Eq.
(6.4) goes to zero." The results in Sec. IV then
establish the complete equivalence of the electro-
magnetic interaction in the "E x" gauge and the
"-ep X+-,'e'A"' gauge to all orders in perturba-
tion theory. In additio~, we see that the Hamilto-
nian of the free radiation field can indeed replace
the clock Hamiltonian we introduced in Sec. III.

VII. INTERACTION OF PHOTONS WITH ATOMS NEAR
RESONANCE

In a recent letter Kobe' pointed out that in a non-
resonant photoabsorption process the matrix ele-
ments calculated in the length gauge and the veloc-
ity gauge differ by an amount of order A/cu, where
4, the detuning, is of the order of the width of the
excited state and co is the photon frequency in-
volved. He further stated that, because of gauge
invariance, the results calculated in the x E gauge
are always correct. By implication, since his re-
sults in the two gauges are different, this is equi-
valent to stating that results calculated in the p A

gauge are wrong. He based all his analysis on
transition-matrix elements calculated in terms of
the complex energy bare states of the atom. The
widths of the excited states are incorporated phe-
nomenologically in the Wigner-Weisskopf pertur-
bation scheme by the imaginary part of the com-
plex energies. This confusion justifies a clarifi:-
cation. We shall point out in this section that the
whole discrepancy arises because of the incorrect
description of the true states in terms of the com-
plex energy bare states and that the discrepancy
disappears if the correct states are used. When

Under the unitary transformation U—= exp(ie 4 (x))
the transformed Hamiltonian becomes

2 2

UPUt= + V(x)+ g e„a~t &a~ ~
z+ . , (6.4)

the true state is approximated by a single complex
energy state, the results are inaccurate to order
&/v in either gauge. A simpler version of the dis-
crepancy pointed out by Kobe exists in transitions
involving one-photon absorption from state i to
state f, where at least one of these states has non-
zero width. If orie follows Kobe's incorrect line
of reasoning, then for a photon of energy & =Ez
—E, + b, the absorption rate will be found equal to
)M)'I'/[6'+ (—,'I')'], where M= (f ~ V~, (i) and will be
different by order A/v depending on whether the
gauges x~E~ or gauge p A is used. Hence, Kobe's
analysis also leads to a discrepancy in one-photon
transitions.

The discrepancy of the second-order transition-
matrix elements calculated in the two different
gauges, as pointed out by Kobe, ' is due to the ap-
proximation one normally uses to describe a state
near resonance. In such an approximation, as we
shall show, one neglects terms of order I'/&u,

where ~ is the energy separation of the bare
states. For simplicity let us consider a nonrela-
tivistic hydrogen atom, whose bare-state energies
are given as c'„, n =0, 1,2, . . .. Suppose now we
detect a photon of energy. (L) 6] co+ 6, where 6
is about the width of the first excited state. Under
the usual approximation, one says the original
state is a broadened first excited state whose en-
ergy is complex, e, =e,'- iI', . However, one really
does not know from which state the photon has
come. So the parent state must be a superposition
of the first bare excited state as well as of higher
excited states. This true state can be written as

~to+co, true) =a, ~1,bare) +a, j2, bare) +. . . ,

where

a, = o.', /(~ ~ —,'il, ), a, - [I',/(e', —e',)]o.,a, ,

a, —[I',/(e ' —c') ]o.,a, ,

(7.1)

(7.2)

etc. , where the n's are essentially of the same
magnitude and contain phase factors, and where the
states ~2, bare), ~3, bare), . . . have quantum num-
bers that are the same as in the state ~1,bare),
except for the bare energy. In the crudest form
of the Wigner-Weisskopf perturbation scheme
one neglects a„a„.. . , compared to a„and. is
therefore already making errors of the order
I'/&u. Hence, to emphasize that the transition-ma-
trix elements calculated in two different gauges
differ by order of ~/e when terms of order I'/&u

have been neglected from the very beginning is
totally meaningless.

Next, we must bear i.n mind that any physical
state must be a true eigenstate of the total Ham-
iltonian. In this case the atom and the radiation
field responsible for the decay of the excited state
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constitute the total system, describable by the
Hamiltonian

H =P'/2m+ V(E) —ex E ttF+ H„F, (V.3)

where the subscript RF stands for the radiation
field. The interaction -ex ER~is responsible for
the widths of the bare states, and the dipole ap-
proximation is usually sufficient for this interac-
tion if one-deals with atomic systems. The true
states of this Hamiltonian are not given by the
bare states (eigenstates of p'/2m + V+HR„) multi-
plied by phenomenological Signer-Weisskopf fac-
tors. For example, the true ground state is a lin-
ear superposition of the bare states:

~&u, m, true) =P f„(td) ~nbare) —= ~a&true), (7.5)

where f„(tv) displays resonance structure in the
neighborhood of cu =o. /2am'.

Next we consider the system being acted on by
an external field. This can be introduced as a
perturbation and the external field can be de-
scribed by a c-number field, and the Hamiltonian
becomes

serves only as a reminder that the atom and radia-
tion field exhibit a resonance structure at energies
corresponding to the bare states of this principal
quantum number. Hence, a true state of an exci-
ted realistic atom "in the state m" is given by

~ground true) = g g„~n bare), H'=II —ex E,„,. (7.8)

where ~n, bare), can be considered as product
states of the isolated atom and the isolated radia-
tion field. In the right-hand side of Eq. (7.4),
~ground, isolated atom, no photon) is most domi-
nant, and if the dipole approximation has been
taken to first order in e in the interaction ex E»
the only other states that enter the right-hand side
of Eq. (7.4) are of the form ~excited isolated atom,
one photog. The sum g„shou?d, of course, in-
clude photon energies and polarizations. Above
the ground-state energy level any energy would
have a corresponding energy eigenstate, allowing
for degeneracies among different angular momenta
states as well as free photon states. In particular,
because of the weakness of the EM coupling con-
stant, for energies close to the eigenenergies of
the bare atom, these eigenstates of the true Ham-
iltonian exhibit resonance behavior. When we de-
scribe a realistic atom in an excited state, say
hydrogen for simplicity, it is insufficient to spe-
cify the principal quantum number; we must also
specify the energy. The principal quantum number

As is well known, Fermi's "golden rule" states
that physical transitions take place only when en-
ergy is conserved. This is true to any order in
perturbation theory. A nonresonant absorption by
a detuniyg of 6 in the context used by Kobe' is in
reality'an absorption from the initial state to a
final state whose energy is o./2an& —6, and it is
totally incorrect to say that energy conservation
need not hold in an nonresonant transition. Now
the Hamiltonian in (7.6) can be transformed to
the form

e(p'Aext+Aext'p) e A ext

2m 2m
(7.7)

by a unitary transformation. Hence, according to
the theorem we stated in Sec. IV, the transition-
matrix elements to any order in e calculated in
the two gauges must be the same when the true
states are used. On applying this result to a first-
order transition between two true atomic states
of energy v' and v with emission of a photon of
energy v' —v, we have

v' true, atom; no photon v true, atom; one photon with energy v' —v
-p-A, „,

= (v' true, atom; no photon~-x E,„Jv true, atom; one photon with energy v' —v), (7.8)

where we have made use of the transversality of the photon. This gives rise to an interesting sum rule in-
volving the functions f„(v) defined in Eq. (7.5):

P f *(v')f„(v)(E'„—Eo)(mbare ~x~nbare) = (v' —v) g f *(v')f„(v)(mbare ~x~nbare),
m, n

(7.9)

where the superscript 0 stands for bare energies.
This equation actually places a constraint for con-
sistency on the functions f„. For example, in the
usual approximation one takes as expressed in

Eqs. (7.1) and (V.2), Eq. (7.9) places a constraint
on the a's to be chosen. It is our conjecture that
by using all possible gauge transformations and
the fact that the transition-matrix elements are
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equal in both gauges, one should be able to esta-
blish a sufficient number of constraint equations
to determine uniquely these a' s. We intend to
discuss this further in a future paper.

CONCLUSION

In this paper we have vigorously established the
gauge invariance of physical transition-matrix
elements. One can expect such invariance on
grounds that any violation would imply that one can
generate perturbations that can cause physical
transitions merely by the use of gauge transfor-
mations. Hence, the difference between two Ham-
iltonians as a result of a gauge transformation
can only be regarded as a pseudoperturbation. We
have stated and proved the theorem that such
pseudoperturbations cannot cause any physical
transitions. In particular, we have applied our
study to electromagnetic interactions and shown
that the real transition-matrix elements calcula-
ted in both gauges are always the same when the
true states are used. The usually accepted expres-
sion for off-resonant (with respect to bare states)
transition rate in the form iMi'I'i(b, .'+-,'I') is only
an approximation in which terms of order I'/e
have already been neglected. In such an approxi-
matj. on the emphasis, as stressed by Kobe, ' on
the difference between transition-matrix elements
in different gauges, which turns out to be of order
h/&u, is totally meaningless. In Appendix B we
shall also show that our theorem on pseudoper-
turbations enables us to establish interesting sum
rules and on-shell identies which may serve as
useful constraints in variational calculations.
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note the eigenfunctions of H„H, and H' by iP&, i(&,
and ig'&. Under our assumption, UHU =H', and so
i('& = Uig& and H and H' have the same spectrum
We also denote the precollision and postcollision
states by ig,& and if' for the Hamiltonian H, and
by ig,'& and if' for the Hamiltonian H'. Then, ac-
cording to the Lippmann-Schwinger equation,

iy„,&
= iy.&+hm . (H-Z. )iy.&

= IA.&+ G..(z„)vit„&

+ c„(z.) vc,.(z„)vip.&+. . . ,

where

(A1)

(A2)

and

(A3)

(A4)

Hereafter we assume that the limiting process q- 0 is understood and we drop the notation q —0.
From Eq. (A1) we have

(E.-H)le. &=+in(le.&
—lk.&) =o as &-0. (A5)

Thus, g ~ are asymptotic eigenstates of H with
eigenvalue E . Similarly we can construct the
asymptotic state of j'I'.

ig„'g =iy )+lim, . (H' —E„)iy„&

= ly.& + G.~(E.) v'I y.&

c. (E„)v'c. (E„)v'Iy„& . .. ,

(A6)

(A I)

and ig„'Q also have eigenvalues E„. Then, for two
unperturbed states iP,.& and if'& on the same ener-
gy shell, E,. =Ef, and

(A8)

and

APPENDIX A: GAUGE INVARIANCE OF TRANSITION-
MATRIX ELEMENTS

In this appendix we would like to give an alter-
native proof of the results in Sec. IV. To:make
this appendix self-contained, we state the theorem
once again. If a Hamiltonian H =II,+ V, where II,
is the "unperturbed Hamiltonian" and V is the scat-
tering potential, is related to another Hamiltonian
H' =H, + V' via a unitary transformation U—= exp(ic ),
where 4 is an acceptable gauge function, then the
transition-matrix elements calculated in terms
of the unperturbed states in either gauge V or V'

are equal to all orders in perturbation theory on
the energy shell. As in Sec. IV in the text, we de-

Thus,

IE„

(q, iH'-Hip, '. ,&=0,

&y,
' 1=&y, l +&y, l v G(t)E

+ (p~ i
Vcot (E~) VGOt (E~) +. . . .

&y, I
v'lq, '. ,& =&@, I vip,.',& .

Using Eq. (AV) we have

lq,'. ,&
= Iy,.& + c„(z,.) v'ly, &

+ c„(z,) v'G„(z,.) v'iy, &+. ..

(A9)

(A10)

(A11)

(A12)

(A13)
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On using the on-shell condition E,. =E&, we h'ave

G, (Ez) = G„(E,) —=.G on the energy shell, (A14)

where we have simply denoted them by G. On sub-
stituting Eqs. (A12)-(A14) into (A11), we have

(&y&j+&y&jvc+&4»l vcvc+ ) v'(jy, &+ Gv'jy;&

+ Gv'Gv'jP, &+. . . )

=((y, j+(y, j Vc+&y, j VGVG+. . .) V(jy;&+ Gv'jy;)

+ GV'GV'jy, .&+. ..). (A15)

This equation is of the form

a coupling constant A. , the transition-matrix ele-
ments, - calculated in either gauge to a given order
in A, , are equal on the energy shell.

APPENDIX 8: SUM RULES AND ON-SHELL IDENTITIES

In this appendix we wish to show that the theorem
we proved in Sec. I and further extended in Sec.
III leads to'some interesting sum rules and oper-
ator identifies valid only on the energy shell. We
consider a Hamiltonian of the following form:

0=Ho+ m,

or

Q &»» ij
l

v'l Q jk« ~&
j) j ~ )

=~ P (bra, a'&) v(P I&et, j&lj (A16)

(A17)

where m is the clock Hamiltonian we introduced
in Sec. III and II, is the Hamiltonian of the system.
We now switch on a pseudoperturbation by a uni-
tary transformation U=—exp(i!&.4(x, q)), where
4(x,,&f) is a regular function of the system and
clock coordinates alone. Under this unitary trans-
formation we generate the following pseudoper-
turbation:

and

f z, s=(4&yj V Gv Gv j4'g& &

E, ,=(y, j vcvcv'jy, &,

(A18)

(A19)

and so on. From this we see that

~(a+&)g ' (g+&) y

and we are left with

(A20)

(A21)

Now

f V'; + ~
V'GV'

where L and 8 stand for the left-hand side and
right-hand side terms, respectively. For exam-
ple,

A.
"V„,

where the V„'s are given in Eqs. (1.3) and (1.4).
In fact, C can be either a quantized field or classi-
cal field. We now consider all possible transition-
matrix elements to a given order in A, , between
two states ji) and jf) that are on the same energy
shell, i.e. , degenerate states of the Hamiltonian EI.
According to the theorem we proved in Secs. I and
III, the sum of all matrix elements to the same
order in A. must vanish. We shall denote these ma-
trix elements by M„, where N is the order of A.

under consideration and o.e 8(N), where e(N) is '

the class of all Feyman diagrams generated by the
pseudoperturbation V to order N in A, and M"

. e&»M". The cases N= 1 and 2 are trivial and
we shall not consider them. In addition, if the
system under consideration is a nonrelativistic
atom, we denote it by

+(y, j V'GV'GV'jy&+. ..
(A22)

Ho =&t& /2m+ V(x)

and in this case V„=O for n~ 3. Henceforth, we
shall denote the Green's operator by G,

g f~„=&y,j vjy,.&+&y, j vc vj4, &

+&y, j vcvcvjy, .&+. . .
(A23)

G=(E, —H) =(Ei-H)
and shall drop factors of ig when no ambiguity
arises. We first consider N=3. Now

M~('
)

——(flV GVGV li) = —(fj4&[C,H]C ji&,

(B4)

which give the transition-matrix elements cal-
culated, respectively, in the gauges V' and V in
terms of the unperturbed eigenstates of II,. This
proves our theorem in Sec. IV in a more vigorous
way. Thus, as explained in the text in Sec. IV, if
the scattering potential is expressible in terms of

M",,' „=-&flv,cv, ji&

=(1/2')&fj[+, [C, H]]C j &,

MI", , &

——(fl V~cv~ji&

= —(1/2!)(fl e[C, [C,H]]ji&,

(B6)

(S7)
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M())t =&fl V.li&

we see that

(f~e(x)[4(x),p']C (x)~i& =0 (alo)

= (1/3!)&f1[4, [4, [4, H]l]li& .
Thus,

M'"= —(fle[4, H]4+ —,'[4, [4, [4,H]]]~i& = 0.

(as)

(B9)

As an application of this identity we consider a
nonrelativistic atom H„as given by Eq. (B3). Then

between two degenerate states for any regular
function of x. A word of caution is in order here.
Gauge functions of the form 4(x) =1/x are classi-
fied as singular, and cannot be used here, if the
states involved are S states.

Next we turn to fourth-order diagrams and use
them to illustrate a sum rule.

M~(. .. ,) =(f( vGvGvGv, )i& = —Q (f)4[4,H]Im& (~)[4,H]4li&,
1

tll m

M~&»
~ » =&flv, GV, Gv, li& =-2&fle[4, [4,H]leli&,

M(" ) =&flv«« I'&=+ —'&f14[4 H]l~&E E &ml[4 [4 H]]l'&

(all)

(B12)

(B13)

M&2, , » =&f1 v «« li& = g k(f1[4, [4,H]llm&z z &~I[4,H]eli&, (B14)

M(...) =&flvGv li& =l g &fI[4, [4, H]llm&E E &~1[4[4 H]]li&,
m i m

M)&", » =&f]V,Gvili& =(1/3')&f1[4 [4 [4 H]]]eli&

MI", ,) =(f)v Gv fz& =-(1/3!)&f14[4,[4, [4,H]]]li&,

M~&) ——(fl 'V
/i& = (1/4. )(fI [4, [4, [4, [4,H]]]]/i& .

Now

M(3 ~)+M(~ 3)+M(4)IV IV IV

= ——.'&f1[4, [4, [4, [4,H]]ll]li&

and we have the sum rule

M',". ..„+M",, , „+M,", , „+M',", „=.'(f~[e, [e, [e, -[e, H]]]]+4e[e,[e, H]]4~i&,

(B16)

(B16)

(B1V)

(als)

(ale.)

(B2o)

where the left-hand side involves summing over intermediate states. The left-hand side of Eq. (B20) can
actually be summed to give

(B21)'M~&. ..»+M I;, »+M &". ..) +M &, ~ » = --,'(f
I
[e', H]e'fi& = ——,'&fl [[e',H], 4'7/i&,

where we have used (f/[H, e']Ii& =0 in the last step. Combining equations (B20) and (B21), we have the on-
shell identity

&f1[4 [4 [4, [4,H]]]]+[[4',H], c"]+44[4,[4,H]]eli& =0

For the fifth-order diagrams, we simply state the result of the sum of 16 diagrams:

M =(f~ V, GV„GV, GV, GV, + V,GV, GV, GV, + V, GV, GV, GV, + V, GV, GV, GV, + V, GV, GVGV~+ V,GV,GV~

+ V2GV~GV2

+ VGVGV, + VGV, GV, + V, GV GV, + V, GVGV, + VGV, + VGV, + VGV, + V, GV, + V, li&

= -&f1[4.[4, [4, [4, [4,H]l]]1+64[4,[4, [4,H]]]4+64'[4, H]e'~~&.

(B22)

(B23)

(a24)

For the benefit of some readers who wish to check our result, we point out that the first term in the right-
hand side of (B24) comes from the sum of the ninth through sixteenth terms on the right-hand side of (823);
the second term on the right-hand side of (B24) comes from the sum of the third, fourth, sixth, and eighth
terms of (B23); and the last term of (B24) comes from the sum of the first, second, fifth, and seventh terms
of (B23). As an application of this identity, we see that
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(@25)

between any two degenerate atomic states for any regular gauge function C.
As we go to higher orders in A. , more complex sum rules and on-shell identities can be generated. In

addition, we can vary C as long as we keep it regular. We must also state that the on-shell identities can
be generated by starting out with the relation

(a26)

However, in such a process the sum rules are not manifested.
These on-shell identities can serve as useful constraints in the variational calculation of wave functions.

In addition, if we include the clock Hamiltonian or the Hamiltonian corresponding to the free field in Eq.
(B3), these on-shell identities enable us to put constraints on wave functions of other states that can be
connected by the emission or absorption of a finite number of photons to a state whose wave function is
known accurately.
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