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The effect of transformations carried out on the Hamiltonian for the Schrodinger electron-photon system is
studied. These transformations include gauge transformations and certain similarity and "hybrid"
transformations. The last named involve unitary transformations of either operators or states, but not both.
Unitary and hybrid transformation are discussed, which affect the transverse components of the
electromagnetic vector potentials and therefore are distinct from gauge transformations. A hybrid
transformation is identified which leads to a form of the Hamiltonian that contains no reference to the
transverse vector potential and includes electric and magnetic fields as well as nonlocal interactions of
charges and currents. The behavior of the scattering matrix under the influence of these hybrid
transformations is discussed, Comments are made on two-photon absorption calculations.

I. INTRODUCTION

The electron-photon interaction has long been im-
portant in the study of photon emission and absorp-
tion by atoms and molecules. This interaction can
be represented in various forms. In the first
place, the theory is gauge invariant and can be
formulated in any of an infinite set of gauges.
Moreover, there are versions of this interaction
in which, to various degrees of approximation, the
electromagnetic potentials are replaced by electric
and magnetic fields, ' either when they appear in
matrix elements- between electron states, or as op-
erators that appear in the Hamiltonian. The liter-
ature demonstrates that there are unresolved ques-
tions about the relation among the various forms
of the Hamiltonian. ' For example: To what extent
are the different forms of the Hamiltonian equival-
ent? To what extent can potentials be completely
eliminated when electric and magnetic fields are
introduced? Which forms of the Hamiltonian can
be related by gauge transformations, and which
cannot? What changes ensue in a theory when the
operators are unitarily transformed and the states
are not? Some of these questions have not been
answered previously, and the answers to others are
in principle known, but have never been discussed
in the context of the interaction between photons
and nonrelativistic Schrodi. nger electrons. This
paper will address itself to these topics.

II. MULTIPOLE EXPANSION

In this section we will transform the Coulomb
gauge Hamiltonian that describes Schrodinger elec-
trons interacting with photons. The transformed
Hamiltonian will depend on electric and magnetic

fields, and charge and current densities. Except
for a surface term, that can usually be ignored, it
mill not depend on the vector potential. However,
this transformation will not involve any change of
gauge. To carry out this transformation system-
atically it is advantageous to quantize the
Schrodinger field as well as the photon field al-
though the quantization of the Schrodinger field
leads to no new physical effects. ' lt serves only to
avoid the inconvenience of dealing simultaneously
with quantized electromagnetic fields and unquan-
tized electron fields. The Hamiltonian for this
theory is given by

Jr A r Qr+ prA r A rdr+, dr dr',p(r) p(r')
(2.1)8g r-r'

where A is the transverse vector potential. 0, is
the Hamiltonian for noninteracting electrons and
photons. It can be represented by

H, = H, (e) + H, (y), (2.2)

where

0 (e)= J (»(r)[-(2»»l 'V»)'(r)]((»)dr

where Er (r) and B(r) represent the transverse elec-
tric and magnetic field, respectively. In E[I. (2.1)p(r)
represents the charge density p(r) =ep (r)g(r) and

with V(r) representing an external short-range
potential (for example, the shielded Coulomb poten-
tial of a static nucleus). HD(y) is the Hamiltonian
for free transverse photons and is given by

)», (»)=
2 f [K"(»)'+))(r)*)d»
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J(r) represents a current

J(r) = [(V(j) (r))[j)(r) —(j) (r)V[j)(r)].

The commutation rules of these fields are

H, =H, —
2

Jr+jr A r dr

(2.6)

'The current

j(r) =X(r) —(e/m)p(r)A (r)

is conserved under the time dependence provided
by the full Hamiltonian so that

V ~ j(r) =-i[H„p(r)] .

H, may be expressed as

(2.4b)

(2.3a)

for the electron field; for the photon field, —Ar(r)
has the transverse electric field E r(r) as its con-
jugate momentum, so that the nonlocal commuta-
tion rule for the transverse components is given by

[A,". (F),A,"(F')] =-r(s, ,a(F-F')

8 8 1

ar, ar, 4 [Fr-F'I ) '

(2.3b)

The current J(r) is conserved under the time de-
pendence provided by the free Hamiltonian so that

(2.4a)

When [j) is quantized in orbitals that are solutions of

[-(2m) 'g'+V(r) —(u, ]U, =0

(where U,. includes both bound and continuum
states), H, (e) is given by

H, (e) = P ete„&u„, (2.6a)

where e„and e„designate creation and annihilation
operators, respectively, for electrons in the n or-
bitals. Ho(y) can be represented as

(2.6b)

and describes free photons in the two transverse
polarization modes.

We will carry out a two-step transformation of
the Hamiltonian H, . In the first step we will use
operator identities to rewrite H, . The rewritten
H, will then be unitarily transformed to a new Ham-
iltonian H, which is a nonlocal integral over
charges, currents, electric and magnetic fields
(modulo surface terms). The first step of the
transformation begins with the identity

(2 'f)

he left-hand side is a surface integral which in-
cludes the local current J(r) and therefore vanishes
when its matrix element is evaluated between two
electron states, either of which is in a bound or-
bital. Otherwise its disappearance should not be
assumed. We will suppress the possible presence
of such surface terms and write all equations as-
suming that they vanish. The divergence 8,- J, may
be expressed as s,.j, = i[H„p]-(we will designate
the commutator i [H„ t] as g for any operator g)
so that

i [H„AF ] =i [H„AF ] =-EFr,

Eq. (2.8) can be written

jF(r)AF (r) dr

r& p r E& r dr+i Ho, e"'

+ r& J, r 8,. Az~ r dr,

where

e'~& =- r&p r A&~ r dr.

(2.10)

ry p I' Ag I' cd+ rg Jg r 8]Ag I' ll .
'The expression

We now express pA& as

pAF~=i [Ho, pAF ] —i p[HO, AFr],

and since

(2.8)
in Eq. (2.10) can also be expressed partially in
terms of electric and magnetic fields following the
pattern established in Eq. (2.10). We note the
identity
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[r,J (r) 8 A~r(r) + r, J(r) 8 A~r(r ) + r, r, B„J(r) 8 Ar(r) + r, r, Z (r) 8„BAJA(r)] dr, (2.1 1 )

in which, as previously in Eq. (2.7), the left-hand side vanishes, leaving at most a surface term. We use
Eq. (2.1 1) to replace one ha lf of

and leave the other half in its original form . 7his procedure leads to

r 8, A~ r dr + — r~ J, r —~, J~ r 8,.A~ r dr —— r, r~ J„r 8,- 8„A~ r dr (2.12)

By using Eq. (2.S), we rewrite this as

r,. r& p r 8,- E&~ r 4r —— r & J r B r dr +i Ho, &' ' —— r,.r,.J„r 8, 8„A& r dr, (2.13)

whe re

p r 8 A~ r dr

Equation (2.8) and (2.13) can be combined to replace the —f J(r) ~ A (r) dr interaction by electric dipole,
electric quadropole, and magnetic dipole interaction, by [Ho, n(")] commutators, possible surface terms,
and the remaining —,

' fr, r& J„(r)8, B„A,. (r}dr. This remainder can again be reexpressed by using the identity

8~ [r„r,r~ J„(r)8„8,.Ajr(r) ] dr

= 2 r, r,.J„r 8„8,.A~~ r dr + r„x,J,. r 8„8,.A~ r + r„~,.rj 8,J, r 8,.8„A~ r

We represent

+ r,. rz r„J~(r) B~ 8& 8 „Ajr(r)] dr, (2.14)

r,-r,.J„r 8„8,.A,. r dr

by using Eq. (2.14) and leave the remaining

~c ~) Jn r 8n 8~A) r dr

untransformed. With the use of Eq. (2.9}we then find that

27't~J„r8„8;A&rdr

= —(sl) ' fr r r ~(r)s„p, s(r)sds( ld)r'sfs[rxJ(F)),. r~s~l3, (r)drss[sd. , p'"]

+(sl) ' fr, rrr„d (r)s„s, s (r) A, dr

where

(2.15}

p"' =-(S() ' fr, r, r„p(r)S„S,A[(r)dr .
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This process can be continued indefinitely by iter-
ating

1R, = (st )

x J,(r) 8 „8„&».. .8 „&, » s,.A)r(r) dr

1 1 B 1 B
8 = ———r + r rr=

2 3J j Br 4~ j g Br

(1) s
(s + 2) )

+n(1) n(n) S~

and where + is

Brn(s)
+ ~ 0 ~

(2.16b)

B
+ ~ ~ ~

Br

to generate higher-order multipoles, and succes-
sive [H, , a'"&]'commutators. If the procedure is
continued indefinitely we can consider the 8, re-
mainder to be exhausted, and then we will be left
with a complete multipole expansion, and with
i[HO, a], where a= +„,a'"'. In that limit, we
have

J r .A~ r. dr =- r j p r S„E~j r dr

r,. p r Q„A j~ r dr . (2.16c)

[ jr() +J(r)] A (r)dr.
2

The argument leading to Eq. (2.16) can be mod-
ified to include the so-called "seagull" term

2 m

p(r)Ar(r) Ar(r) dr

by replacing J $(r) .Ar(r) dr with

rxJr jB„Bjr dr

+ i [H„a], (2.16)

where p„and Q„designate the operator series

B 1 8 BW=1 —pr + —rr + ~ ~ 4

Br. 3 f
' ~ Br Brj

The identical set of transformations that we have
carried out can be repeated by substituting ~ ~ j

i[H-„p] for V t'=-i [H„p]. Since

-i [H„A'] =-i [H„A'] =E',
the only change that is produced by substituting

and

(- 1)' s
(s + 1) i

n(l) +n(n)
n(1)

B
~ ~ ~ + ~ ~ ~

Brn(s)

(2.16a)

[j(r)+$(r)] .Ar(r) dr
2

for JJ(r) Ar(r) dr is to replace [HD, a] by
—,
'

[(H, + Hn), a], and Z by —,[I+j] in Eq. (2.16).
Equations (2.1) and (2.16) can be used, with this
replacement, to give

H, -i [H„a]

=Ho — rp r WEj r dr — r& J r jBB,r dr+h, ——H„e + rxA r, p r QBj r dr,

(2.17)

where H, ; w'e can represent H, in the form

p r p r' 8m r —r' 'drdr' He=Ho r j p r jr~

and H, =H, -Ho.
For reasons that we mill discuss later, we will

find an expression for the unitarily transformed
Hamiltonian H, given by

rx J r,. B„Bjr dr+h, +X, (2.19)

where X designates the combination of terms given
by

ejcH e ja

H, can be given as the series

H, =H, +i [a,H, ] ——,
' [a, [a, H, ]] .

(2.18a)

(2.18b)

X
2

rxA r, pr 8Br dr

-- [H„]--'[,[,H. ll. (2.20a)

Since [a, [a,H, ]] commutes with a, Eq. (2.18b) is
exact, and represents a polynomial expression for

The expression for X in Eq. (2.20a) can be rewrit
ten to give
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I

p r rx Q„B r ~ r&9„Br dr+ r, p r r~p r' $„$„—6, ,~V'„, drdr'.

(2.20b)

Details of the calculation can be found in the Appendix. With thewse of Eqs. (2.19) and (2.20) the Hamilton-
ian H, can be expressed entirely in terms of electric and magnetic fields, the charge density p, and the
current density J, in the form

Hc H0 Xl ~

with

(2.21a)

X, =- r,-pr J„E,. r dr — r&&J r,. 9„B,. r dr+h, + pr l&9„8r ~ r&9„8 r dr

)

+ r;p rr&pr' p (2.21b)

If the surface terms that arose in the course of this calculation had not been suppressed, H, would also in-
clude the surface term

X,„„=- dSn ~ J r — prA r + pr rx9„8r r,-+„A,- r (2.2 1c)

where n is the unit normal to the surface element
dS. In electron-photon processes in which either
the initial or final electron orbitals are bound
states, this surface term will not contribute. Only
in cases in which both, the initial and final electron
orbitals, are in the continuum, as, for example,
in bremsstrahlung events, do we even need to con-
sider X,„,f. To what extent X,„,f contributes in
these latter cases is outside the scope of this pa-
per. Some features of EI, are important and should
be noted. Most important is the fact that we can '

not claim to have a eliminated potentials from the
Hamiltonian. Although H, no longer involves the
potential A~, H, is not identical to the original
Hamiltonian H„but is only unitarily equivalent to
it. The significance of this fact, and the role that
H, plays in the theory, will be discussed in Sec. IV.

It should also be noted that the expressions

hE=- prr SE r dr

h~=- rxJr 9 Br dr

are not exactly multipole expansions, because the
spatial integration extends over both, the fields as
well as the currents. We will show how to express
h~ and h~ as multipole expansions, in the usual
sense, although there is no advantage to this way of
expressing h~ and h~ beyond then being able to
verify agreement with the well-known multipole
series for the interaction of charges and currents
with electromagnetic fields. ' The expression for
7„E,. can be given by means of a Taylor's series,

(2.22 a)

5:„E,.(r) = p„[(E,.)o + r.(,) (a„(,)E,.), + (1/2! )r„(,)r~, ) (a „(,) a „(,)E,),

+ + (1/s t )r„„,r„„, ~ r„„,(a„„,a„„,~ ~ ~ a„„,E,), + ~ ~ ~ ),
where the subscript zero indicates that E,. and its derivative are to be evaluated at r =0. Equation (2.22a)
can be rewritten as

p„E,.(r) =(E,), + —,'r„&&(a„&»E,.)o+(1/3! )r„&»r„&»(a„&»a„&»E,.),

+ ..+ [1/(S+1)f]rn())rn&n& ~ ~ ~ r„&,&(a„&))a (2) a ( )E )o. (2.22b)

When used in the expression for h~ this leads to
I

where

(g o ~ ~
n(2) n(n) n(1) )0 I (2.23) Similarly, we find that
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~B Z ( B)n(1)~ ~ ~ sn(s)

where

~ ('(e' "'.Il.(1))0 (2.24)

(ss )1,) s.)=[(s+()I) 's fds(rsS(r))„„,

r, p(r) ~.,' p(r') &„&„,

X ~ ~

8 8 2 dr dr
ar,. ar, " " 8vlr- r'I

—5. V'

Superficially this term may appear to describe a
Coulomb-like interaction between electric multi-
poles, but that appearance is illusory. The inter-
action described by this term is mediated by trans-
verse photons, as is indicated by the transverse
projection operator

that acts on (8((~r —r')) '. Dynamical effects that
appear upon iteration of the Green's function, gen-
erated by H, , retard this interaction as is required
for interactions transmitted by transverse photons.

n(2) n(s) '

Lastly, we will make a comment about the inter-
action term

the vector potential. Gauge transformations never
change transverse components of the vector poten-
tial, and it is trivial to demonstrate that physical
predictions are independent of the choice of gauge.
'The situation is the same in quantum electrodyna-
mics but the gauge independence of its physical
predictions is not as immediately obvious as it is
in the classical case. One reason is that the time
derivative that is part of a gauge transformation
involves a commutator with a'Hamiltonian, and the
Hamiltonian itself depends on the gauge. For ex-
ample, in its most common form, the Hamiltonian
for the electron-photon interaction in the Lorentz
gauge bears little resemblance to the Coulomb
gauge form. This can be illustrated by writing the
Lagrangian for the Lorentz gauge case,

g = —(I/2m)[aj+ieA&](j( [a& —i eA&]p+g Vg

—i(j) (aB —ieA«)(j) —' «E~„Ep„—GaqA~+ 2 (1 —y)G

(3.1)

where E&, =8,A„- 8„A„and G is a so-called
"gauge-fixing" field. Inclusion of the gauge-fixing
field makes the canonical quantization procedure
possible by providing A, with a nonvanishing con-
jugate momentum. The parameter y selects one of
a number of Lorentz gauges', y =0 identifies the
Feynman gauge for example, and y =1 the Landau
gauge. ' The commutation rules for the theory are
Eq. (2.3a) for the electron field and, for the photon
field, the canonical commutation relation

III. THEORY IN DIFFERENT GAUGES [A„(r),II „(r')]=i a„„a(r—r'), (3.2)

In classical electrodynamics, gauge transforma-
tions affect longitudinal and timelike components of

where II&= -E& and II4=iG. The Hamiltonian gen-
erated by the Lagrangian in Eq. (3.1) is given by

H~= —2'& r II„r -2yII4 r Q4 r +—4E,.&
r I'„r +i g,. r 8,.A.4 r —Q4 r 8,.&~ r + 1 2m 8& r 8z r

,'A, (r)[J—;(r)+j& (r)] -ip(r)A«(r)jdr .

and

8,Z„.+ 8„E„),+ 8 pI",t
= 0, ,

8.&v. - ju =KG

(3.4a)

(3.4b)

C =0. (3.4c)
These equations are not identical to Maxwell's

Since the Hamiltonian has a crucial role both in de-
fining the eigenspectrum of the theory and in de-
termining its time evolution, the lack of identifiable
correspondence between HB in Eq. (3.3) and H, in
Eq. (2.1), needs to be discussed.

The equations of motion in the Lorentz gauge fol-
low from the form of the Lagrangian [Eq. (3.1)]
and are

(3.3)

I

equations, but differ from them by the inclusion of
a„G in Eq. (3.4b). Gauss's law, as well as the
equation p)( B aE/at =—j, are n'ot operator identi-
ties in this formulation of the theory. In Eq. (3.3)
the operators for free (or "bare") electrons de-
scribe electrons detached from all electromagnetic
fields, longitudinal, timelike and transverse (we
are considering V to be a phenomenological poten-
tial due to an external source, and not part of the
electromagnetic field of a participating particle).
In the process of developing the "exact" electron
wave function, superpositions of free electrons,
and longitudinal, timelike, and transverse photons
need to be combined to assemble the electron's
Coulomb field, as well as its transverse field com-
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dr'p r' 4w r- r'

which has a nonvanishing expectation value even for
"free" electrons. 'The bare electron operators in
the two different formulations (i.e., the Coulomb
gauge and the Lorentz gauge) really refer to dif-
ferent particles. The so-called "bare" or free
electron obeys Gauss's law in the Coulomb gauge
formulation, but does not obey it in the Lorentz
gauge version of the theory. It is therefore not
surprising that the two Hamiltonians [H, in Eq.
(2.1) and H~ in Eq. (3.3)] differ considerably in ap-
pearance when expressed in terms of the two dif-
ferent electron operators, particularly since these
different electron operators are generally repre-
sented by the same symbol.

We can understand this aspect of the problem
better by studying how the Lagrangian in Eq. (3.1)
and the Hamiltonian in Eq. (3.3) lead to electrody-
namics in the Lorentz gauge, even though the
equations of motion [Eqs. (3.4)] differ from Max-
well's equations. The fact that G is a free field
[Eq. (3.4c)] allows us to restore the validity of
Maxwell's equations by the following device. A
constraint is imposed in the form of a subsidiary
condition that selects a "physical" subspace of the
indefinite metric space in which the Lorentz gauge
theory must be embedded. ' This subsidiary condi-
tion' makes use of the positive frequency part of
the free field G, and is

0(")v) =0. (3.5)

This condition defines the states
~
v) that constitute

ponent. The representation of an "exact" electron
wave function is fraught with severe technical dif-
ficulties, and the finished product must have an
electric field, properly flattened to include the ef-
fect of the electron's motion, as well as the mag-
netic field of a moving charge. But the free-elec-
tron operator has none of these effects. The one-
particle state for a free electron has a vanishing
expectation value of its electric field (transverse
and longitudinal) as well as of its magnetic field.
In the Coulomb gauge the situation is different.
Gauss's law is explicitly used to eliminate the lon-
gitudinal electric field from the Coulomb gauge
Hamiltonian' to arrive at the form given in Eq.
(2.1). The free-electron states in the Coulomb
gauge therefore are automatically consistent with
Gauss's law, even without further photon "dress-
ing. " 'The expectation value of transvere electric
or magnetic fields for free-electron states vanishes
in the Coulomb gauge as well as in the Lorentz
gauge. But the longitudinal electric field in the
Coulomb gauge is not an independent variable, and
is given by

the physical subspace. All of the dynamical pro-
cesses of the theory are confined to the physical
subspace, and, . within it, Maxwell's equations are
valid.

The extraction of the positive frequency part of
G can be carried out in a straightforward manner. "
It is most useful to give the results in the momen-
tum representation. We define

a~(f) = f a~(f)+i a(f)]/W, (3.6a)

a (k) =[a (k) —za, (f)]/W,
a*(k) = [at(f) + i at(f)] /v 2, (3.6c)

ag(f) = [a[(f)—ia~t(f)]/W,

where a~ (a~t) designates annihilation (creation) op-
erators for photons polarized in the direction of
propagation, and a4 (at4) designates the correspond-
ing operators for timelike photons. az ~

0) designat-
es zero-helicity photons and a~ (0) scalar photons.
Both states have zero norm and are called
"ghosts. " The momentum transform of Eq. (3.5) is

(3.6b)

(3.6d)

[au(k)+ p(k)/2)k) ]( v) =0. (3.7)

We see, for example, that a single free-electron
state et ~0) fails to satisfy Eq. (3.7), because

p(k)= fp(r)e ' '' dr

gives p(k)e,. ~O) wO. The subsidiary condition prop-
erly refuses to let us use electrons without their
Coulomb field, because that would lead to a viola-
tion of Gauss's Law.

To simplify the solution of Eq. (3.7) we resort to
a unitary transformation within the indefinite met-
ric space" (these are often called "pseudounitary"
transformations). We transform all operators 0
by 0 = UOU ' and states by ~

v) = U~ v). This trans-
formation carried out simultaneously on all opera-
tors and states leaves all matrix elements unaf-
fected, and if we choose

U=eD (3.8)

with

D=t
~ ~, 8&AJ r —qG r pr

we get

U[ao(f)+ p(f)/2)k (' ']U ' =ao(f) . (3.9)

aq(f) ~n) =0, (3.10)

and ordinary "free"-electron states satisfy it.
These "free"-electron states incorporate the effect
of the unitary transformation of Eq. (3.8) and refer

In the transformed representation (in which opera-
tors and states are "hatted" ), the subsidiary condi-
tion has the simple form
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to electrons that have their Coulomb field, even
without any further "photon dressing. " They are
therefore the same electron states as are used in
the Coulomb gauge theory. 'The Hamiltonian FI~ is
the Hamiltonian for the Lorentz gauge theory '.n

terms of these transformed operators. It is given
I

2 3

Hr = — dk gg e& (k)[ a&(k)J', (—k) + a&(k)j,(k)]
X=1 l=l

by

HI. Ho+A +Hr+Hq

where h, and H~ are given by

(3.11)

(3.11a)

2+,~2 dk dk' g e (k) ' e" (k') [az(k)a&i(k')p( —k —k')+ a&~(k) a&~ (k')p(k'+k)
2 i% 27/)'

+ an't(k)az, (k')p(k —k')+ a&t(k')a&(k)p(k' —k)] .
H~ is given by

(3.11b)

Hq =Hq+ y dk k a@~ k aq k

and 0 by

H@ = —
k ~~2 1 ——[k 'J(—k)a+(k)+k '$(k)ac+(k)] — &2 1+ —[p(-k)ac(k)+p(k)ac+(k)]

+
2 3i 2 2 ~, ~y22 ~, ~ ~~~ g 6 (k) 'k (ay(k)[p( —k —k')ao(k')+ p(k' —k)a&+(k')]

+ a&(k')[p(k+ k')a~+(k')+p(k —k')ac(k')])
A I

2~(2 )si2 J 4 (k (v ~k (rg (p(-k —k )aq(k)ao(k')+p(k+k')ao(k)ac(k')+2p(k —k')ao(k)ao(k')) .

(3.11c)

Inspection of Eq. (3.11) demonstrates that H~
consists of two parts. One part, Ho+ h, +H ~, is
independent of y and is identical to the Coulomb
gauge Hamiltonian except for the trivial difference
that Ho in the Lorentz gauge also counts noninter-
acting zero-norm scalar and zero-helicity photons.

he other part, H, depends on y but each term in
it incorporates either ac or ac* operators (or both)
but never a~ or a~ operators. Since

but

[az(k), a+(k')] = [ao(k), as*(k')] = &(k —k')

[ ao(k), az(k')] = [ as(k), ag(k')] =O,

H can never have any observable effect on state
vectors. It can never destroy any az(k) photon
states because none may appear in the initial
wave function; none can ever appear at a sub-
sequent time, because' the time evolution operator
exp —i H~t never generates them. H~ therefore can
cannot generate internal photon loops. It can only
generate a~+(k) zero-helicity photon states, which
have no norm and no energy, and can never be an-
nihilated by H~. The time evolution operator
exp —i H~t can never shift any state vector from

the physical subspace to the unphysical. 'The dyna-
mical predictions made by the Coulomb gauge Ham-
iltonian and by H~ are trivially identical. We can
therefore conclude that when the same operators
correspond to equivalent particles the Coulomb
gauge and the Lorentz gauge versions of the theory
are just as closely related in quantum electrodyna-
mics as in classical electrodynamics.

Once we have expressed the Coulomb and Lorentz
gauge formulations in forms that use identical op-
erators, i.e., H, [Eq. (2.1)] and H~ [Eq. (3.11)],
respectively, we can carry out gauge transforma-
tions in the quantized theory. " For example, we
can gauge transform from the Lorentz to the Cou-
lomb gauge by using A, =A& + v}f and p, =@~
—i[H, X], with V'g= —V A~, so that V A, =O.
Since H~ and H, differ only by the inclusion of Hg
in the former, the time derivative operator
i[H~, ] is appropriate for this transformation.
We find that the gauge-transformed theory has the
appropriate commutation rules and equations of
motion for the Coulomb gauge. Similar transform-
ations can be made to other gauges, and, in fact,
the method works for all gauges.

It is worth noting that the kind of transformation
that we have carried out in Sec. II can never be the
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result of a gauge transformation. Gauge trans-
formations never affect transverse field compon-
ents, while the transformation that leads to H, only
affects the transverse components.

Iv. GAUGE, UNITARY, AND IIYBRID TRANSFORMATIONS

In Sec. III of this paper we have shown that, al-
though the Hamiltonian for the electron-photon sys-
tem is gauge dependent, physical predictions can
never depend on the choice of gauge. In Sec. II, we
have discussed a transformation that replaces the
Hamiltonian H, by another, H„ in which the elec-
tromagnetic potentials have been eliminated every-
where except in a surface term. We have also
pointed out that the gauge transformation, and the
transformation that replaces II, ,by H„are basic-
ally different. and apply to disparate components of
the vector potential. One important question, how-
ever, applies to both of these transformations and
we would like to raise and answer this question in
this section. In the case of gauge transformations
the question takes the following form: We have re-
lated the Coulomb gauge version of the theory with

.the Lorentz gauge version. 'The latter is charac-
terized by the Hamiltonian H~ [Eq. (3.3)] and a con-
straint equation in the form of the subsidiary con-
dition [Eq. (3.7)]. But there is a very common
form of the theory that we have not yet discussed.
This form consists of the Hamiltonian H~ [Eq.
(3.3)] but fails to take account of the subsidiary
condition [Eq. (3.7)]. This is the form that is used
when the Lorentz gauge theory is applied computa-
tionally. The only concession that is made to the
subsidiary 'condition in actual calculations is that,
when incident states are chosen, free electrons
and photons are selected and nontransverse inci-
dent photons are rejected as unphysical. But the
incident free electrons lack a Coulomb field and
violate Eqs. (3.5) and (3.7). This form of the theory
is not appropriate for any gauge. Nevertheless it
is simple to use and always gives right answers.
The question is: Why does it work?

We can also represent this common form of the
theory in its unitarily transformed version, in
which the Hamiltonian is H~ [Eq. (3.11)] and the
subsidiary condition is given by Eq. (3.10). The
"common" form of the theory can then also be un-
derstood as using the correct states (i.e., "bare"
electrons and transverse photons), but an inappro-
priate Hamiltonian (i.e., H~ instead of H~). It ap-
pears, in substance, that the "common" form of the
Lorentz gauge theory is related to the correct form
by a transformation in which the Hamiltonian is
unitarily transformed, but the states are not (or,
alternatively the states are unitarily transformed
and the Hamiltonian is not). We will refer to this

as a "hybrid transformation. "
It becomes clear that the change from II, to H,

in Sec. II also is a hybrid transformation. In this
case, too, we have unitarily trans formed H, to P,.
However, we do not also want to unitarily trans-
form the states since we want to be able to apply
H, to the same electron and photon states to which
we originally applied the Hamiltonian H, .

In general, quantum theory does not support the
use of hybrid transformations. It is easy to show
that when both, the states as well as the operators,
are unitarily transformed all matrix elements re-
main unchanged and the physical content of the the-
ory is unaffected. But no such general result ap-
plies when the states, or the operators alone, are
unitarily transformed. It is therefore necessary to
study hybrid transformations to determine what
kind of equivalence can be demonstrated for them.

We will prove an identity for the hybrid trans-
formations we have made that relates the scatter-
ing transition amplitudes of the untransformed and
transformed theories. The identity was originally
developed in connection with the gauge problem, "
but we will first give the proof as it applies to the
H, -H, transformation. The two cases are very
similar, although in the H, -H, case the underlying
space is a Hilbert space, and in the H~-H~ case it
has an indefinite metric.

We &egin with

and

R, =H,e ' +(1 —e '")H, H, (1 —e '-)

H, = e '"X, +H, (1 —e, '")—(1 —e '")H, ,

(4.1a)

(4.1b)

where K, is given in Eq. (2.21), n in Eq. (2.16c),
and H'y H Kp The "outgoing" scattering wave
function for an incident state in the "hybrid" ver-
sion of the theory (designated by l P, )) is

l y,.) =
l i) + (E, —H, + i e) '&,

l i), (4.2)

where (H, -E,) li) =0. This wave function reflects
the fact that the untransformed eigenspectrum of
Hp still describes the noninteracting inc ident and
final states before the onset and after the termina-
tion of the collision process. However, the Ham-
iltonian that is used is H, instead of H, . %'e re-
write Eq. (4.2) as

g, ) = li)+e'"(Z, H, +is) 'e '-3C, li) (4.2b)

and, with Eq. (4.1b),

l g;) =e'"
l y;) —ie(E, —H, +is) '(e'" —1) l i), (4.3)

where lg, ) is the scattering wave function for the
untransformed theory and is given by

(4.4)

'The transition amplitude for the hybrid formulation
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is given by

T,„=&fix, I&,&, (4.5a)

where lf) is the final state, for which (H, —zz)l f&
=0. Use of Eq. (4.3) leads to

T,„=&f IX,e'"
I y, &

—ie(f IX,(E;-H, +ic) '(e'" —1)li&, (4.5b)

and Eq. (4.5b) can be rewritten by using Eqs. (4.1)
and the relation

else, so this discrepancy too cannot affect physi-
cal quantities. '4 The overall effect is that, when
scattering cross sections are evaluated, the use of
H, in place of H, (or H~ instead of H~) is permissi-
ble. A similar argument holds for bound state en-
ergy levels and the appropriateness of the substi-
tution of H, for H, (or H~ for H~) is thereby ex-
tended to all scattering processes and to calcula-
tions of energy levels. "

V. ENERGY CONSERVATION IN SCATTERING EVENTS
(H. -Z, )Ig,.& =ie(Z,. -H. +ie) 'H, li), (4.6)

leading to

Tf, , = T, .;+(z~ E;)&f-I (I —e'")
l 0) &

+ie(f I(e"- I)(z,.-a, +ic) 'a,
—x, (E,—a, +i&) '(e'" —1)li), (4.7)

with T,=(f laxly;& ~

A similar derivation can be given for the relation
between the two forms of the I orentz gauge theory
that are governed by the Hamiltonians H~ and H~,
respectively, both operating on states In& that obey
(H, —E„)In) =0 am. both constrained by the subsidi-
ary condition as given in Eq. (3.10). In that case
we have

Tg„.= &ngl*a, ly, & Ty, g
= &ngl*aily;&

and

Ty.;=Tg„+(Zy —E;)&n., l*(1 —e ')Iy;&
—ic(n~l*(1 —e D)(E, -H~+ic) 'H,

H, (z,. —H~-+ie) '(1 —e D)ln,.). (4.8)

Equations (4.7) and (4.8) notify us that the transi-
tion amplitudes are not invariant to hybrid trans-
formations. However, the changes in the transition
amplitudes are so benign that the hybrid-trans-
formed version of the theory may safely be used.
The discrepancy between Tz, and T&, (and between.
T&, and Tf,)has on. e part th. at vanishes on the en-
ergy shell (when E&=E,). Since overall . energy
conservation in scattering processes is guaranteed,
scattering cross sections involve only transition
amplitudes with Ef =E,-. That part of the discrep-
ancy therefore has no physical consequences. 'The
other part of the discrepancy is proportional to i e,
the displacement of the Green's-function pole from
the real axis. That discrepancy vanishes as ie
-0, unless there are (ic) singularities in

(f I( *"-eI)(z, -a, i )+'Hc,

-X,(E,. —H, i )+'(ce'" —1) Ii&

(or its counterpart in the H~ -if~ case). Such sing-
ularities only arise in expressions for wave func-
tion renormalization constants and never any where

The proof that we gave, that scattering cross
sections are unaffected by the hybrid transforma-
tions that transform H, into H, and H~ into H~, is
crucially dependent on the well-known result that
the scattering matrix vanishes unless the total en-
ergy of the incident and final states agree identic-
ally. We emphasize this point because some au-
thors, in discussing the various forms of the elec-
tron-photon interaction, treat the nonresonant two
photon absorption by hydrogen as though it had ob-
servable off-energy- shell scattering matrix ele-
ments. " For the process in which hydrogen in its
1s state absorbs photons y, and y„and is excited
to its 2s state, these authors define

2s 18 y{l) y {2)

and consider the nonresonant transitions to be those
for which g g0. In this work, the transition ampli-
tude for the process H(ls)+ y(1)+ y(2)-H(2s) is
evaluated off its energy shell, and the off-energy-
shell amplitude (with g o0) is used to simulate the
fact that the 2s state has a finite lifetime, and
therefore a finite width. We believe that this de-
scription of the proce ss is not consistent with the
formalism of scattering theory. " Our view is that
two-photon (nonresonant) absorption is an energy
conserving collision, in which the virtual transition
through the H(2s) resonance makes an important
contribution, although the transition proceeds near,
rather than directly at, the resonance maximum.
It has been asserted" that in such calculations one
should use the r E(0) operator [leading term in our
X„given in Eq. (2.21b)], rather than the p A(0)
operator [leading term in H, given in Eq. (2.1)].
For on-shell transition amplitudes (which, in our
opinion, includes the case of nonresonant two-pho-
ton absorption) X, and H, must give identical re-
sults, except insofar as they are approximated in
different ways. In view of the fact that H =Ho+&i
and H, =HO+H, are only connected by a hybrid
transformation, they are bound to give different
results for off-shell amplitudes. We can find no
general theoretical basis for preferring X, to H, in
the calculation of off-shell amplitudes, be they ap-
proximate or exact.
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APPENDIX

In this appendix we will show how Eq. (2.20b) can
be derived from Eq. (2.20a). The expression
i [H„a] is the operator time derivative of e and
is given by

([H., a] = fr p(r)v, s', (r)di

which leads to

Y, = W,.(r) W;(r)p(r) dr,
2m

where

g, (r) = [~,. P„Ar(r)] .

(A6)

(A1)
Equation (2.16a) and (2.16b) can be used to show
that

The commutator —,
' [n., [H„c(]]is given by W, (r) =A, (r)+ [rx 9B(r)], (A 7)

—,
' [o., [H, , o.]] = Y, + Y, ,

where

Y, =
2 r, r& j„A~ r $„,Az~ r'

(A2)
The commutator ,'i [=H„o.] is evaluated using

Eqs. (A5) and (A7), and is given by

--,' i [H„a]

p(r) A, (r) [ F„A, (r) +. r, 9„&,&~~ (r)]dr2m

Y = — t',-g'p r p r' P„g„

x [A~(r'), Er(r)] dr dr'.

Equations (A3) and (A4) can be evaluated by using
the commutator

[p(r), &,(r')]

ze 8
p(r) &(r- r')

281 eg
g

+ e[yt(r')y(r)+yt(r)y(r')] 6(r —r'), (A5)

X therefore can be written in the form
(A 10)

X=
2

rxA r,.p r 8„8, r dr+Z, + Y, .
(A11)

Use of the commutator given in Eqs. (2.3b) and

(A4) combined with Eq. (A11) leads to Eq. (2.20b).

W'e use the identity

5„A', (r) = A. ', (r). -~, 9„a., Z', (r). . . (A 9)

and find that the sum Z, = Y, &i [H„u] is—given by

Zx- pr rx9„B r A~r +rx 8„Br dr.
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