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A classical optical theory is given for the phenomenon of y-ray quantum beats observed by Perlow in a
study of the Mossbauer effect of a frequency-modulated source. The intensity I(cop —cop, t) of the radiation
from such a source transmitted through a resonant absorber is obtained as a function of cop —cop and t,
where cop is the frequency of an absorber resonance, esp. is the central frequency of the frequency-modulated
source, and t is the laboratory time. An average is taken over the unobserved initial formation time of the
excited nuclear state in the source. When viewed at fixed cop —co~ the calculated intensity displays beats in
the time spectrum, and when viewed at fixed t, the intensity shows dispersion at appropriate values of
mp —cop, responsible for the observed enhancement of intensity above background. The harmonic content of
the quantum beats is calculated explicitly in the thin-absorber limit, and the observed linear variation about
cop —cop ——0 of the ratio of Fourier components D,/D, is explained. The use of D,/D, to measure small
frequency shifts is analyzed by a statistical comparison with the method of switching between steepest points
of the line, as used in gravitational-red-shift measurements. The variances are comparable. The effect on
I(esp —cop,t) of line broadening due to sample inhomogeneities is calculated for a Lorentz distribution of
center frequencies in source and absorber, and a prescription is given for modifying the various terms in

I(ct)p —o)yt) accordingly. Finally, the effect of a distribution of phase and amplitude of the motion of the
vibrating source is discussed.

I. INTRODUCTION
'I

Recently measurements have been reported' of
the transmission of frequency-modulated recoil-
free z-rays through a resonant absorber. Interest-
ing time- and frequency-dependent behavior of the
transmitted radiation was observed. The present
article contains a theoretical explanation of these
results.

The experimental situation of Ref. 1 is illustrated
in Fig. 1 and is described in detail in the caption.
Briefly three sorts of measurement were made:
(a) normal MOssbauer velocity spectra, (b) time
spectra, in which the interval between a count and
a reference time associated with the frequency
modulation was obtained and accumulated, and (c)
velocity spectra, in which the time measurement
supplied a gate for excluding all but a portion of the
events, such that the accepted ones lay in some
chosen interval of the frequency modulation cycle.
Figures 2-4 show examples. The captions are self-
explanatory.

The experiments analyzed here are clearly re-
lated to the phenomenon of time filtering, ' ' but
there is one qualitative difference. The present
experiments do not employ a previous nuclear
event to determine the origin of time. Qur count-
ing rates are typically 500-1000/sec, two orders
of magnitude higher than is practical in a coinci-
dence experiment.

Consider a y-ray source that is vibrated sinus-
oidally with arigular frequency 0 and amplitude x,
along the direction of observation. The time de-

&' ' exp[i+, t ——,&(t —t,) + ta sinA t ], t ~ t,
0

w'here ~ ' is the mean lifetime of the decaying
state, co, is the unperturbed frequency of the emit-
ted radiation, and a = &u, xo/c is called the modula-
tion i]Ildex. The decaying state is formed at time
tp and the zero of the laboratory time t is chosen
as a zero of the sine in Eq. (1.1). Since t, is not
measured, the observed intensity of this radiation
18

dtoE t, to '=1, (1.2)

and its frequency spectrum is

cl a
dt, [z(&u, t,)['= Q

(

"
),

Here J„(a) is a Bessel function of the first kind
and E(&u, t,) is the Fourier transform of Eq. (1.1).
[Note that, if t, were measured, the spectrum
E(u, t, )~

' would involve a double summation. ]
Spectra of the form of Eq. (1.3) were first ob-

served by Ruby and Bolef' with Mbssbauer radia-

pendence of the field amplitude associated with this
radiation can be written as
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FIG. l. Experimental conditions underlying the theory in this paper. An x-cut quartz piezo-crystal has cemented
to one face a thin copper foil into which ~~Co has been diffused. The 14.4-keV Mbssbauer radiation exits the foil,
passes through any of several selectable absorbers, and is detected at the right in a sodium iodide scintil. lation counter.
The piezo-crystal vibrates at 9.95 MHz as a result of voltage applied to it from an oscillator. The latter is also counted
down by some chosen multiple (typically 5 or 10) and provides timing pulses at a constant phase with respect to the
crystal motion. From the scintillation counter one derives pulses for a slow and a fast channel. They are separately
amplified in appropriate amplifiers and pass through appropriate differential discriminators to select the pulse
heights. A time-to-amplitude converter (TAC) measures the interval between an acceptable event in the fast channel
and the next occurring timing pulse. The TAC output consists of pulses whose heights depend linearly on these time
intervals. It is recorded in the PDP-11 computer by means of an analog-to-digital converter (ADC). Alternatively,
a velocity spectrum may be made in the normal manner, by moving an absorber (at a frequency of a few hertz) and
storing the pulses from the slow channel in the computer operated as a time-mode analyzer. This gives a normal
Mossbauer velocity spectrum. However, it is also possible by means of a differential discriminator, and the analog
pulses from the TAC, to store similarly only those events that occur during a specified phase interval of the motion
of the source. This produces a time-gated velocity spectrum.

tion and in various connections by many others
since. ' " In practice, the relative intensities of
the various sidebands usually are not correctly
described by Eq. (1.3), a point which Abragam"
and others have discussed and to which we shall
return in Sec. V.

In Sec. II we calculate the intensity f (t, 4ru) of
the radiation described by Eq. (1.1) after it has
been transmitted through an absorber containing a
resonance whose frequency is ~,'. Here t is the
laboratory time and b, ~ = ~, —~,'. The intensity
I(t, hu) contains interference terms between dif-
ferent frequency components which account for the
beats that are observed when, for fixed values of
Ace, the intensity is measured as a function of t.
As discussed in Sec. III, this beat phenomenon
may be used for the precise measurement of small
energy shifts. Dispersion effects observed in
time-gated frequency spectra j, ' dt I (t, b.u&) are

1
considered in Sec. IV.

The analysis presented in Secs. II-IV is based

on the assumption of ideal motion of the source
(with unique modulation index a) and on the further
assumption that there is no line broadening other
than that due to the absorber thickness. In Sec.
V the analysis of the previous sections is modified
to include nonuniform motion of the source and ex-
cess linewidths (attributable, for example, to a
distribution of isomer shifts or to small quadru-
pole or magnetic splittings). The line broadening
is treated in the approximation that the distribu-
tion of resonance frequencies is Lorentzian.

II. THEORY

In this section the classical optical theory
used by Lynch, Holland, and Hamermesh' to des-
cribe the transmission of recoil-free y-rays
through a resonant absorber is extended to include
the vibrational motion of the source.

We first make use of the Jacobi-Anger formula



THEORETICAL DESCRIPTION OF QUANTUM BEATS OF. . .

20-

30-
0

~O

z 20
I- 4-
O
V) 6-

~ 0
Oak-' 0

b)

8-
40

0 ~Asa&-
~ ~s-—~P~e

IO- ')

4 tkaE ~gsah%a&= y ----~
Q&Q~(%V~~ ~

. ~ ~ r

RMAL
ECTRUM

~ ~ @=+I+ ~ a Res
o — ~o~gs~gg~ Og ~

VIBRATED
Hz and

%st
g-ge y-' -~t

O.I2
I-
lL

0.08—

0.04-
O

0-
O

u -0.04-I-

lL
U

-0.08-

0

~ ~

~ltt il
II II II

t

I~

I

O. I 0.2 0.3 0.4 0.5 0.6
T I ME (p.sec)

I I

0.7 0.8

I
I

I
I I 1

I I I

CRYSTAL FREQUENCY: 9.95MHz at IOV
(a)

LINE
FROM b)

ATIONARY

BSORBER6-
I ( i ( i r

-5 -4 -3 -2 -I 0 I 2 5 4 5
VELOC IT Y (mm/sec)

l.2—
Z'.
O

~ I.I—

COMPOSITE ABSORBER OF ENR. S.S. AND
(b) SODIUM FERROCYANIDE

FIG. 2. (Reproduced from Ref. 1.) Three ungated
velocity spectra. Figure 2(a) is the spectrum of the
7Co-Cu source recorded by moving an absorber of sodi-

um ferrocyanide enriched in Fe. Figure 2(b) shows
the frequency modulation one obtains by vibrating the
source with a quartz piezo-crystal. Figure 2(c) shows
a similar spectrum in which a stationary absorber of
57Fe-Be has been interposed bebveen the source and the
analyzing sodium ferrocyanide . .

'tasinct g (~)pinotn

to rewrite Eq. (1.1) in the form

(2 1)

(~) ei&(t tp)/((g (g tjg) (2.2)

where co„=e,+nQ is the frequency of the nth side-
band. If this radiation passes through an absorber,
each monochromatic component c„(&u) is altered
such that c„(&v) c„'(e), where

E(t, t,)=~' ' J„(a)et 'o . d~c„(u&),
1

27ri
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FIG. 3. Quantum beats. (a) With vibrating source and
stationary ~VFe-Be absorber, the time spectrum con-
tains principally the second harmonic of the modulation
frequency (20=19.90 MHz &&27| ). Figure 3(b) is made by
replacing the Fe-Be with a composite absorber of
stainless steel and sodium ferrocyanide. Ithas an isomer
shift of —0.3 mm/sec with respect to the source. The
fundamental (i.e. , the modulation) frequency now domin-
ates.

x 10'rad/sec=1mm/sec, u&p=2. 190&& 10" rad/
sec. The natural linewidth of the excited nuclear
state is A. =7.09&&10' rad/sec=0. 0970 mm/sec and
2~ is the narrowest absorption linewidth observ-
able by MOssbauer spectroscopy. The quantity Q
in the experiments was typically 6.252&&10' r~/
sec (corresponding to 9.95 MHz). In Eq. (2.3), b
is a constant that depends on the thickness of the
absorber; at &a=a&p', Eq. (2.3) becomes

c'„(cu) =c„((u)exp[2ib&u/((o' —(u'pt-ia)X)] . (2.3)
c'„((up') =c„((op')exp(-2b/'),

The resonant frequency of the absorber, +,', may
be varied by Doppler effect to obtain a frequency
(velocity) spectrum.

The connection between angular frequency units
and the usual velocity units cf Mossbauer spectro-
scopy for the 14.413-keV radiation of "Feis:7.305

so that the transmission of a monochromatic radi-
ation at the center of the resonance is exp(-4b/A).
In terms of conventional Mossbauer parameters
b/A=~op f, , where n is the number of resonant
nuclei/cm', op the peak cross section, and f, the
recoil-free fraction of the absorber.

Consider next the integral in Eq. (2.1) with c„(u&)
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Considered as functions of t„ the frequency in-
tegration as well as the sum over n in Eq. (2.5)
converge uniformly in the interval —7 ~ tp&t and

we assume that this is sufficient to justify the com-
mutation of the'various operations implied in Eq.
(2.7). Equation (2.7) can then be rewritten in the
form

8—
O
I—

CL
O
CO
CD %a hF %%4

~
s- b oo ft

I (t, b, cu)

l2—

x lim
~CO

dcu
J

dcu' f„(cu)fc (cu')

xE &{cu~ cu ) ~ (2.8)
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2 where

f„(cu)=(cu —cu„--,'ix) 'exp[ib(cu —cu,'-gi ) '], (2.&)FIG. 4. Time-gated velocity spectrum. In order to
set the gating intervals, a Fe-Be absorber is tempor-
arily installed and the beat spectrum of Fig. 3ta) is ob-
tained. As shown in Fig. 1, a differential pulse-height
discriminator can then be used to select events during
the desired phase interval. The selection is diagram-
med at the top of the figure. Two cycles of the beat
correspond to one cycle of crystal motion. The gate hav-

ing been set, the ~VFe-Be absorber is removed, the
sodium ferrocyanide analyzing absorber is installed,
and a gated velocity spectrum is made. With respect to
the crystal motion, the two gates have widths Oht= 7i/2

and are separated by 7r.

replaced by c'„(cu), Eq. (2.3). The contribution to
this integral from the singularity at cu = —(cu'0'

--Ic')' '+-,'iX is proportional to bleu,' and can be ne-
glected since b «~p'. Furthermore, since X«(Pop,

we have to a good approximation

2ibcu{cu' —cu,"—icu&) '= ib(cu —cu,
' —,'i &) ' . (2.4)—

It follows that the amplitude E(t, t, ) of the trans-
mitted radiation is

- i (~ ' - ~+ ~ -~, )(r+t)i-e nE (cu, cu )=
i(cu' —cu+ cu„—cu, )

(2.10)

= 2' dcu f„(cu)E„,(cu, cu' )
~+ eh/2

For fixed values of cu', E„,(cu, cu') has no singular-
Iities inthe complexcu plane and aslmcu- ~, E„,(cu, cu )

-0. Similarly„ for fixed values of cu, E„,(cu, cu')

has no singularities in the complex co' plane and

as Imcu'- -~, E„,(cu, cu')-0.
This is a particularly convenient result since the

only contributions to the frequency integrals in Eq.
(2.8) are from the singularities of the functions

f„( )cuand f*, (cu'). Thus, for example, the integral
over cu in Eq. (2.8) is evaluated as

1', '(t, t ) = A,
'~2 P J (cc)e' ~n c o. dcu c„'(cu),

1
2ri

+27ci dcuf ( )Ecur(cu cu )
ur'+ g X/2

(2.11)

c'„(cu) = exp[icu(t —t,)](cu —cu„ —2iX) '—
x exp[ib(cu- cu,

' —pic) '].

(2.5)

(2.6)

The time and frequency dependence of the inten-
sity of the transmitted radiation is obtained by
integration of

~

E'(t, t,)I' over the unobserved time
tpe

where the contour (-~,~) has been closed by a
semicircle in the upper half of the ao plane. The
remaining integral over ~' is similarly evaluated
by closing the contour (—~, ~) my means of a
semicircle in the lower half of the ~' plane. The
result is

t
I {t,b, cu) = lim dtoI E'(t, t,)I'.

g~ Oo

(2.7)
where

x exp[i(n —I )Gt], (2.12)
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G„, (b(u) = —1+exp(ib[(b(u+nQ) ' —(b(u+ lQ+ i X) '])

)t,'!(k —1)! dz ' z -l(, (u-nQ z -b, (u n-Q+iX z+(l -n)Q+iX (2.13)

Since G„, (b, (u) is, by construction, Hermitian, i.e. ,

G„, (b.(u) = G *,„(a&u), (2.14)

the apparent singularity at b, (u+nQ = 0 must cancel in Eq. (2.13) to all orders of b/& Wi. th G„, written as
a sum of terms arranged in increasing powers of &,

(2.15)

relations (2.13) and (2.14) can be used to show that

N —I« I~ I «. ' ,"' I, Nil N —i« I -I« I (N —««) (I + ««)') '

(2.16)

1 1 (-)"
«~(m —«)' (INi«)" «"-. (I ~ I«)" (N —i«)")

K 1

1 PE+ S —K —1 (-)"-'
+ (- ib) «! (m —«)! S (INi«) +' ". (I-+i«)' '

(N .—i«)" ' ) '~ m+S - K ~ K-S + K-S

where I.=b. (u+ lQ, X=6,(u+nQ, and ("„)is the bi-
nomial coefficient.

An indication of the rate of convergence of the
expansion (2.15) can be obtained as follows. From
Eqs. (2.16) it is clear that convergence is slowest
for L, =¹0,i.e., for l =n and Ae=-pgA. In this
case, Eqs. (2.16) reduce to

Equation (2.12) with the G„, given by Eq. (2.16)
can be examined for a limiting cape. If we set
the modulation index a to zero, the transmitted
intensity is no longer time dependent and Eq.
(2.12) reduces to

I (t, b, (u) = I (b(u) = 1+ G(OI) (i(), (u) + G'02)(I). (u) + ~ ~ ~

2m !
G(„"„)(n, (u = -nQ) = (-b/~)" (2.1'l)

2b& 2b'~'
(b, (u)'+ I(.' [(a(u)'+ A.']'

For any given value of b/& there exists an integer
M such that for all values of m) M,

(2.19)

IG'.".'" (&~ = -nQ)I (
i G'.".'(&(u =-nQ)

~
(2.16) If the absorber is thin this can be approximated by

Since Eq. (2.15) is an alternating series, it follows
that the error incurred by truncation of the sum
(2.15) at m=m') M is less than

(b/ )mi+I (2m +2)!
[(m'+1)!J'

Thus, for bl&= —,', truncation at m'= 3 would re-
sult in an error of less than +0.012 (or( 3.6%) for
any of the coefficients G„,(i(),a&) at any value of i(), (u.

For b/&=1, truncation at m'=10 gives an error
less than + 0.017 (or( 2.6%).

I (4(u) = exp( -f 2b&/[L(u'+ —,'(2&)']) ), (2.20)

I(t, b, (u) =I,+I,+I, , (2.21)

which describes a line that is thickness broadened
in excess of the minimum width 2~. Its transmis-
sion at resonance is e ",the exponent being
half that for a monochromatic radiation at the line
center.

Equations (2.12) and (2.16) contain time-depend-
ent absorption and dispersion terms. I et us re-
write (2.12) in the form
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where

I,=1+J,'(a)GOO(a(u)+2 Q J'„(a)G„„(b.(u),
n= 1

I,= g g J„(a)J, (a) cos[(n —l)Qt]Ref G„,},
(l &n)

I,= — g g J„(a)J;(a) sin[(n —l)Qt]im(G„, }.
~OO g ~OO

If data are taken without reference to time, one
must average over t in (2.21) and then I, = I,= 0.
The remaining term I,(he) describes the time-
independent frequency spectrum of the frequency-
modulated source as observed by transmission
through an absorber whose energy is varied.

In the thin-absorber approximation we have

Re( G„, I = ReI G'„,') = -bx(, „, , „,)

A(u/) =-0.4

1.0

0.8-

6cu/X =-0.2
1.0

& 0.8-
O

hoi/X = 0
~ 1.0

w 08-

6~/X = 0.2
10

0.8-
6(u/X = 0;4

1.0/
0.8-

0
I

27'
Qt

I

37r

and, in particular

(2.22)

FIG. 5. Calculated quantum beats. The transmitted
intensity, I{t,Ac@) plotted at various fixed values of 4~
as a function of laboratory time. I{t,Aced) =1 corres-
ponds to the absence of absorber. The calculation is to
second order in b/X. The parameters used are a=1.5,
b/A, =4. The source and absorber are assumed to be

Fe in unsplit form with natural linewidth, and the
vibration frequency of the source is 0/27t =9.95 MHE.

is real. To this approximation, each transmitted
sideband in I, has the Lorentz shape with full
width 2~ at half maximum, and absorption dip
equal to 1 —2b/&.

If the sidebands are well separated, i.e. , if
0» ~, then because of the denominators in
Re{ G „", } and 1m[ G'„", },I, and I, are small ex-
cept if ~,' is close to a sideband frequency ~, +nO,
and then only one of the two terms in paren-
theses in Eqs. (2.22) is important. In these regions,
I, is an even function of 6& around nO and there-
fore describes a time-varying absorption (or its
opposite, depending on the phase of the cosine).
Contrarily, I, is an odd function of ha around nQ

and describes time-varying dispersion. This sim-
plicity disappears in higher orders. An expres-
sion in real form to first and second order in b/&
is given in the Appendix.

The normalization in Eq. (2.12) is such that with
thickness parameter b/&=0 (i.e., with no absorb-
er) I(t,A~)=1. However, when bl»0, there are
values f', du' for which I(t', bu&') &1, corre
sponding to an enhancement of intensity. Thus,
for specific values of t and h, e the insertion of an
absorber actually increases the intensity of the
transmitted beam. This can be attributed to a

storage phenomenon in which the intensity at t '

is due to an accumulation over previous time. It
is a temporal equivalent to spatial diffraction.

For fixed values of 6~, the transmitted inten-
sity I(t, b, &u) exhibits beats that contain the fre-
quency Q and its harmonics. (See the experi-
mental spectra in Fig. 3.) Passage through the
resonant absorber changes a frequency-modulated
photon into one with some amplitude modulation.
The time dependence is due to interference be-
tween different frequency components of the pho-
ton a,mplitude. It is an individual quantum phen-
omenon and by analogy with the usage in optics has
been called quantum beats.

In Fig. 5 we display a series of calculated time
spectra characterized by various fixed values of
h&u/&. The magnitude of the quantities used are
those given in the text following Eq. (2.3) with
a=1.5 and b/A= —,'. The cal. culations are to second
order in 5/A. . At 6u/A. =O, the spectrum contains
only even harmonics, of which the second domi-
nates. The odd harmonics emerge as

1 h&u1 in-
creases.

Figure 6 displays a series of spectra in which
h, ~ is varied with various fixed values of t. What
is actually plotted is an average of I (t, co) over a
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III. HARMONIC CONTENT OF QUANTUM BEATS

In this section we consider the analysis of the
phenomenon exhibited in Fig. 8. As pointed out in
Ref. 1 it is potentially useful for sensitive exper-
iments, e.g. , the measurement of relativistic en-
ergy shifts. " This potential exists because the
harmonic composition of the beat spectrum
f (f, b, &u) is sensitive to small changes in the value
of 6e in the neighborhood of Geo=0. To see this
consider its Fourier series representation,

f (t&+(jj) = Z Dj (b (()) cos[gQ(t —T~)]. (3.1)

From Eq. (2.12) it follows that

D,(a(o) = 1+ Q J', (a)G„(b.[u), (3.2)

D, (go))e'&"'~ = 2 Q J, (a)Z, , (a)Gt „(au))j
$ —~ oo

j &0 . (3.3)

To first order in f)/&, we have from Eqs. (2.16)

0.75- (,) —2bA,

(b, uj+ lQ)'+ &' (3.4)

0 20
h, ~/X

40

small time interval about t. The dispersion is
readily apparent. The constants are as in Fig. 5.

The complexity of the entire f (t, d &u) surface
may be seen in the three-dimensional plot of Fig.

We show only the region from Ot =O to Qt
= n. The region from m to 2m replicates it with
mirror symmetry.

Z,'

v) (Q-

~ o-~

o.~.

FIG. 6. I(t, (l)) as a function of ~i for various fixed
values of t. The transmission l(t, co) is an average over
a small region +Et about t. The calculation is to second
order with the same parameters as in Fig. 5.
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AJ0 0

Cl
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57 57Co-Cu vs Fe —Be

5.71 MHz
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-I 0-
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1 1= -bA. (6m+1())'+ x' [ha+ (( —j )()I '+ A.')2 2+

hat+ (l —j)O b, ts+ lO[..~ () j)jj['.x (a.+I()) „)
(3.5)

-0.2 -0.1 0 O. I

VELOC I TY (mrn /sec)
0.2

FIG. 7. Surface I (t, Geo) plotted against both variables.
The region from Qt=7l to At=2m (not shown) may be
obtained by reflection in the plane perpendicular to the
Qt axis at At= 7r. The parameters are those of Fig. 5.

FIG. 8. Ratio Dl/D2. Fourier analysis of time spec-
tra, such as those in Fig. 3, leads to this plot of the
ratio Dl/D2 of the fundamental to second-harmonic am-
plitude as a function of shift. The data were obtained
by using a moving Fe- Be absorber but utilizing only a
small interval of velocity for each data point. The data
were taken at 5.71 MHz.
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(3.6)

For even values of j the right-hand side of Eq.
(3.6) is real, and hence

sin jQ7,. = 0,

D, (b, (u) = —4bX J,(a) J,.(a)/[(b, &o)'+ X'], (3.7)

and ID, (b. cu)I has. a maximum at b, &v=0. For odd
values of j,

cos j07,. =0,

D, (a~) = 4b Jo(a) J, (a)a(u/ [(a(u)'+ A.'], (3.8)

which has extrema at 4~ = +~. Thus for j odd,
we have

D, (a(u) J.o(a) J; (a)
D, „(a&@) . Jo(a) J,. „(a) A.

(3.9)

Note that, for small values of b, ~, the ratio D, /D,
of the fundamental to the second harmonic of the
oscillator frequency is a linear function of the
frequency difference Ate and is zero when Av = 0.
Even without the approximations introduced in the
derivation of Eq. (3.9), numerical calculations
show that the linearity is excellent over most of
the interval —1 & he/X& 1.

Some measure of the sensitivity of the method
described above can be obtained by comparing it
with previous measurements of small frequency
shifts. In particular, let us consider the mea-
surement of the gravitational red shift carried out

by Pound and collaborators" and by Cranshaw
and Schiffer. " These experiments were done in
transmission geometry with source and detector
at the top and bottom of a tower. To measure the
small gravitational shift, a velocity-switching
scheme was employed that shifted the source p-
ray energy back and forth between the steepest
parts of the absorption curve of the resonant ab-
sorber. The gravitational shift is deduced from
the difference in the two counting rates. It is
easily shown that the standard deviation o~ (due
only to counting statistics) in the value of the fre-
quency shift Ace determined in this manner is

In the case of interest, A~& ~& 0, the main con-
tributions to the sum in Eq. (3.3) are those for
which l=0 and l=j, and only terms with reso-
nance denominator (b. ta)'+ &' in Eq. (3.5) need to
be retained. Equation (3.3) can thus be written
approximately as (j& 0)

( )
„.„, 2b J(a)J, (a)

(3.10)

Suppose the modulation index a is chosen such that
terms in the sum over j in Eq. (3.11) are unim-
portant for j & 2 and that the variance of D, is
negligible. This will generally be true for 6~
« ~, in which case D, «D, . From the theory of
least squares we obtain for the variance of D,

2 2 2 =2
O'Q/8 D, ~N . 2 2nkN, '

sin
n

By use of Eq. (3.9) it follows that

J (~)
ID'I J (a) x )I (3.13)

and for the ratio of the quantum-beat method to the
velocity-switching method we have

ID, I J,(~) I'

3v3 u
4~2 2b/A. I'

I J,(a)J,(a)I

where Eq. (3.V), with E&v'«A. ', has been used to
eliminateD, from the right-hand side of this equation.
In the thin- absorber approximation, n/(2b/A) —= 1,
X/I'—= 2, and Eq. (3.14) reduces to

I og /og I

-=[6~2/3~3 I J.(~)J,(n)l ] ' . (3 15)

The product I J,(a) J,(a)I has a maximum value of
-0.34 at a = 1.08, so that

Ivy+/c~„I ~ 1.4 . (3.16)

where I' is the experimental width of the absorp-
tion line, N, is the total number of counts re-
corded in the measurement, and a is the fraction-
al absorption; 0& @&1.

In order to get the corresponding quantity 0'~

for a measurement by the method of quantum
beats, we assume for convenience that the data
are divided into'n equally spaced time intervals
covering one cycle (2v/0) of the fundamental fre-
quency. The data l(t„b, ar) are to be fitted to the
Fourier series equation (3.1) by the method of
least squares; i.e., one is to find the amplitudes
D,. and the time phases 7,. that minimize the quan-
tity Q, where

n 00

g t(t„sw)-~ Z ncosj o,(&, —7,. ))',n N v
n

(3.11)
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The inequality in Eq. (3.16) is introduced in anti-
cipation of modification discussed in Sec. V. If
all parts of the source do not vibrate with the same
amplitude and phase the factor, then [ J,(a) J,(a)1
in Eq. (3.15) must be replaced by an average
1(&0(a)J,(a)e'")~ over the appropriate distribution
of the modulation index a and the phase angle X,
a subject considered more fully in Sec. V. In gen-
eral this averaging will increase the value of the
ratio ~u~ /o~J. For the success of the present

method it is important that the source be prepared
such that these effects are minimized.

IV. TIME-GATED FREQUENCY SPECTRA

It is possible to set a time gate over an interval
of the beat spectrum by use of a differential pulsk-
height discriminator set on the output pulses of a
time-to-amplitude converter. (See Fig. 1.) With
pulses counted only during the interval t, - t~t„
the measured frequency spectrum will be

dt I(t, b, &u) = d8I(8/Q, Bur)
2 1 ty, 2 1 e 1

et(n 1)e2 ek(„ t)el
Z J&(a) J„(a)G i (hu&) + Z J'i(a)G„(E&u), (4.1)

2 1 l--~
(n&l )

where 8=At. In this section some of the proper-
ties of these spectra are discussed.

Figure 4 shows two such experimental gated
spectra in which the gating intervals were of
length m on successive maxima of second-harmon-
ic beats. This corresponds to 8, —8, = m/2 for
each spectrum with the lower limits 8, differing
by m for the two runs. The spectra are mirror
images about v = —0.28 mm/sec, which is the rel-
ative isomer shift of the "Co-Cu source and the
sodium ferrocyanide absorber and corresponds
to h, e =0. The mirror symmetry, namely

f62 8 +tt'

d8I (8/0, 6u&) = d8I (8/0, —b, &u),
e.~ e +I'

(4.2)

V. MODIFICATIONS OF THEORY

The analysis described in Sec. II-IV is based
on the assumptions that the motion of the source
can be described in terms of a unique value of the
modulation index and that the natural linewidths
for emission and absorption are observable. Nor-
mally these assumptions eannotbe fully justif ied.
The perturbations caused by lines broadened owing
to inhomogeneity and by nonuniformities in the mo-
tion of the source are discussed in this section.

The line-broadening problem is considered in
the approximation that the distributions of reso-
nance-center frequencies (for emission and ab-
sorption) are Lorentzian. Thus, for example,
the equation

is a consequence of the relations

G„, (-b,~) = G, „(b,&o), (4.3)
OculoL(co )0(dv =

02 ( )2 (5.1)

which follow from the definitions (2.16).
By an appropriate choice of the gating interval

all or part of the interference that gives rise to
the beat phenomenon may be eliminated. The
choice 8, —8, = 2w clearly corresponds to an aver-
age overall time and hence to no gating at all.
Inspection of (4.1) shows that there will be no
contribution from the interference of the 3th and
nth sidebands if 8, —8, is chosen such that
exp[t(n —I)(8, —8,)] =1.

In Fig. 9, we display a set of theoretical spectra
with the time interval increasing from 8, —8, = 0 to
8, —8, = 2w. When 8, —8, = 2m one sees the normal
time-independent frequency-modulation spectrum.
As the limits of integration shrink toward zero,
the dispersion peaks appear, until the spectrum
becomes identical with one of those shown in Fig.
7.

t

t g dt I(b, (u, t) 2m'& t &0
0

zo1~

if)
Vl

p I.
Ul

~0
I-

7I/2

2

I I I I I

40 30 20 IO 0 -10 -20 -30 -40
Gal/ k

FIG. 9. Transition from the time-independent fre-
quency spectrum (foreground) to the spectrum with
dispersion, depending on the size of the averaging
interval. The parameters are those of Fig. 5.
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describes the distribution for emission. The dis-
tribution for absorption L'(&ut)d&a&t is similarly
defined with y, and i!, in Eq. (5.1) replaced by y,
and q, . The transmitted intensity then is

I + g g ei(n-i)ct j (a)j (a)
n=-~ oo

6lCOO Q(doL (do L (do Q ) A4)
q 5,2

where b, (d = u, —~,'. lt is obvious that it is inten-
sity rather than amplitude that should be aver-
aged over the source distribution. It can also be
shown that, for this case, an intensity average
over the absorber distribution is also correct.

Consider first the iritegration over e,'. The

G„,. , considered as functions of ~,', are defined
in Eqs. (2.15) and (2.16) as sums of terms of the
form (cut —&u, —kQ + i A)" with poles either in the
upper or lower half of the complex ~,' plane.
Since n~ 0, we have

t d(soL'(oi,') 1
((u,

' —(o~ + i X)" [q, —(u, a i (X+ —,'y, ]" '

x'= z+-,'(y, +y, ) .
With this change Eqs. (2.16) become

(5.4)

(5.3)

where cu„= (d, + kA. The right-hand side of Eq.
(5.3), considered as a function of ar„has poles
in the upper or lower half of the complex ru, plane
so that an identical argument applies to the inte-
gration over ~,. If we now identify q, -q, as 6~,
the final result of the integration, Eq. (5.2), is to
replace bu&ai& in the G„, (b, ~) with b, a& aiA. ', where

1 (-)'
K!(m —K)! L -X+ iA)" " 'g(L+iX' )' (N —iX')" )

+(—ib" 1 m+s —~ —1 1 1 (-)" '
Kl (m —K) f

~ ~ S (I N+il)"" " (I-+iX')" '
(N.—iX')"m+S-K ~ K- +

(2.16' )

I(t, b, u)) =1+ Q Q (J„(a)J;(a)e"" "")
m )- e)

(~&)e i (n —i ) 0 t
nl (5.5)

where, for m=1 and 2, the second sum over ~

vanishes and, as before, L—= h, ~+ lQ, N=—Aao+nQ.
Note that both ~ and ~' appear in these equations.
However, the lowest-order terms G'„", (b, ~) contains
only X', so that the results derived (to lowest or-
der) in Sec. III can be restated by the simple re-
placement A.- &'. This applies to Eqs. (3.4) —(3.6)
and (3.14).

Next we consider the modification of the formal-
ism that is necessary to take into account the fact that
there is generally a distribution in both phase and
amplitude (but not frequency) of motion over the
source dimensions. Since a photon originates at a
single nucleus in the source, it is the intensity
that must be averaged over this distribution.

The effect of adding a phase X to the argument of
the sine in Eq. (1.1) is to multiply the n, l term of
the double sum in Eq. (2.12) by the factor
exp[i(n —l )!!]. The transmitted intensity of radia-
tion from such a source is then

The brackets ( . ) denote an average of . over
the joint distribution of the modulation index a and
the phase angle X. In general this distribution will
depend on the method of preparation of the source.

If a and y are statistically independent and if X

is distributed normally about X = 0 with variance
0'2, then

(J„(a)J, (a)e"" "")

=(j„(a)J, (a)) exp[--,'[(n —l)o]'], (5.6)

and Eqs. (3.3) for the coefficients in the Fourier
series representation of I(t, b, ~) become

=2e ""~' g (J,(a) J, , (a)) G. .. (b, io) .
g

—«ao

Since the attenuation factor exp[ —~ (jo)'] is real, the
effeet of this distribution of phase is to replace the
Fourier coefficientbyD', .(Ate) = exp[-&(jo)2]D&(bio).
The attenuation rapidly becomes more severe with
increasing values of j and, in practice, sets a



20 THEORETICAL DESCRIPTION OF QUANTUM BEATS OF. . . 1509

limit to the highest statistically significant har-.
monic of the quantum beats.

If X is independent of a and randomly distributed
over the interval 0 to 2m, all Fourier coefficients
except D,(b&u). vanish and no quantum beats will
be seen. This is true for the distribution given by
Abragam, "which has been shown by Cranshaw and
Reivari' to be appropriate for a vibrating absorber
with thickness greater than the ultrasonic wave-
length. It has recently become possible, however,
to obtain sources for which the J „'(a) distribution
is rather well displayed. "
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8„,= (n —l)Qt, (As)

and the G'„, ' are defined by Eqs. (2.16). Equation
(A2) can be written in the form

1'"'(t b, &u) = —2b"
(b, (u+ nQ)'+ &'

x [ &A'„"' —(d~+ nQ)B'„"' ].

A'„" =J,(a) cosnQt

(A4)

The thin-absorber case corresponds to retain-
ing only the term with m = 1 and displays the main
interesting features of the spectrum. Here

APPENDIX

Equation (2.12) can be rewritten in a form that
shows explicitly the absorptive and dispersive am-
plitudes of a given line. Let the intensity be writ-
ten as a sum of terms arranged in increasing pow-
ers of the thickness parameter h/A. :

I(t, b, ~) =1+ g I '"'(i, b, &u), (A1)

where

+ ~r a coso.r+ —: 'cosX r

B'„"=J',(a) sinnQt

+ Jr a sin8„r+ — ' sinX„r

X„, = (n+ l)Qt .

(A5)

(A6)

'tmi(t, A )

J„(a)J,(a)

x [Re [G'„, '] cos8„, —Im( G'„, ']
x sin8„, ], (A2)

The nth line contains the time-dependent absorp-
tion amplitude 2bX J„( )Aa'„"(t) and the dispersion
amplitude 2b J„(a)B'„"(t). The time dependence
consists of harmonics of the fundamental angular
frequency Q.

The term in (b/&)' is obtained from

I

J, (a) ( &' —(l -n)'Q' . ~ &,(a)
gu&+nQ '+ I,'

B„' ~ I . . . [(I-n)Qcos8„, +&sin8„,]-~, , A, sin&„, .Z, (a)
nr nl ~+++g 2+ y2 nr (A9)

The terms in A. '„' and B'„' with m ~ 2 that depend on h.u give rise to thickness broadening.
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