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Discrete-basis-function approach to electron-molecule scattering
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The authors discuss two discrete-basis-function approaches to the soluion of the T-matrix equations for the
scattering of electrons by atoms or molecules. Both methods, one of which. is based on the Schwinger
variational principle, have major advantages over the previously proposed T-matrix methods and do not
require large-basis-set expansions. Results are reported for s- and p-wave scattering- for helium.

I. INTRODUCTION

There has been increasing interest in adapting
the discrete-basis-function expansion techniques
of quantum chemistry to the solution of problems
in electron-molecule sca.ttering. This has been
stimulated by the difficulties encountered in the
straightforward extension of the traditional numer-
ical methods developed in electron-atom scattering
to molecular problems. Moreover, the discrete
basis functions ean be very effective in describing
the important short -range effects of nonspherical
molecular potentials. These approa, ehes include
the R-matrix method used by Schneider for H„
N„and F,' ' and the T-ma, trix method introduced
by Rescigno, McCurdy and MeKoy" and applied
to H„N„andGo. ' ' In particular the T-matrix
method uses an Ã-term separable potential of the
form

has been developed. " This procedure is ob-
viously more time consuming than the evaluation
of the initial I.' cross section which requires only
bound-bound ma, trix elements.

The purpose of this study is to investigate ways
to reduce the errors introduced by the use of this
type of separable potential [Eq. (1)) in the solution
of the T matrix. This is a particula, rly simple
choice for the separable expansion of a potential
and we will see that other more effective choices
can be made. We will ta.ke advantage of the fa,ct
that the bound-free and free-free matrix elements
of the potential needed for the new approaches can
be evaluated analytica. lly. The proposed methods
provide in a single step phase shifts free from
first-order errors and include some higher-order
corrections which may be important. We present
here two new discrete basis function approaches
for calculating pha, se shifts.

where
~

n) and
~
P) are the Cartesian Gaussian

functions. While this approach effectively ac-
counts for the coupling of angula, r momentum by
the nonspherical potential without resorting to
partial. wave expansions and numerical integra-
tions, it results in the loss of point by point stabil-
ity which numerical methods enjoy. First-order
errors in the cross sections arise which are pro-
portional to the difference V —V', where V is the
exact potential and V' is the &x N separable ap-
proximation [Eq. (1)]. Even with reasonable basis
sets these first-order errors are found to be im-
portant for nonspherical systems such as N, ' and
for dipolar systems. ' This is very apparent at
low momenta. To correct these first-order errors
generally involves solving for an approximate wave
function which can then be used in conjunction
with one of the variational principles to ob-
tain a stable cross section. For example, in
the T-matrix approach a Kato-type correction
term which requires the evaluation of bound-free
and free-free matrix elements of the potential

II. THEORY

The Lippmann-Sehwinger equation for the transi-
tion matrix is

T = U+ UGOT,

where U is twice the potential, V, for the effective
interaction between the target and the incident
electron and G, is the free-particle Green's func-
tion for the outgoing wave boundary condition. To
solve this equation Rescigno, McCurdy, and McKoy4
assumed a separable approximation for the poten-
tial of the form

U'(r r')

where
~
g ) and

~
&f&,) are Cartesian Gaussian func-

tions of the form

(4)
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The vector X locates the basis function center and

&,
„

is a normalization factor.
A separable potential in the Lippmann-Schwinger

equation results in a separable kernel allowing
one to solve a finite matrix equation for T,

T' = U + U'GOTt, T' = (1 —U'Go) 'U,

by a simple matrix inversion. The on-shell T
matrix is obtained by the transformation

(6)

T' possesses nonvanishing matrix elements only i

in the L' subspace defined by V', thus this ap-
proximation to the T matrix is the exact solution
in this subspace. If one is able to use a suffi-
ciently large set of square-integrable functions
to define an adequate subspace, the errors due to
the truncation of the potential can be small. Un-
fortunately, the problem is not one of simply in-
creasing the size of the basis set used in the ex-
pansion of Eq. (3), since problems of linear de-
pendence arise if the basis sets become too large.
The Kato correction which requires bound-free
and free-free matrix elements of the potential
essentially corrects for the finiteness of the L'
subspace.

A. Schwinger method

There are other methods of constructing separ-
able potentials which can be used to obtain separ-
able kernels in the Lippmann-Schwinger equation. '
One method which has been widely used in nucle-
ar" "physics uses a separable potential of the
form

v =p vlf„&[d ].„&f„lv,
m, n

where d„„=&f I Vlf„&and If„& is an arbitrary ex-
pansion function. Substitution of this expression
into the Lippmann-Schwinger equation yields

T'= Q Ulf )[(U —UG U) ']„„&f„lU. (8)
fn, n

This is an exact expression for the T matrix cor-
responding to the potential V'. The on-shell
representation of T' is

& k '
I
T'

I
k) = g &

k'
I

U
If )[(U —UG U) ]

m, n

Iq, &=+ ~„(k)lf&, &q„-I=g&f„lf„(k).(»)
n

The barrier to the use of this method in atomic
and molecular problems has been the evaluation
of the term containing G, which appears in the de-
nominator. For realistic atomic and molecular
potentials this is extremely difficult to evaluate

. exactly without resorting to numerical integra-
tions. In our application of this method we eval-
uate this term by inserting a complete set of
states on either side of 6,. We use the same set
of Cartesian Gaussian functions which are chosen
to expand the potential although this is not a re-
quirement and the denominator can now be readily
evaluated. The numerator, which involves bound-
free integrals of the potential, can be evaluated
exactly (Appendix A). The resulting on-shell T
matrix, T', which is our approximation to T' is

&k'IT' I»= g &k'IUI ~&[D '].8&elUlk&, (»)

where D ~
= U~ -P» U~G», U, ~ and &, P, y, and

5 refer to Cartesian Gaussian functions.
To understand the relationship between these

two separable potentials, V' and V', it is instruc-
tive to use projection operators. We follow
closely the work of Ernst, Shakin, and Thaler. "
Let p project onto the L' subspace. i.e.,

and define

V=l -p ~ (14)

All matrix elements of V' and V' between states
in this subspace will be identical to the matrix ele-
ments of the true potential V:

v'=p vp, pv'p=p'vp'=pvp;

the Lippmann-Schwinger equation results in an
expression for the T matrix which is identical to
that obtained from the Schwinger variational ex-
pression,

&k'IT fk&

= &k'IUI ~~+ & q„;IUlk& -& q;, IU- UG. UI y-„'&,

(1O)

with the trial wave functions

This form for a separable potential is of particular
interest because of its relation to the Schwinger
variational principle. Adhikari and Sloan" have
shown that a separable potential of this form in

v'= vp(p vp)-'pv,

pv'p =pvp(pvp) 'pvp

=P VP ~

Here the similarity ends. All other matrix ele-
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ments of V' vanish:

P V'q'=qV'P =O,

qV'q=0,

while for V',

(17)

(16)

ments of O'. The bound-free and free-free ma-
trix elements of U may be obtained in closed
form. We now observe that a matrix of G'-in this
basis may be obtained by solving the Lippmann-
Schwinger equation for G',

P V'q =P Vq, q V'p = q Vp,

qV qtqVq,

(19)

(20)

B. Full Green's function method

In our second method we consider the following
exact expression for T".

T= U+ UG'U, (21)

where G' is the full Green's function for the sys-
tem for the outgoing wave boundary condition.
Insertion of a complete set of states on either
side of G' leads to the equation

7'=U+ g UI ~&&~l G'l~&&t31 U (22)

The on-shell T matrix is

&k'I T I» = &k'I Ufk&

+ 2 &1 'IUI ~&&~IG'I»& &IUI»,

which involves both bound-free and free-free ma-
trix elements of U, and the Gaussian matrix ele-

only the elements q V'q are different from those of
the true potential. This property of V', Eq. (19),
is taken advantage of when one evaluates the bound-
free integrals in Eq. (9). T' is the exact solution
of the Lippmann-Schwinger equation in the larger
Hilbert space, pHp+pHq+qHp, while T' is the
exact solution in that subspace, pHp, defined by
V'. Clearly the Kato correction to T' is an at-
tempt to bring in contributions to T' from the en-
larged Hilbert spa, ce.

A useful feature of the Schwinger method is the
appearance of the wave function (or the expansion
functions, f„)only in conjunction with the potential.
This quantity, Vg, which is often called a form
factor, generally has smoother behavior than the
wave function itself. ' Blatt and Jackson' utilize
this feature in their use of the Schwinger varia-
tional principle by using expansion functions which
represent the wave function correctly only within
the range of the potential. This allows the use of
trial functions which do not have the correct
asymptotic form which is in the spirit of L'
methods. This advantage is not present in other
variational methods such as the Kohn variational
method, which requires that the wave function
have the correct asymptotic form

G' = G,'+ G,'U'G', G' = (1 —U'G,')-'G', (24)

in the L' subspace in an identical way to the solu-
tion of the Lippmann-Schwinger equation for the
T matrix, Eq. (5). The use of the truncated poten-
tial, U', in the solution of G does not introduce
any first-order errors in the resulting expression
for the T matrix as we will show below.

To compare this approximation for the T matrix
[Eq. (22) j with the exact T matrix and with T
we write the expressions in terms of the uncor-
rected L' T matrix, T', plus various correction
terms. The exact T matrix satisfies the equation

GU= GOT (26)

and comparing to Eq. (5). The remaining terms
can be loosely grouped into first-, second-, and
third-order terms where we assume that the er-
rors proportional to &U and ~G are comparable.
Now comparing this expression to T of Eq. (22),

T= U+ UO'U

= U + hU+ (U + nU)Gt(Ut + hU)

= U'+ U'O'U'+ ~U+ U'O'ZU

+ &UG'U + &UG'AU (27)

one sees that T includes all first-order correc-
tions to the uncorrected T' plus one "second-
order" term ~UG'&U.

A similar analysis of T',
T' = U(U' U'G'U') 'U

= UU' (1+U'G'+ U'G'+ )U

= UU& U+ UG&U, (26)

shows that T' differs from T only in its evaluation
of the leading Born term. It therefore includes
all first-order terms as well as the second-order
term &UG'&U. Furthermore, the use of the
separable expansion UU' 'U to approximate the

T= U+ UGU

= U+ (U'+ ~U)(G'+ ~G)(U'+ ~U)

= U'+ U'O'U'+ aU+ U'G'aU+ DUO'U'

+ AUG EU+ U'EGAU+ AUEGU + AUAGhU
p

(26)

where &U= U —U' and &G = G —O'. The first two
terms are equivalent to the L'T matrix as can be
easily seen by applying the operator identify
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Born term avoids the need to evaluate free-free
integrals of the potential which can be important
in molecular applications.

III. RESULTS

To ensure unitarity and to avoid working with
complex elements in general we work with the
corresponding K-matrix equations,

K= U+ m~'U

Ks P(Pt PtOPt Pt) tU-

(29)

(30)

where 6, is the principal-value free-particle
Green's function, and 6 satisfies the operator-
identity

Gs+gJ pals (31)

G is not the usual principal-value full Green's
function (see Ref. 20) in the sense that it does not
define the standing wave boundary conditions for
the system. However, its matrix representation
in the L' subspace may be obtained in the usual
way by solving Eq. (31) by matrix inversion.

We tested these two methods for electron-hel-
ium scattering in the static-exchange approxima-
tion. To set up the static exchange potential we
expanded the 1s orbital in the basis of 5s Gaus-
sians given by Huzinaga. " This same basis with
no additional s functions was used to describe the
s-wave scattering. Two more basis sets com-
posed of two additional diffuse s functions and
five additional s functions were also used to in-
vestigate the convergence. Six p, functions were
added to the target to describe the p-wave chan-
nel. These basis sets are listed in Table I. We

kept the basis sets relatively small so as to as-
sess the utility of the methods for larger sys-
tems, where the adequacy of basis sets will be
limited by linear dependency problems as well as
computational effort.

Tables II and III give a comparison of the K-
matrix elements for the uncorrected I'K-matrix, .

K', with K and K' and the accurate static ex-
change results of a variational calculation by Sin-

tan6, —-a,k'. (32)

Our phase shifts (6= tan 'K) obey this behavior
exactly. The a, derived from the K'-matrix ele-
ments remains constant from k= 0. 1 to k = 0.01
with a value of 0.39. For Ka, is 0.42 at k=0. 1

and 0.01. The uncorre. cted phase shifts show no

stability as k approaches zero and in addition are

failam and Nesbet. " In the s-wave channel the
results for K' are excellent at all energies. Even
the values for these small basis sets are within
5% of the exact values in most cases. The results
for K are somewhat poorer although generally
within 10% of the exact results. The convergence
as the number of basis functions increases is not
strictly uniform, which seems characteristic of
discrete basis function methods.

The threshold behavior of these K-matrix ele-
ments shows remarkable stability as the momen-
tum of the incident electron decreases. The
quantity a, =K,/k whose limit as k goes to zero
defines the scattering length remains almost con-
stant for K' (1.46) and K(1.31) from k = 0. 1 to
k = 0.01. The L' uncorrected K-matrix elements
are of uneven quality throughout the energy range
and show eratic behavior as the number of basis
functions is increased. These results are espe-
cially poor at low energies, showing no stability
at threshold.

Table III gives p-wave results. These K-matrix
elements are very small so they should be a, sensi-
tive test of the various methods. Both K and K'
are in very good agreement with the variational
results of Ref. 22. In this case K is slightly bet-
ter than K' . The uncorrected K-matrix elements
are in general very poor, with the values at low
momenta again sh'owing the worst behavior. The
threshold behavior for potentials vanishing faster
than y "'"', where l is the angular momentum of
the incident electron, has been shown by Blatt and
Jackson" to be

k '"cot6, = -(1/a, ) + O(k')

or

TABLE I. Basis sets for s- and p-wave scattering of He.

Target functions
E mn 0.

Two
s scattering functions
Emn 0.

F ive
s scattering functions
Emn e

p scattering functions
E m n Q

0 0 0 96 72976
0 0 0 14.6094
0 0 0 3.304241
0 0 0 0.873098
0 0 0 0. 244528

0 0 0 0.135848
0 0 0 0.075471

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0.135848
0.075471
0.041 928
0.023293
0.012 940

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

1.5
0. 75
0.30
0.12
0. 048
0.01
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TABLE H. K-matrix elements for s-wave scattering of helium.

Number of
functions 10

Sinfailam
and Nesbet

A'= 0.01

K~
K~'
K

-0. 0109
-0. 0130
-0. 0110

+0. 000 583
—0. 0135
—0. 012 0

+0. 0428
—0. 0146
—0. 0131

k=0. 1

K~
K'
K

-0.110
—0. 133
—0. 114

-0. 0198
-0.142
-0.128

-0.007 32
-0.148
-0.134

-0.149

k=0, 3

K~
K
K

—0. 347
-0.460
—0, 421

—0. 350
—0.461
—0.433

-0.418
—0.464
-0.436

—0.468

A=O. 5

K~
K
K

—0. 647
-0.858
-0.833

—0.854
—0.825
-0.808

—0. 743
—0. 820
—0, 804

—0. 858

more than an order of magnitude too high. The
difficulty at low momenta stems from the inability
of the discrete basis set to adequately represent
lk& by the expansion

The small basis set which we have chosen is simp-
ply inadequate to do this expansion of free waves,
especially at very low energy where the wave-
length is long. At low momenta the scattering
solution is more sensitive to the mathematical ir-
regularities introduced in V' by the discrete basis
set expansion so it is not surprising that this
should be reflected in the on-shell T matrix
&
k'

l
T

l
k&. The two new methods both do the trans-

formation of T to its on-shell values exactly,
which explains their surprising stability nea, r
threshold.

Iv. COMPARISON

Previously the L' K-matrix elements have been
corrected by computing a. variational correction
of the form

(34)

where g' is the scattering wave function associated
with the I ' K matrix

q'= lk&+G~lk&.

Two methods of computing P' and the Kato cor-
rection term have been developed. "We have ap-
plied both techniques to e+ He scattering in order
to compare the resulting K-matrix elements to
K a,nd K'.

The first method which was used in a model
potential problem' involves using the I,'-matrix
representation of G, in the expression for g'.

TABLE IH. K-matrix elements for p-wave scattering of helium.

Uncorrected
K~

Schwinger
K~

New
K

Sinfailam and Nesbet
KsN

0. 01
0.1
0.2
0. 3
0.4
0. 5

0. 80 x10-4
0.0385
0.0152
0.0448
0.0888
0.0500

0. 39 x10&
0. 000 39
0. 0031
0. 0100
0. 0222
0. 0400

0.42 x10&
0. 00042
0.0033
0. 0106
0. 023 3
0. 041 5

0. 0006*
Q. 0035
0. 0108
0. 0239
0.0426

*Private communication, H. K. Nesbet.
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TABLE IV. Comparison of present K-matrix elements with Kato-corrected K-matrix
elements for s-wave scattering.

Numerical Kato~
KN

Analytic Katob
K RNN

Schwinger
X~

New
K

Sinfailam
and

Nesbet
KSN

0.01
0.1
0.5

—0.0449
—0.163
-0.860

—0. 0353
-0.144
-0.805

-0.0146
-0.148
-0.820

—0.0131
-0.134
-0.804

-0.149
-0.858

~Kato correction obtained numerically (B,ef. 8).
Kato correction obtained using a basis set approximation to Go as described by Hescigno,

McCurdy, and McKoy (Bef. 5).

This is then substituted into the Kato formula and
the resulting terms evaluated

+&k.„,(
T'G,'(U- U') [k,„)

+ &k.„,((U- U')G,'r'(k, „)
=&k,„,i

T'G,'(U — U) O'T'ik, .g . (36)

This expression contains only first-order correc-
tion terms.

Later applications of the T-matrix approach ob-
tain the Kato correction by expanding the potential
and the scattering wave function in partial waves
and solving for the wave function numerically':

Z/2

Q i'g„,„(0,r) Y, , (j') Y,* (0),
ll'm

'(-v'-k')~g„, (k, ~)=~&Y,, „~ff'~j,(k~)Y,„(f')),(38)

where j,(kx) is a spherical Bessel function. This
method enforces the correct asymptotic form by
solving Eq. (38) numerically, which is equivalent
to treating the free-particle Green's function ex-
actly. The bound-free and free-free matrix ele-
ments are then obtained by numerical. integration.
Because of this exact treatment of 6, we expect
to see higher -order differences between this cor-

rected phase shift and K and K'. However, the
numerical method does not contain a higher-order
correction of the form ~UG'&U. Vfhen the dif-
ference U —U' is very small we would expect this
method to be slightly more accurate than any of
the other methods which all use the matrix rep-
resentation of 6,.

We applied these two corrections to s- and p-
wave He scattering using the same basis sets used
for K and K'. In general the s-wave results above
k = 0.01 a.u. are all close, suggesting that the
higher-order corrections are not very important.
At k = 0. 5 a.u. the numerical method appears to
be slightly more accurate than the other methods
which use an L' representation of 6,. At &=0.01
a.u. both Kato-corrected E-matrix elements fail to
show the proper threshold behavior shownby the two
new methods. The quantity a, calculated from the
numerical Kato phase shifts changes from a fairly
accurate value of 1.63 at k = 0. 1 a.u. to 4. 49 at
k =0.01 a.u. The values calculated using the
analytic Kato correction, Eq. (36), are l.44 at
4=0. 1 a.u. and 3.53 at 4=0.01 a.u.

In the p-wave channel the Kato-corrected K-
matrix elements are poor below k= 0.5 a.u. and
again show no stable behavior as the momentum
goes to zero. The striking differences in these
results suggests that the higher-order terms in-

TABLE V. Comparison of present K-matrix elements with Kato-corrected K-matrix
elements for p-wave scattering.

Numerical Kato~ Analytic Kato
K& KRNN

Schwinger
K~

New
K

Sinfailam
and

Nesbet
KsN

0.01
0.3
0.5

-0.17x 10&
0. 0030
0. 0400

-0.15x 10 4

0. 0053
0. 0409

0. 39x 10&
0. 0100
0. 0400

0.42 x10+
0.0106
0. 0415

0. 0108
0. 0426

~Kato correction obtained numerically {Bef. 8).
Kato correction obtained using a basis set approximation to Go as described by Hescigno,

McCurdy, and McKoy (Bef. 5).
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eluded in the K and E' are important. Tables IV
and V show some selected numbers for compari-
son.

V. CONCLUSIONS

The present results are encouraging and suggest
that the proposed methods may be effective in their
application to the more difficult problem of elec-
tron-molecule scattering. They derive these ad-
vantages over the previously proposed I.'T-matrix
methods" by using a superior form of the separ-
able expansion of the scattering potential and by
not requiring that the basis set itself be capable
of expanding the momentum eigenstates,

I
k). The

methods are also fr'ee of numerical integration
procedures but do require the evaluation of bound-
free and free-free molecular integrals which,
however, can be evaluated in closed form. Pro-
jection of the free-particle Green's function or
full Green's functions onto a basis of Cartesian
Gaussian functions is an effective way to evaluate
terms which would otherwise require complicated
numerical integrations. Applications of these
methods to the scattering of electrons by H, and
CO, are underway.

The stabil, ity of calculated phase shifts at low
energies where polarization effects can be im-
portant suggests that the methods should be useful
for including such effects. These extensions and
their applications to diatomic molecules are in
progress.
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APPENDIX: EVALUATION OF BOUND-FREE AND
FREE-FREE MATRIX ELEMENTS OF THE POTENTIAL

&e '"'~y', ( r,)(&/x„)y"( r, )y,'( r, )&,

where k is the momentum of the incident electron
and &f&"„$8,and (t,~ are Cartesian Gaussian func-
tions on centers R&, R~, and Rc, respectively:

&) =N(,xIc&7(:-'ice"p(-~l ri —Rcl )
A m' n' f~

'x2A J2A-2A exp( I r2

(A1)

(A2)

B ~r l" m" n"
Pp = "',„„»„„x,sy, sz, s exp( —Pl r, —Rs

I ),
where x„=(x —R„),etc. , and N,

„

is the normal-
ization factor. We may combine p", and gpss on
centers R& and R~ into a third Gaussian on center

aX, + ppaA, + pp, aX, + pp,.
)cy+ p

' a+I3 ' a+ p

by using the general formula

The success of the two new methods presented
in this study depends in large measure on the Bbil-
ity to evaluate the bound-free and free-free matrix
elements of the potential exactly. For electron-
helium scattering the integrals are fairly simple
due to the single-center nature of the problem.
However, the extension of the method to larger
nonspherical systems requires the evaluation of
multicenter integrals for general Cartesian Gaus-
sian basis functions. The direct free-free inte-
grals for general Gaussians are well known. " The
remaining i'ntegrals have been evaluated for s and

p Guassians using straightforward differentiation
of the formulas for integrals containing only s
functions. ' This procedure of differentiation
quickly becomes tedious and error-prone as more
types of Gaussians are needed. To avoid this
difficult differentiation we use the method of
Ostlund'4 and the recurrence relationships of
spherical Bessel functions to generate analytic
formulas for all these integrals. We extend his
formulas for s Gaussians to formulas for general
Cartesian Gaussians. To illustrate the method we
will outline the evaluation of the bound-free inte-
grals. e'

Consider the integral

(x~) x& ~+ x& x& ~& z & e"p( (x
I "-R.

I

') exp(-pl r. -R. I

')

where

l'tn' n' t" "n"
C,'.e;. C', .-.",.". "„."x"""a""e"'"exp— (X -X„(*)exp(-(a+p)~r,—X ~'], (Ap)

~pity ppgppppe n+P
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I // m // +//

C(„)„~,—— —8„—P„—B~ —P„~ —8, —P,
Z"

We now express (f&~ and p, 3 as their Fourier transforms using

(A4)

x(.$+( expf —X(x(.+$( +8()]= (I „3&/ 2
„ee e H ]2~)H+t5+n+ 2 +ls+n

(A5)

1 1

r» &('&t
ds s-1/2 -sl rj-r2l .

0

The resulting integral can now be easily evaluated over r„r,, s, and k" to give

where H„H„,and H„areHermite polynomials. We also express (1/&») as its Gaussian transform

(A6)

&'m/n' g"m"n"

/ gyt ~ / /kt(/

'i+j+k

i' 2' &i"/' l/' I ~) ( (+/+3+ &/ 32i2+l+(&gQ+ P

&&
l+m+n f

tmn l'm'n' t"m"n .
"

~ (i+men+3& /22 l+mm+l p
~

/R —R„(/')exp(-ik 3 &exp(-p'/4(u+ +3m&&

r —,expt —iX (R~ —R~)]

o(+ p+g ~ n+ p
4A(o!+ p) n+ p+ A.

(x„-u„& /x„ /„l x,
2~ ')Ix„(x„b -x.

(A7)

where
X=k+k', i =i'+i", j=j'+j", 0=k'+k".

The remaining integral, J, over X can be done by
making the change of variable suggested by Ost-
lund,
A = [(o'+ p)/(o(+ p+ ~)]k, (t'= (o'+ p+/)/4/(o(+ p)

B= R~ —R~p V=B+2ia A

and expanding the plane wave, e '"

e ~ =4tt g'(-i) j~(XC) Yz~(C) Ym~~(X) . (A9)

Then

= R~ —Ro+ ik/2A. p (AB)

J=e ' 4&t Q ( —i) dXe ' j~(XC) dXY~n~(x)H(~
(& 2v/( " 2&~ j '(,2v' (2p+

'
I 2g n+ P '((2& &+ P

(A1O)

(A11)

where the values of p and I- depend on the types

The angular integration can be done analytically.
The radial integral over X results in integrals of
the form

I- = dxx~e j XC

of Gaussians being considered. These can be ob-
tained for all combinations of Cartesian Gaussian
functions by using both differentiation and the re-
cursive properties of the spherical Bessel func-
tions. (See Ref. 25 for details. )

The final expression is
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(e ""y,'(r, )(1/2.„)y".( r, )+,'( r, ))
l' m' n' l"m" n"

=N, „N, „,N, „„., A(n, p, /(. ;k) g g C,»(l' m'n', l "m "n") g (—i)~f~„(npA, lmn, zjk) Y~„(c), (A12)

where

ilgt Pl ftlgtt /II LM

2m'i"&(,P, &;k) = 2,. „(i..„„)/.exp (-
~

R~ —R„~' I exp( —ik 'R,)exp(-k'/4/(. ), ,

~ f, +g+p

i/3(" &
1 / i'/' 3' i"/" )/I

( + p) (i+/+3+3)/22 i+/+(d~Q+

(A13)

(A14)

f „(npA,lmzz, ijk.) = dXe ' j~(XC) dX V~~(X) H,
" ")H„

'4, 2v'n+p ' 2v'n+p 'I), 2v'n+pi' (A15)

where where

&=i'+&", j=j '+ j", 0=k'+ k", a'=
4z(n+ p)

and C™3is defined by Eq. (A4). We present below
analogous formulas for the remaining bound-free
and free-free integrals.

4m'/' np
/i(n, P, q) =, exP —

i
Re —R„i

'
q2 nyp i)

x exp(-iq 'R~) expt —q'/4(n+ p)],

A. Nuclear hybrid integral

c,,,(n, p;q)

(A2O)

=N, „„A(/(., k) p (-i)~fr, z/(A, , k;lmtz) Yz I/(C),

fag +A
ltmt t lit mtl
i'i'i)' i / "2" d "+

p)
(i+/+3+3)/22i+i+2

where

C=R-R, +(ik/2~),

y 6~7 /2 ~ l+m+n
-Pg.R& -u /4)t

(
&3 (i+m+3+3)/22 i+m+3

2m) A.

(A16) '((2/a+ I) ''(2d a+ I)' ~(rd a+ I) '

(A 21)

i =i'+i", j=j'+j", k=0'+ 0", q=k' —k.

(A17) C. Exchange free-free integral

/, „(~,I;(mn) =jdxe ~'"d,(xc)

x dxr (x)H, ( * *)

(e "z(t)"(r,)(1/r„)e"'2y()(r,))
=~l m &l-m--m n m n

xA(n, P;k, k') Q (-i) fz,„(n,P;k, k')Y~„(c),

B. Direct free-free integral

(A18)
where

A(n, P;k, k')

(A22)

=N, ,~„,N, „„„d4(n,P, q)
l'm'n'

(8-ir' '
rip ( r )(1/~ )8

i'k rr@B( r. ))

l"m" n"

c,.„(n,p, q),

(A19)

272 (2( ' l'+m'+n'+l" +m" +n'

n' '' p"(l'+m'+n' W) /2' (l" +m +n +3/2

x exp(-zk' 'Rz+ zk 'R~) exp( —k'/4p —k "/4n),
(A22)
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fz(&, p;p, , p )='f d »exp( — x'&lq, (xc) xxx,„,(xj»,. I
p

*&I»„..
p

' »„,

(A24)

C = R~ —R„+2i[(Pk'+&k)/4nP].
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