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Single and double electron capture in the independent-electron approximation

at high velocities
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Cross sections have been computed for single and double electron transfer from the ground state of 'a

helium atom to the ground state of an a particle at high velocities by means of the independent-electron
approximation with the Bates—Born version of first-order perturbation theory. Results are in reasonable
agreement with experiment for both single and double electron capture.

While experimental data on the capture of more
than one electron within a single ion-atom colli-
sion are plentiful, theoretical calculations are rela-
tively scarce. In principle calculation of such a
many-electron transition is difficult, becoming ra.—

pidly more difficult as the number of participating
electrons increases. Ae elementary way to deal
with this many-body problem is to use the inde-
pendent-electron approximation, where what hap-
pens to any one electron does not influence any
other electron. In this paper we simply test this
idea by considering the capture of both electrons
from the K shell of helium into the ground state of
a colliding n particle.

The independent-electron approximation' may
be derived using three conditions: (i) the projec-
tile is well localized, i.e., the size of the projec-
tile wavelength is small compared to atomic di-
mensions; (ii) asymptotically the system may be
describe'd by a product of single-particle wave
functions, e.g. , by using the uncorrelated Hartree-
Fock approximation; and (iii) the total scattering
wave function evolves as a product wave function
during the collision. The first approximation
permits us to treat probability amplitudes for
scattering from various impact parameters in-
coherently and is well satisfied by heavy projec-
tiles. The result of (ii) and (iii) is that the prob-
ability amplitude, corresponding to the projection
of the full scattering wave function onto a parti-
cular final state, is a product of single-electron
amplitudes. Each such single-electron amplitude
may be computed using methods for single-elec-
tron transitions. Thus a many-electron amplitude
is expressed as a product of single-electron amp-
litudes. We require only that correlations be
small; it is not necessary that the interaction of
the projectile with the target be small.

Briefly then, in mathematical form, we begin
with the full Hamiltonian
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' terms by an effective one-electron po-
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so that the evolution operator factors, i.e.,
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provided that

[K, (H, + V,)] = [E,Vq] = 0,
corresponding to reordering operators in the ex-
ponential. Then the probability amplitude fac-
torizes, i.e.,
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Of course a method is still required for com-
puting the single-electron probability amplitude
g~~. Here we have chosen to compute g~ using
the method introduced by Bates' and by Bassel
and Gerjuoy based on first-order perturbation
theory for systems with nonorthogonal states. We
use this method to compute electron capture at
moderately high velocities where two coupled-
channel calculations have met with some success
in reproducing single-electron-capture cross sec-
tions. At high velocities, where back coupling

l Sl and 5 contributions a.re small, the two-coup-
led-channel calculation reduces' to our Bassel
and Gerjuoy form for single-electron capture. At
600 keV our single-electron capture cross sec-
tion lies above the coupled-chanel calculation of
Tunnell and Lin5 by about 30%. We attribute most
of this difference to backcoupling, , since the prob-
ability amplitudes are not small, and possibly to
our neglecting 5. In this case

l Sl contributes
about 10%.

In our calculation we use the experimental value
for the binding energy of the atomic electron and
use a hydrogenic wave function'with a screened
nuclear charge of 1.61S. The Bassel and Gerjuoy
scattering amplitude was evaluated algebraically,
then transformed to the probability amplitude g~&~.

Our single 1s-1s capture results are presented
in Fig. 1 along with observed results' for capture
to all levels. At high velocities, i.e., when the
projectile velocity is much greater than the velo-
city of the orbiting electron, the capture proba-

bilities and cross sections vary as n, where n

is the principle quantum number of the final state.
In this way we estimate' that at most 80% of the
observed results correspond to 1s-1s transitions.
A.t lower velocities we expect relatively more cap-
ture to excited states. Consequently, our calcula-
tions, which omit capture to excited states, should
lie further below the total capture data at low
velocities than at high velocities. This is consis-
tent with results in Fig. 1. Also, at the lower velo-
cities backcoupling effects and contributions from
)S) and 5 may be significant. Therefore we do
not expect our calculations to,be valid below 300
keV. Furthermore, it is difficult to estimate con-
tributions from second Born terms' at all velo-
cities considered.

Results for double 1s-1s capture are presented
in Fig. 2. Again the agreement with observed
data" is reasonable. The capture to excited
states not included in the theory affects both elec-
trons. Thus the cross section for capture only to
the ground state is expected to be below the data
for capture of each electron to all projectile levels
by 40% or more, rather than 20% or more —depen-
ding on velocity, as in the case of single capture.
We also note that we have used the single unper-
turbed binding energy for each electron assuming
fast collisions. Increasing the binding energy,
corresponding to readjustment of the one elec-
tron after capture of the other, lowers our cross
sections.

Our results for double-electron capture tend to
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FIG. 1. Single-electron-capture cross sections ver-
sus projectile energy. Data taken from Ref. 7. Cap-
ture into excited states is not included in the calcula-
tion.

FIG. 2. Double-electron-capture cross sections ver-
sus energy. Data taken from Ref. 11. Dot-dash cal-
culation due to Lin, Ref. 12. Capture into excited states
is not included in the calculations.
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compare favorably at high velocities with other
calculations, ' ' where the full two-electron wave
function is approximated using three state, two
center atomic expansions. At the lower velocities,
however, these coupled-channel calculations fit
closer to the da,ta. Since our single and double
capture lie beneath the data in a consistent way,

'

we attribute the low-velocity discrepancy to the
inadequacy of our single-electron-capture amp-
litude rather than a breakdown of the independent-
electron approximation.

In summary, we have tested a simple way to
compute multiple-electron-capture cross sections.

Predictions for double-electron capture using the
independent-electron approximation are presently
accurate within the uncertainty of the theory for
amplitudes for capture of a single atomic elec-
tron.
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