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Relativistic Glauber amplitudes for elastic electron and positron scattering by hydrogen atoms
and hydrogenlike ions in the ground state
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A relativistic amplitude for elastic scattering of electrons and positrons by hydrogen atoms or hydrogenlike
ions in the ground state is derived in the straight-line Glauber approximation without exchange terms. A
small-angle approximation valid to first order in the fine-structure constant is used for the relativistic
corrections to the input amplitudes describing the scattering of the projectile by the proton and the electron
of the target, and spin-flip terms are included. The results are given in closed form in terms of
hypergeometric functions.

I. INTRODUCTION

In recent years, a number of papers on the ap-
plication of the Glauber approximation to elec-
tron-atom collisions have appeared in the litera-
ture. The reader is referred to the review arti-
cles by Gerjuoy and Thomas' and Byron and
Joachain' for references to and a discussion of
such calculations through 1976. Since that time,
a major interest in this field has been in the treat-
ment of the exchange effects, which become in-
creasingly important as the energy decreases and
must be taken quite seriously below, say, 100 eV.
The various methods by which the exchange ef-
fects have been treated in the literature are dis-
cussed, e.g., in Ref. 3.

The present paper is concerned with scattering
at higher energies, where the relativistic correc-
tions to the Coulomb-scattering amplitude may
become appreciable. To study the influence of
these effects on the atomic scattering process we
use a formulation of the Glauber theory where the
amplitude for the scattering of the projectile on
the individual scatterers in the target is used as
input, rather than the potential between the projec-
tile and the scatterers. In doing this, we use an
approximate form of the relativistic Coulomb amp-
litude, corresponding to small-angle scattering in
the second Born approximation, including spin-
flip terms. We limit ourselves to elastic scat-
tering in a one-electron system in the ground
state, considering then the hydrogenlike ions in
addition to the hydrogen atom. It has previously
been shown4 that the nonrelativistic Glauber amp-
litudes for the hydrogen atom can be expressed
very simply in t'erms of hypergeometric functions.
We find that for elastic scattering this is the case
also for other one-electron systems and that
similar hypergeometric functions appear in the
relativistic case as well.

Thomas and Franco5 have already calculated

the Glauber amplitudes for nonrelativistic in-
elastic scattering in hydrogenlike ions, expres-
sing the results in terms of Meijer's Q functions.
Their calculations are, however, done in such a
way that the resulting amplitudes are not appli-
cable to the elastic case.

It should be pointed out that relativistic effects
within the target have not been included in the
present calculation, i.e., the electron wave func-
tion is used in its nonrelativistic form. Further,
the version of the Glauber approximation which
is used here is the one which in this area of phy-
sics is generally called the "restricted Glauber
approximation. " This means that the projectile
trajectory (the z axis) is taken to be a straight
line perpendicular to the momentum-transfer vec-
tor q=k, —k& (0, =0& ——k); as is then usually done,
we also use the exact value q = 2k sin( —,'8) for the
magnitude of the momentum transfer in the re-
sulting formulas (the "wide-angle approximation").

JI. SPIN-DEPENDENT GLAUBER PROFILE FUNCTION

We consider the scattering of a projectile with
charge Z, e (Z, =+1 for positrons, e&0) in the
Coulomb field from a point charge Z,e. The scat-
tering operator, acting between the Pauli spinors
describing the initial and final spin states of the
projectile, can be written

Fc(g, q) =f(r), q) + ig(q, q) o n,

where g is the Pauli spin operator, n = (k&
xk, )/ ~kzxk,

~

is the normal to the scattering plane,
and q =Z,Z, o.'/P, with o.'=.

+. .. P = (e' —1)' '/e, e
= E/m = (m'+ 0 )' /m, IR& I

=
~ k& I

= 0, and m being
the electron mass. We use units for which 5= t."
=1. By solving the Dirac equation for a Coulomb
field and retaining terms to the order n relative
to the Rutherford amplitude we find
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f(2),q) = c(2),x) [1——,'a '(c —1)x' —,'p—'2)«d(x)],

g(2), q) = -,'c(2i, x)x[e '(& —1)(1——,'x') [~'

—4P'2)x(1 ——,'x') 'i2d(x)],

c(2), x) = —2k '2) exp[2ic(2))](-,'x) """',
d(x) = w(1 ——,'x) + ix ln(-,'x),
x =q/k = 2 sin(28),

exp[sic(2))] = [1'(1+f2')l/[r(1 —in)].

(2)

To terms of the first order in n and all orders in
x the cross section, averaged over initial and
summed over final polarizations, correspondinp
to this amplitude is

f00 1 f02 Le-[(~ 1)«2

f"= ,'wP22)x, f [2=---', wP22)«2,

g"=-,'s '(~ —1)x, g"=--,'wp221«2,

(4)

where the indices indicate the power of a and

power of x, respectively. This then reproduces
the cross section (3) to terms of first order in o(

and second order in g.
As is well known, there are difficulties con-

nected with the application of the Glauber approxi-
mation to the pure Coulomb potential, due to the
infinite range of the potential. We consider in-
stead the more realistic case. of a screened Cou-
lomb potential (using, e.g. , a sharp cutoff or a
Yukawa-type screening factor), which in the limit
of an infinite screening radius is described by
the scattering amplitude

,„' = lfl'+ lgl'

= —,'2)2k 2 sin 4(—,'8)(1 —p2 sin2( —,'8) —wp 2) sin(28)

x [1 —sin(2 8)]],

which is the McKinley-Feshbach' cross section
obtained in the second Born approximation.

Keeping now terms to the order g2 in the ampli-
tudes (2), which corresponds to a small-angle
expansion in the spirit of the Qlauber approxima-
tion, we write

f(n, q) =c(n, «) [f00(n, «)+f"(n, «)

+f"(n, «) +f"(n, «)],

g(2), q) = c (2), x) [g"(2), x) +g"(2), x)],

&(2) b) =1 —exp[iX(n b)]

exp [i]( (2), b)] = exp(iA) S(2), b),
where the phase-shift function (in the usual ter-
minology actually the exponential of the phase-
shift function)

S(2), b) = S0(2i, b) + (axe, ) ~ bS[(])), b)

for the Coulomb potential is an operator in spin
space; we have here

00)

S,(2), b) =— q dq f(2), q)J (0bq),
0

S, (2), b) =—
q dq g(2), q)J', (bq) .

0

(9)

=2 'e'"])'[—,'(e+ m+ )) eie]/)'[ —,'(e —m+ )) eig))2

The impact parameter b is by definition a vector
perpendicular to the z axis, which by choice is in
the direction 2 (k, + k&); the fact that q & e, is then a
consequence of our choice of z axis, and not an
additional assumption.

The phase-shift functions SD and S, for scatter-
ing without and with spin flip can now be calcula-
ted by using the amplitudes [Eq. (4)]. Admittedly,
one encounters certain mathematical problems
in doing this, as well as in the inverse Bessel
transformations from S0 and S, back to f and g.
These difficulties are again. connected with the
infinite range of the Coulomb potential and could
be remedied by retaining a finite screening radius
until a later stage in the calculation than we have
done. In practice, the same purpose is served by
the introduction of an artificial damping at small
q in the f00 term of Eq. (4), e.g., replacing x by
« "0 in c(2), «) and afterwards letting 5-0, and
similarly employing a convergence factor exp( —v«2),
where v-0, in the terms that otherwise make the
integrals (9) undefined due to the large-q be-
havior. What this amounts to is simply that the
phase-shift functions [Eq. (9)] can be evaluated
from the amplitudes [Eq. (4)] and, inversely, the
amplitudes can be evaluated from the phase-shift
functions by taking'

8„(q)= ib(q'/2k) + exp(iA) Pc(q),
Xp

-m-1+2 gg (10)
where A is an infinite phase constant. We write
the corresponding profile function

P(e, e)=(2eik) 'f d'eeee(-iq. e)P..(0) (6)

as

for all m and n of interest, the actual requirements
for the validity of this expression being -n —1
&m &0. With upper indices corresponding to
those of Eq. (4) the contributions to the phase-
shift functions S& are then



20 RELATIVISTIC G L A U B E R A M P L I T U D E S FOR ELASTIC

S() (i), 5) = (kb)

S02(i) b) re ~-1(e 1)(kf)) 2iq-2

So'()v), I)) = 2i)TPV exp (2i [o ()v)) —o'(9)$

x(kf)) 2iq-1

S"(i) I)) = -'iiP'q'(kk)'«-'

S", (res b) = -i)v)e '(& —1)(kb) «

SI2(i), b) =' qi7iP'q'(I —2ii))

xexp (2i [o(i)) —o'(q)])(kb) ""
exp[2io '()v))] = [r(—' + ii))/I'( —' —iq)]

III. SCATTERING AMPLITUDE FOR THE COMPOSITE
SYSTEM

I et now the charge Z, appearing in Sec . II be
that of the nucleus, so that the phase -shift function
defined there corresponds to .projectile -nucleus
scattering . The relevant charge -velocity par am-
ete r for the scattering of the projectile on the
target electron is —il„where q, = Z, p.'/p, and the
corresponding phase -shift function should be
evaluated at b ' =b - s, in which s is the component
&e, of the el.ectron coordinate r = (s, z) . Making
the Qlaube r assumption about the additivity of the
phases, we then write the scattering operator for
the composite system, screened at infinity, as

s„(q) = (2s) 'ik f dzb exp(zq b) dzrqvv(r)() —exp[z'[2(q, b) 4 2(-'qv vv )[))qv(r), (12)

where gi and [i)& are the initial- and final-state elec-
tron wave functions . It is- to be understood that the

product involving the phase -shift funetions should
be symmetrized in ()v), b) and (-)v)„b') . Denoting
the phase factor connected with the scattering
against the electron by A& we ean then write Eq.

I

(12) as

SF„(q) = i|)~,5(q'/2k) + exp[i(A + A, )]8:(q), (13)

where the intensity away from the forward di rec-
tion is determined by the operator

S(q) = —(2vv) 'ik f d b exp(zq b) d'rivv(r) —,'[S(q, b)S(-vl, , b') 4 S(-vl„b')S(q, b)[v),.(r) . (14)

We consider now elastic scattering in the 1s
state, using a nonre 1ativistic wave function for the
electron. In doing the integrations in Eq. (14) we
have been inspired by the methods developed by
Thomas and Ger juoy4 for the lowest- order non-
spin-flip term in the case g, = g. It is convenient
to write the result of the integration over the
electron z coordinate as

dz r = —4g '
A.

3 K0 A.s

I&l'+ IGz l'
(16)

& = 2/a, a = ao/Z2,

where a0 and g are the Bohr radii for the hydrogen
atom and the hydrogen 1ike ion in question, - and E0
as usual denotes the ze roth- orde r modified Bess e 1
function of the second kind. After integration
over the directional angle for the impact para-
meter b we are left with a three -dimensional in-
tegral for P, the variables being 5, s and the
angle Q between s and b. The scattering ampli-
tude for the composite system takes the same
form as that of Eq. (1), o being as before the spin
operator for the projectile (we have not consid-
ered the target spin) ~ We write

F(q) =F(q) + ia (q)o ~ n,

where do/dQ is the cross section summed and
ave r aged over spin directions . Polarization ef-
fects can of course also be considered when E
and 6 are given separately . The amplitude Iq

contains a contribution from the nonf lip ampl itude
for scattering against the nucleus combined with
the corresponding amplitude for scattering against
the electron [f(i)) xf(-q[)], plus a double- spin-flip
contribution [g(ri) xg( —q[)]. Similarly, G is due to
the spin-flip amplitude against the nucleus com-
bined with the nonf 1ip amplitude against the elec-
tron [g(q) xf(-q, )], and the other way around

[f(q) xg(-i)[)]. Explicitly,

&(q) = &o(q) + &{(q), G (q) = &()(q) + G 1(q),

Pv{q) =ik f 2 dbdz(qb)P v(b),
0

Sv(q)=ik f b db( dv) qbP( )v, b

P„v(b)=(qs) 'k' f sdsliz(vs)
0

2g

dQ T„i(b,s, cos((e)),

Typ: So(q b)SO( —i)[ k ),
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TP f Sf(f), b) Sf(-g„b ') b
'

~ b

Top: Sf(f), b)S0(—f)„b ')

Tof = Sp(fl, b)Sf(—flf, b')b' ' b,
b'2 = b'+ s' —2bs cosQ,

b
'

~ b = (b —s cosfIf) /b '. (17)
In the scattering operator (16) it turns out to be

convenient to factor out the Rutherford amplitude
c(f), x) for scattering against the bare nucleus, a
phase factor exp[i@(f)f)], and a Coulomb correction
factor C(f)f) characteristic of the scattering
against the target electron. Introducing the
variable f= («afI) ', we then write

S(q) = c(f), 0) exp[i@(f)f)]

«(nf) [F(C) +'G(~)o n],

c(17, f) = --,'f)a(ak)'"'" exp [2io(2))]g"",

exp[i@(f)1)]= (ak) ""1exp[—2io(2) 1)],

=2ff 2) 1 exp(-ff2) 1)/[I —exp( —2ff2) 1)].

In the products Tyj of individual phase shift func-
tions consistency requires that we keep only those
terms that are of the order zero or unity in the
fine-structure constant and of second or lower
order in the scattering angle, when looked at from
the point of view of the original scattering ampli-
tudes, i.e., products

S'1"f(f), b)S'2 2(-2)„b')

where L=l&+E2 1 and m=nz&+m2 2. For the
contributing terms F& and Q&™,where

F,(n =F,"(n+F,"(~)+ F,"(~)+ F,"(~),

Ef(t) = Ff'(C),

Gp(f) =G (k') + G (f)

Gf(~) =G,"(~)+G,"(~),

we then have

F0 Ipppp& ~0 ~ (~ I)( ) I2000 )fi2002) &

00 m42 -1 2 2

Fp = pi ffP' ff)' exP[2io(f))]ifppp + f)I exP[-2io(f)f)]lfppf},

Ep = 2op (7) I2000 771I2002), Ff = 2)'Of [0. (& —1)] (I2pp2 —Ifp12), Gp = 277t (f —1)I-1fpp &

Gp: zflp /{rifi(l —'2i'f)) exp[2io(f))]I2 100 + 'E ('E 1)f),exp[—2io(f)f)]if fpf},

G, ' = iaaf e (t —1)(I1102—If f 12),

Gf ———pffp flf(e '(E —l)f) exp[2io(f))](I2102 —I2112) —pif)f(1+ 2if)f) exp[-2H(f)f)](I2102 —I2ffp)},

o(2)) = o(f)) —o'(f)),

in terms of integrals

I „„(g)= —4ff fif) '(ak) 4 " "exp 12i[o(f),) —o(f))]}[C(f),)] fg '"

(20)

OO OO 2I'

x v' «'2f~"J~(xv) dv uf+"Kp(gf 2xvu) du dftf cos(Mftf)y " ""1
0 0 0

b 2) = 2) —f)„y= (1+u' —2u cosQ) ' i ', x = fI/O .
By using methods similar to those employed in Ref. 4 we find that

I „„=(ak) i(M if)) '[I'(1 —,'N- if)f)/I"(I —if)f)]—2[1(M+ 'N+if)f)/I'( —'N+if)—f)][I'(1—v+ if))/I'(ff —if))]

xexp[-»o(f))l f""" 'E,„(0),

(21)

F«~u„= (I 2N —if)f)2E2(M—+ 2N+ if)f, 1 —jr+if), 1 —v+if);2N+if)f, M+ I; r) + [(M+—1)(2N+if)f)] (M+ 0N+if)f)

&& (1 —if + if)) (I —v + if)) gpF2(M + 0N+ 1+ if)f, 2 —p, + if), 2 —v + if); 0N+ I + iq„M + 2;-g), (22)

fff = 2(K+ L —N), v = —,'(K —L —N),
where 3F, is a generalized hypergeometric function. Since in our case M is an integer, ,F2 can be ex-
pressed in terms of ordinary hypergeometric functions 2F&, the cases of interest to us being
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Fx~o„=(1 —pN- iq, ) pF, (1 —p+iq, 1 —v+iq;I; f-) + (1 —p+ iq)(l —v+ iq)gpE, (2 —p+i@, 2 —v+ iq;2; —g),

Ezzix= (1 —pN ij—,),E,(1 —P+iR, 1 —v+irl;2; g—) + (1 —P+ ill)(1 —v+iR)Q, F,(2 —P+ig, 2 —v+ i@;3;-g)

p(—p N+ iq () '(1 —p + iq) (2 —p, + iq) (1 —v + ig) (2 —v + iri) g pE) (3 —p + i@, 3 —v + ig; 4;—g) .
In this notation the amplitudes (20) then become

Fp = Fpppp» Ep = —@& (& —1)x (Fpppp —QFpppp) ~ Fp = —47fP &x[E'gppp —i(qf/Pl)tgll(177]f) f Efpp f] I

Fp: plrP 'gx [Fmpp + ('g)/'g) QFpppp]) F( = 4 '('g/7)g) [6 (E 1)] fx [Epppp (1+ iX)()Fpp(p] ~

Gp —2'E ('E 1)xEf happ Gp = -
p wP '9x [Fpgpp —i(gq/g) P '(a —1)tgh(x7l~) 1

'
Ep fpf] I

G f Qpe '(e —1)g&'(1 + ipl) gx[Ef fpp (1 + ppf)F f f fg]

G I gg 27lp (pl/ tip) Lx'(e '(e —1)(1 + 2iq) [E„pp (1 + iq, )F,«p]

(71/ l)(1+ 2p%) (1 pQ)tg@(p 71)f [E21pp (2 p 11)F2113]~

(23)

(24)

We see that the lowest-order term

c(q, f) exp [z@(q)]C(q)E,"
is in agreement with the result of Thomas and
GerjuoyP [their Eq. (28a)] for scattering on the
hydrogen atom, i.e., for q, = g. It should be noted
that our g and theirs are defined with opposite-
signs, ours being positive for positron scattering.
Another limit to be checked is the case where no

target electron is present, which means letting
q, -0, g-0 and (f/q, ) -0; the amplitudes (4) and

(18) do then indeed coincide.
For finite g, and large momentum transfers

(f «1) the role of the target electron is simply
to multiply the scattering amplitude from the bare
nucleus by a factor

exp[ic'(pl )]G(ply) (1 —in$),

i.e., the projectile-nucleus cross section is mul-
tiplied by a q-independent factor

D(rig) = G'(7)))(1+ ng)

IV. NUMERICAL RESULTS AND DISCUSSION

So far, the only experimental differential cross
sections available for comparison with the present
theoretical ones are those concerning e scattering
on hydrogen. " '3 Since the highest projectile
energy here is 680 eV, relativistic effects play a
very small role in these cases, and for practical
purposes the comparison between theory and ex-
periment comes out exactly as shown in Ref. 12,
except for the fact that the newer results of van
Wingerden et al. at 100 and 200 eV should now be
included.

It is clear that the present version of the Glau-
ber approximation does not do too well in explain-
ing the experimental results at 200 eV and below.
From Ref. 12 one is, however, left with the im-
pression that this can be stated with certainty also
at 400 and 680 eV. Vfe believe that Figs. 1-2,

where we have refrained from using the often in-
structive but at times misleading semilog plots
familiar to these areas of physics, depict the ac-
tual situation rather clearly. At these energies
the large-angle differential cross section is essen-
tially that of e p scattering, whereas the target
electron makes itself felt at small scattering
angles. However, these experiments do not jus-
tify any choice between different theories based
on small differences in the calculated cross sec-
tion.

In general, we find that for hydrogen and the
light hydrogenlike ions it is never necessary to
consider the Glauber deviation from the bare-
nucleus cross section and the relativistic effects
[i.e., f/ c & 1, g pf: 0 in Eq. (4)] at the same time.
As an example we show in Figs. 3-5 the differen-
tial cross section for e' scattering on He' at the
energies 100 eV, 10 keV, and 1 MeV. In the
range of angles that is considered in each case
the relativistic effects, and therefore also the e'
difference, are too small to be shown in the figure.
At 100 eV the deviation from the bare-nucleus
cross section is large and the relativistic effects
small at all angles; in the two other cases the
Glauber cross section becomes identical to the
bare-nucleus cross section [except for the small
difference introduced at these energies through
the factor (25)) long before the relativistic effects
become noticeable.

The situation is different for higher Z&, as ex-
emplified in Fig. 6 for scattering of 0.5-MeV
positrons at Z, = 20. In this case we see that in
the angular region from 10 to 30', say, the rela-
tivistic Glauber cross section differs appreciably
both from the relativistic bare-nucleus cross sec-
tion and the nonrelativistic Glauber cross section.

Qur conclusion is, then, that the type of calcula-
tions presented here will be of value when one
considers high-energy e' scattering in complex
atoms, whereas scattering on actual hydrogenlike
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our purpose to advocate the indiscriminate use of
the Glauber approximation in atomic scattering
problems, but only its usefulness in situations
where the target electrons have a fairly small in-
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