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The authors study the phenomenon of coherent Raman beats in ' NH, using a CO& laser and Stark
switching. In particular, a three-level system in which the two upper levels always remain split by a few
MHz is prepared by switching the transitions into resonance with a short Stark pulse whose bandwidth is
large enough to coherently excite both transitions. When one of the coherently excited levels regains in
resonance with the laser after the Stark pulse, this system exhibits a qualitatively new effect which has not
been seen heretofore. For Stark shifts on the order of the upper-state splitting or smaller, the Raman beat is
amplitude modulated at a frequency related to the optical nutation frequency. This is interpreted as being
due to an interaction between the two-photon coherent Raman beat process and a single-photon optical
nutation process which occurs simultaneously. Numerical calculations as well as a simple analytic model are
presented to support this interpretation. By reducing the laser power, one can make the modulation of the
Raman beat disappear. From the Raman signal in this regime the permanent electric dipole moment of
' NH3 in an excited vibrational state is determined and the Raman beat decay rate measured. By comparing
the latter result with a delayed optical nutation measurement we show that phase-changing collisions are
negligible for the transition studied.

I. INTRODUCTION

In 1972, Shoemaker and Brewer reported the ob-
servation of a two-photon coherent transient effect
which is now known as coherent Raman beats. '

The phenomenon arose when a coherently excited
three-level (or multi-level) system was driven
slightly off resonance by a laser field. Very strong
coherent Raman transitions can occur in this situ-
ation and appear at a detector placed in the laser
beam as a long-lived heterodyne beat signal be-
tween the laser field and the radiation emitted dur-
ing the Raman scattering process. Note that the
forward scattered Raman field amplitude is ob-
served in this case rather than the off-axis Raman
scattered intensity that is monitored in ordinary
Raman experiments. This unusual effect, which
is closely related to two-photon free induction de-
cay, has aroused considerable theoretical at-
tentioo' and has also been used to measure colli-
sional decay rates.

In earlier experiments, coherent preparation of
the system was achieved by resonantly exciting a
transition having several degenerate levels. ' A

Stark field was then suddenly applied which split
the degenerate levels, allowing Raman transitions
between the split levels to occur and produce the
Raman beat signal. In this paper we report an ex-
tension of the coherent Raman beat phenomena to
a somewhat different type of transition in which no
level degeneracy effects are present. Specifically,
we examine a three-level system in which two up-
per levels always remain split by a few MHz and
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FIG. 1. Coherent Baman beats. (a) A short Stark pulse
shifts level 3 so that the laser field of frequency 0 can
excite a coherent superposition of levels 1 and 2. (b) At
the end of the pulse, level 3 is shifted out of resonance
and Baman transitions take place as shown with radiation
being emitted at 0 + co&2. (c) If a smaller Stark shift is
used, one of.the Raman processes can become resonant,
allowing optical nutation and Baman transitions to occur
simultaneously.

have allowed transitions to a single common lower
level whose energy can be varied by means of a
Stark field (see Fig. 1). Coherent preparation is
achieved by applying a Stark pulse short enough
(i.e. , bandwidth wide enough) to simultaneously
excite both transitions. In this situation we find
that the Raman transitions giving rise to the coher-
ent Raman beat signal can become resonant and
produce a new effect which involves the interaction
of the two-photon Raman process with the single-
photon process of optical nutation (Rabi flopping).
This occurs when one of the level pairs remains
in one-photon resonance after the Stark pulse. A

detailed discussion of this interaction, which ap-

20 1979 The American Physical Society



20 MODULATED COHERENT BANAL BEATS

pears -as an amplitude modulation of the coherent
Haman beat signal, is given in Sec. II below. In
addition, by changing the experimental conditions,
the amplitude modulation could be made to disap-
pear, and this regime was used to make measure-
ments of the NH3 molecular dipole moment in an
excited vibrational state and of the Raman beat de-
cay time. These results and their implications are
also discussed.

Our experiments were performed using the
(&2,J,K) =(0', 2, 2)-(1',3,2) transition in NH&

which lies 360 MHz above the R(40) CO, laser line
at 10.125 p, m." Transitions arising from the M J'

=+2 component of the lower level can be shifted
into resonance with the CO2 laser using a dc bias
field of -6000 V/cm. With the CO2 laser radiation
polarized perpendicular to the bias field, cQ4~ =+1
selection rules are obtained so that only the M~
=+2-+3 and +2-+1 components of the transition
are excited. Thus we have a simple three-level
system of the type shown schematically in Fig. 1(a}.
The splitting between the two upper states M~ =+1
and M~ =+3 (the levels labeled 1 and 2 in the fig-
ure) is only 5.27 MHz, much less than the 80-MHz
Doppler width.

A 1.5-m grating controlled, stable cw CO2 laser
of the type described by Freed is used in the ex-
periment. " It has an output power of about 0.5 W
TEM00 on the 10-p, m R(40} line that was used.
The laser beam passes through a sample cell con-
taining a pair of 4;5 cm ~30 cm stainless-steel
Stark plates. These plates are precision lapped to
a flatness of better than 0.0003 cm and are separ-
ated by a set of six 0.4445+0.0005 cm fused quartz
spacers, thus producing very uniform electric
fields. The sample cell is filled with NH& (Pro-
Chem 99 at. % N) to a pressure between 0 and 10
m Torr as determined by a CGS Barocel capacitance
manometer. After passing through the cell, the
laser beam strikes an Au:Qe detector whose output
is amplified by a wideband (20 KHz to 8 MHz} pre-
amp and then sent to either an oscilloscope or a
PAR 162 boxcar integrator and X-F plotter for
display.

To perform a Raman beat experiment, a voltage
pulse (typically 135 V/cm and 0.1 p, sec long) is ap-
plied, across the Stark plates in addition to the dc
bias field. For simplicity, consider first the case
where no modulation of the Baman beat is ob-
served. At the time the pulse is turned on, the
lower level is shifted several MHz causing two
distinct effects to occur simultaneously. First,
velocity groups of molecules which were in reso-
nance with the laser are briefly shifted out of res-
onance and then back into resonance at the end of
the pulse. This produces an optical nutation signal
which merely forms a background on which the co-

herent Baman beat signal is superimposed, Sec-
ond, other molecular velocities are shifted into
resonance during the pulse and excited by the la-
ser. The pulse length determines the velocity
bandwidth of molecules thus excited, and, if the
length is sufficiently short, will allow some mole-
cules to be excited to a coherent superposition of
both excited states [see Fig. 1(a)]. At the end of
the pulse, these excited molecules are shifted out
of resonance so that they now see an off-resonant
driving field. This field induces near-resonant
Raman (two-photon) transitions between levels 1
and 2 as shown in Fig. 1(b). As can be seen from
the figure, conservation of energy requires that
the radiation emitted in the Raman process have
frequency 0+co&2 or 0 -(d&2. Furthermore, be-
cause the superposition of excited states was ini-
tially prepared using a coherent laser field propa-
gating in the z direction, the forward scattered
Raman emission induced by that field after the
Stark voltage pulse is also coherent, i.e., emission
in the z direction at 0+(d&2 by any given molecule
is in phase with the emission of all other emitting
molecules. Hence a detector placed in the laser
beam behind the cell will see coherent fields at
0+co&2 in addition to the laser field, resulting in a
heterodyne beat signal of frequency (d&, between
the laser and the emission. The molecules excited
by the pulse will also produce optical free-induc-
tion decay signals, but these signals quickly decay
to zero in a time less than or equal to the exci/a-
tion pulse length and will be ignored. ' Figure 2
shows an example of a Raman beat signal in "NH3
when a low laser intensity is used. The high-fre-
quency oscillation (-5 MHz) is the Raman beat sig-
nal and is similar to previous Baman beat obser-
vations in "CH,F, where degenerate levels were
excited. '

Note that Doppler effects due to molecular mo-
tion do not affect the Raman beat (to first order,
at least) because a molecule moving with velocity
component v, sees the laser frequency Doppler
downshifted to O'=0 -k~v, and hence emits at 0'

In the laboratory frame+~ direction, how-
ever, this emission appears as a Doppler upshifted
frequency (0'+v») +km, =0+&@&2 since k = kz.
Thus, the emitted frequency is independent of
molecular velocity and there is no Doppler de-
phasing as in the single-photon process of optical
free induction decay. As a result, the coherent
Raman beat signal is quite long lived and its decay
is determined only by the collisional decay of the
off-diagonal density matrix element p&2.

In the above discussion, we have assumed that
the velocity groups of molecules which are excited
during the initial Stark voltage pulse are shifted
sufficiently far from resonance after the pulse that
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FIG. 2. Raman beats in
~~NH using a low intensity3
CO beam. The high-fre-2

quency oscillation (-5 MHE)
is the Raman beat signal.
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bation theory treatment of the density matrix equa-
tions to calculate the Haman beat. In a later paper
Brewer and Hahn' solve these equations exactly
during the preparative stage but are again forced
to use perturbation theory to describe the trarisi-
ent decay. Unfortunate1y, this treatment cannot be
used to analyze our experiments because the am-
plitude modulation of the Raman beat involves op-
tical nutation and this is a strong-field, nonlinear
process which cannot be described by perturba-
tion theory. We should note, however, that the
Brewer-Hahn treatment does predict an intensity
dependent decay of the Raman beat. This effect
may be thought of as a weak-field precursor to
the strong-field effects being considered in this
paper.

Since a nonperturbative solution to the density-
matrix equations of motion for a three-level sys-
tem is what really is required here, one is forced
to resort to numerical methods. Even this is no
small task, however, since a set of six simultane-
ous differential equations must be solved at each
point in time to obtain the response of just one ve-
locity group of molecules. This process must then
be repeated for every molecular velocity within
the Doppler line, followed by a numerical integra-
tion of the solutions over all velocities at each
point in time one wishes to consider. A consider-
able simplification can be obtained, however, if
one is willing to ignore some of the nonessential
physics in the problem. In particular, we note that
decay processes and processes which pump new
molecules into the three levels do not affect the
Haman beat signal in any fundamental way. If we
drop these terms from the density-matrix equa-
tions of motion, the resulting equations are equiv-
alent to a much simpler set of three differential
equations for the probability amplitudes of being
in levels 1, 2, or 3. The characteristic cubic
equation associated with this set of equations is
readily solved by computer and the complete solu-
tion for the probability amplitudes can then be
written down analytically in terms of the roots of
the cubic. This wave equation approach is far
simpler than the alternative of numerically inte-
grating the density-matrix equations. Sargent and
Horwitz" solved the wave equation exactly for the
case where the laser frequency lies halfway be-.
tween the upper two levels in Fig. 1. Schenzle and
Brewer" solve Schrodinger's equation for several
special cases but not the particular case where one

/
level is in single-photon resonance with the laser
excitation. They note that this case must be solved
numerically.

An additional advantage of working with the prob-
ability amplitudes is that a simple approximate so-
lution for the modulated Haman beat problem can

X=3Cp Epco-s(Q t -kz )Qegzg p (2)

where x; is the x coordinate of the ith electron or
nucleus in the molecule with respect to the center
of mass and the summation on i is over all charges
e; in the molecule. Also, &~ has been transformed
into the rest-frame coordinate system of a mole-
cule having a component of velocity v, . In this
frame, the frequency is Doppler shifted to O' =0
-kv, and z'=z -v, t is the new z coordinate of the
molecular center of mass. We assume an optically
thin sample so that 80 is independent of z'. This
condition is well satisfied in our experiments
where the peak absorption is &1%.

The wave function for a molecule in the presence
of the optical field may be expanded in terms of
the field-free eigenfunctions t/„as

This relation together with the Schrodinger equa-
tion yields an equation of motion for the probability
amplitudes c„,

ihc„=I'W„c„-E
p cos(Q't —kz ')g e~c~,

where SS'„ is the energy of level n and p„; is the x
component of the transition dipole matrix element
between levels n and j. We assume the phases of
the field-free eigenfunctions have been chosen such
that the p~'s are real.

Since we are interested in the three-level system
shown in Fig. 1, we need to consider only the prob-
ability amplitude equations for c&, c2, and c3.
Using the definitions

c& —= c& exp[- i(Q't —kz')],

c, -=c, exp[-t(Q't —kz')],

setting the zero of energy to be the lower level
(kWp ——0), and making the rotating wave approxi-
mation, we have

Z~fcf + ZQ)3C3 p C2 2'52C2 + LQ $3C3 p

C3 =l(X)3C) + fQ)3C2 . (6)

be found which gives some insight into the nature of
the processes which are occuring. This solution is
presented below following a brief presentation of
the basic theoretical equations.

To develop a quantitative theory for the modulated
Raman beat, we begin by taking the optical field to
be a linearly polarized plane wave

E~ =x[E p cos(Qt —kz)] .
In the dipole approximation, the Hamiltonian in
the presence of this field is
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Here nis —s,sE()/2tt, n» —s' ssE()/2h, and 5i——Q'-(vis,
5s=~l -&u»t where+;;=W; —W;. Equation(6) mustbe
solved for two distinct time periods. %e start in
thermal equilibrium at time —t„with cs(-t,„)=1,
c,( t,„—)=c,( t„)=-0 and must solve the equations
for an excitation pulse of duration I;,„. %e then
know ci(0), c,(0), cs(0); the values of the c s at
the end of the excitation pulse (t =0). These values
form the initial conditions for the calculation of
the Haman beat during the period f, & 0. Equation
(6) is a set of linear differential equations with
constant coefficients and hence is readily solved
by standard methods, with the solutions being ex-
pressed in terms of the roots of a characteristic
cubic equation,

('5i 5s)X + ['5i5s (nis nss)]X

+ &~3&2+ &23&i =02

Unless some approximation can be made, how-

ever, this cubic must be solved by numerical
methods in order to obtain usable results.

Once either a numerical or analytic solution for
the c s is obtained, the expectation value of the
dipole moment for any molecule can be calculated
from

(p) =s'is(cics*+ ci*cs}+s'ss(cscs*+ cfcs) ~

This expression is more conveniently written in

terms of c& and c2 as
I

(ti) = ti, cos(Qt kz) + p. , s—in(Qt —kz),

where

(6}

P, ~ = +g3c(c3 +P23c2c3 + C,C ~

p s —zP~3c~c3 —zP23c2c3 + c oc ~

The macroscopic polarization induced in the sample
is then obtained by summing over all molecules, i-e. ,

P(e, t)=(f Vvet(v, )dv) vvs(tet —te)
~ OO

+ n» Im(c,cf )]d v, (12)

as the expression for the observed signal in terms
of the c s.

At the end of this section we discuss the results
of numerical calculations using Eqs. (6) and (12).
Before doing this, however, it may be useful to
develop an approximate analytic model which ex-
hibits many of the primary features of the experi-
ments.

The key to an analytical treatment can be found

by looking again at Fig. 1. As was pointed out in
the introduction, amplitude modulation of the Ra-
man beat is expected to appear when molecules
excited to a superposition of levels 1 and 2 during
an excitation pulse are shifted into resonance with
the 3-2 transition after the pulse. As can be
seen from Fig. 1(c), these molecules are detuned
from the 3-1 transition by an amount 6&'= ~, 2 after
the pulse. Furthermore, the level splitting &&2 is
much greater than the Rabi-flopping frequencies
2n &3 and 2e 23 in our experiments. Thus the inequa-
lity 6&» n&3 should be valid for the molecules of
.interest after the laser pulse. Looking now at Eq.
(6) we see that this inequality allows one to obtain
an approximate solution. Specifically, we neglect
the second term in the c

&
equation compared to the

first to obtain

Ci —Z51C1 t (13)

I(t) =Is zQ—LE()P,(t) t

where Io is the incident intensity, I. is the length
of the sample, and I(t) is the intensity of the radi-
ation field after passing through the sample. I(t)
is exactly the quantity that one measures in a
Raman beat experiment since the detector is
placed directly in the laser beam behind the sam-
ple. Combining Eqs. (9)-(11), we have

l(t):te 2(t()L f N( )[vttte )m(ttve')

(
+( V,tt(v. )dv.) stv(tet —tee) (10) which has the trivial solution

ci(t) =ci(0) exp(i5it) . (14)
=P,(t) cos(Qt -kz) +P,(t) sin(Qt —kz),

where N(v, ) =(N/uWm) exp(- v,/u') is the number
density of molecules with velocity v„and u
=(2kzT/m)' is the most probable molecular speed.

In the simple case where the sample is short
and optically thin, one can readily show that the

amount of radiation absorbed or emitted by the
sample is just proportional to I', .' The relation is

Here c,(0) is the value of c, at the end of the exci-
tation pulse. The solution for c& may now be sub-
stituted into the cs and cs equations [see Eq. (6)]
to obtain solutions for both c3 and c2. Since we
have assumed 5&, (d, 2»nf3p Q23 for the molecules
of interest, we may also neglect terms of order
n,s/5„etc. compared to unity in these solutions
to obtain

cs(t) =cs(0) exp( —,'i5, t}cos(—,'gt) + i[5,cs(0) + 2n»cs(0)] exp( —,'i5, t) sin(zgt)/g,

cf(t) = cg(0) exp(- —,'i5, t) cos(-,'gt) —i[2n, scg(0) —5scs*(0)]exp(- —,'i5st) sin(-,'gt)/g, (15)
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as our approximate solutions for c2 and c3* after
the excitation pulse. Hereg=(6z+4n, e) '. We
now want to calculate the Raman beat signal using
Eq. (12). To do this, note first of all that ID-I(t}
is the net absorption or emission due to all transi-
ent effects occurring in the sample, not just the
Raman beat. The contributions from the various
effects can readily be separated out by making use
of the fact that each coherent transient effect has
its own characteristic oscillation frequency and
dependence on initial conditions. For example,
all the terms arising from Im(c2cf }oscillate only
at sin(gt) or cos(gt) and hence are optical nutation
signals arising from single-photon transitions be-
tween levels 2 and 3. The three terms arising
from Im(c&cg) have more complex oscillation fre-
quencies, and, in particular, they all have fre-
quency components at co&2 since &52 -5$ (ro»

An oscillation at co &2 is characteristic of the Ra-
man beat. However, in the case at hand, optical
free induction decay signals from the 1-3 transi-
tion will also occur at this frequency since we
have assumed that the laser is detuned from the
1-3 transition by (d&» i.e., we assumed it was
resonant with the 2- 3 transition. To see which
terms contain the Baman beat, we must examine
their dependence on initial conditions. The am-
plitude of two of the terms depends on c&(0)cf(0),
while the remaining term depends on c,(0)c2(0).
Since the Raman beat is a two-photon effect which
requires a coherent superposition of levels 1 and
2 to occur, only the c&(0)c2*(0}term contains the
Raman beat. The other two terms depend only on
having a coherent superposition of levels 1 and 3
which is characteristic of optical free induction
decay. " Thus the coherent Raman beat signal is

given by

Ig(t)=li-2»iiliQI))(V))» , —miO»i, i(0)C)(D)ezp i(iti ~)i -~'»(-*(,'i)Id". ( 6) 1
2i - &

(16)

On taking the imaginary part of the expression in curly brackets and separating out the ~12t dependence,
four terms are obtained. Two of these terms are odd functions of v. , however, and may be dropped since
they will give zero when the Doppler integration is performed. After some rearrangement, we then find

&s(&) =&0+ 4'(q~c(2~QL J N(v, ) c&(0)cq(0) —sin~ —
) cos cos(+&2f + g)dv, ,

(gtl &2t

OO

where

p = tan (lm[c&(0)c2*(0)]/Re[c&(0)c2*(0)]].

This is as far as we can carry the problem because
the Doppler integral cannot be done analytically.
Furthermore, we have not calculated values for
Ic~(0)cf(0)I, which depend strongly on v . None-
theless, one can see the general nature of the re-
sult by considering the behavior of a single veloci-
ty group. For example, the Raman beat signal
produced by the velocity group exactly resonant
with the field after the excitation pulse is propor-
tional to

I c&(0)cf(0) l nate sinn23f cos((d~2t+ P), (18)

since 6, =0 and g=(5,'+ 4n,'3}' '= 2nz for these
molecules. Expression (18) displays the essential
features of our Raman beat experiments. Like all
coherent Raman beats, the signal oscillates at w»t
and its amplitude depends on having c&(0)c,*(0) non-
xero after the excitation pulse. In addition, the
signal is amplitude modulated at a frequency n2q
= s23EO/2L Note that this frequency is half the

Rabi-flopping frequency () 2~ED/8 (the frequency at
which the population is driven back and forth be-
tween levels 2 and 2 by optical nutation). This be-
havior occurs because the Raman beat is produced
by the term Im(c&cg} in Eq. (12) and hence is pro-
portional to the probability amplitude for being in a
level, not the population in that level. (A transition
being driven on resonance has probability ampli-
tudes c„~sino. t and c& ~ cos orat, with the optical
nutation signal being proportional to c„c*,
=—,'C sin 2c.t, C being some constant. ) In an actual
experiment one should not expect to see a Raman
beat modulation that is just half the optical nutation
frequency, however, because molecules which are
not exactly on resonance have nutation and Raman
beat modulation frequencies that differ from the
resonant values [see Eq. (IV)], and the actual sig-
nal is a sum over all detunings. Also, optical nu-
tation signals from both the 3-1 and 3-2 transi-
tions are present, and these have Rabi-flopping
frequencies which differ by a factor of 4. As a re-
sult, appearance of the modulated Raman beat sig-
nal could be varied considerably by changing either
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FIG. 4. Numerical solution of the three-level problem
using parameters which approximate those of the upper
trace in Fig. 3.

III. GENERAL FEATURES OF THE MODULATED RAMAN

BEAT SIGNAL

The Raman beat signal obtained from numerical
solutions was found to be an extremely sensitive

the Stark shift or the excitation pulse length. This
point is discussed further in Sec. III.

Although we cannot expect our analytical calcu-
lations to be quantitatively correct, they do have
the virtue of clearly showing the nature of the in-
teraction between the one-photon optical nutation
process and the two-photon Raman beat, i.e., optical
nutation modulates the probability amplitude for level
2 and hence the amplitude of the Haman beat.

Exact calculations of the modulated Raman beat
have also been made by numerically solving Eq.
(6) for the c s followed by numerical integration
of Eq. (12}. Figure 4 shows a computer plot of
such a calculation for NH3 using a Stark pulse
amplitude and width similar to that used in the
upper trace of Fig. 3. The Haman signal is seen
to go through a minimum at t= 3 p. sec as a result
of the modulation. No attempt was made to fit the
experiment quantitatively because of the extreme
sensitivity of the result to the initial conditions
(see Sec. III). There is, however, a good qualita-
tive fit with the upper trace of Fig. 3.

Solving the probability amplitude equations rather
than the density matrix equations means that we
have no nontrivial steady-state solution. Thus our
theory ignores the effects of the steady-state holes
burned into both Doppler profiles before the exci-
tation pulse. Not allowing for this steady-state
hole in the population differences gives an anomal-
ously large nutation signal background which must
be subtracted out at the end of the calculation to
give the curve of Fig. 4.

function of the excitation pulse length and the fre-
quency shift, and this sensitivity was also observed
experimentally. The explanation for this behavior
can be found by examining the distribution of ex-
cited velocity groups under the Doppler line pro-
files at the end of the excitation pulse as shown in
Fig. 5. Initially the laser of frequency 0 lies
somewhere within the Doppler profiles of the 3-1
and 3-2 transitions (see Fig. 1 for the level struc-
ture). The transition frequencies are shifted by an
amount 4 for a time t,„by the excitation pulse. As
shown in the figure, this shifts the apparent laser
frequency to a new position 0+ 4 under the Doppler
profiles. At the end of the excitation pulse the ap-
parent laser frequency returns to 0 leaving a dis-
tribution of velocity groups excited as shown by
the hatched areas in Fig. 5.' This excitation leads
to a sine(vt, „) frequency distribution for the prob-
ability amplitudes (i.e., the Fourier transform of
a square pulse in time}. The absolute value of this
excited velocity distribution modulated by the Dop-
pler profiles gives the excited distribution shapes
shown in Fig. 5. The phases of the probability
amplitudes are, of course, lost in this plot. The
Raman signal is proportional to the product of the
probability amplitudes and thus is related to the
product of the depths of the excited velocity groups
below the Doppler profiles shown in Fig. 5. Three
representative velocity groups, A, B, and C, are
indicated in the figure. Note that velocity group
A will give a large Raman beat signal because
both I 2& I and I c2l are large, whereas group C
will give a negligible Raman beat.

QJP
'

(alI

Q 0+6
FIG. 5. Doppler profiles of the 3 j. and 3 —2 transi-

tions. For clarity, the level-splitting and the frequency
bandwidth of excited molecules have been greatly exag-
gerated. The hatched areas indicate the velocity groups
which are excited by. a rectangular Stark pulse. The
laser frequency is 0 and its position with respect to the
line centers co& and 2 is shifted by an amount 4 during
the Stark pulse. The amount of excitation for three dif-
ferent velocity groups A, B, and C are indicated by the
heavily shaded vertical bars.
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&12 l&12 4(&13+&23)l
l 2 2 f/2 (19)

This result is simply due to ac Stark shifts of the
two transition frequencies. Brewer and Hahn have
also calculated a power-dependent beat frequency
which has the same form as our result except that
decay was included in their calculation. ' For the
pressures used in our experiments the two results
are essentially identical.

For couplings n;, small compared to the level
splitting ~&„as in our experiments, (d&2= (d&2 and
the nutation (which varies at the larger of the n;~'s)
is clearly distinguishable from the Raman beat
signal. At the other extreme, if the couplings n;,.
are comparable to or larger than the splitting,
the clear observation of a Raman beat becomes
very difficult. The Raman beat frequency is then
nearly equal to the nutation frequency, and the
distinction between the Raman beat and nutation
is obscured. This explains why Raman beats have
not been observed in molecules such as NH2D

where we have also studied three-level sys-
tems. '9 ' There, the excited-state splittings are
comparable to the nutation frequencies, and reduc-
ing the power enough to make the nutation slower
than the Raman beat results in a signal too small
to observe.

The fact that Raman beats are observed in a
three-level system without degeneracy during the
preparative stage is purely a consequence of using
the short pulse to excite many molecular velocity
groups to a coherent superposition of states. Had
we not used a short excitation pulse the velocity
group excited for one transition would not have
significant excitation for the other transition and
there would be no coherent Raman signal. In pre-
vious experiments the levels have been degenerate
during the preparative stage and thus both transi-
tions were always coherently excited.

The sensitivity of the beat signal amplitude to the
excitation pulse width is caused by the changes in
the side lobe positions of the sine functions (out-
ward for shorter pulses, inward for longer pulses).
The number of coherently excited molecules goes
through a series of maxima as the excitation pulse
width is varied. By a similar argument, the num-
ber of velocity groups contributing to the Raman
signal depends on the value of the frequency shift
6 during the pulse. Here again one would expect
a series of Raman beat signal maxima as the fre-
quency shift is varied.

The above dependences on the initial conditions
imposed by the pulse (Stark voltage and duration)
are observed experimentally as well as confirmed
by numerical solutions to Eqs. (6), The numerical
solutions also exhibit a power-dependent Raman
beat frequency

IV. EXPERIMENTAL RESULTS

An understanding of the Raman beat behavior
discussed above allows one to accurately deter-
mine molecular constants from the Raman signal.
In particular, the Raman beat frequency ~&2 deter-
mines the excited-state dipole moment for the

NH3 transition studied, and the decay of the Ra-
man beat signal as a function of 'NH3 gas pressure
determines the Raman decay rate.

The average of the observed Raman beat frequen-
cy from nine experimental runs was m&2 ——5.28
+0.02 MHz, and, the nutation frequency was -0.3
MHz. This gives a power corrected excited-state
frequency splitting of (d&2 ——5.27+0.03 MHz. From
Shimizu's measurements for the molecular con-
stants' of "NH3 and the value of ~&2, taking into
account all Stark effects from neighboring levels,
we calculate the excited-state permanent electric
dipole moment to be

p, ,„=1.286 +0.010 D .
This compares with Shimizu's calculated value of
1.26+0.02 D obtained from Stark splittings of
widely separated spectral lines. ~o

The Raman decay rate I'„can be calculated di-
rectly from the pressure dependence of the Raman
beat decay as long as the Raman beat modulation
discussed in Sec. III can be neglected. A total pow-
er of -0.08 W with a peak intensity of &2 W/cm
was used in these experiments giving a nutation
frequency and thus a Raman beat modulation fre-
quency slow compared to the signal decay rates.
If any small residual modulation is still present,
its effect should be independent of pressure and
would only change the intercept of a plot of decay
rate versus pressure. Making such a plot for runs
at seven different pressures yields a straight line
whose slope is the Raman decay rate for the
(v„J,K) =(0', 2, 2) -(1',3,2) transition. We

find

I'„=63+6 MHz/Torr.

Only the excited-state decays are involved in the
two-photon Raman process and our result agrees
with the excited-state population decay rate of 66
+6 MHz/Torr which we have measured using de-
layed optical nutation. This agreement show&,
as has been found for other infrared transitions,
that phase-changing collisions are negligible. In
general we would not expect to see phase-changing
collisions in an infrared transition since the dipole
oscillates at -5 &10 3 Hz, while a collision typical-
ly lasts about 10 sec. Therefore only about 50
cycles of the dipole oscillation occur during the
collision, and, in order to change the dipole phase
appreciably, the resonant frequency will need to
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be shifted by about 1%%, or -5 X 10" Hz. This shift
is considerably larger than most rotational energy-
level spacings so that any collision producing such
a large shift will almost certainly change the rota-
tional state. As a result, phase-changing collisions
are not observed in molecules even when one might
expect to see them on the grounds that the upper
and lower states are affected differently during
the collision, as they are in NH3.
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