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Static polarizabilities and hyperpolarizabilities for molecules are investigated at the correlated level. The
finite-field, coupled Hartree-Fock theory is used as a zeroth-order approximation, with correlation included
by using the linked-diagram expansion and many-body perturbation theory, that includes single, double, and
quadruple excitation diagrams. The theory is illustrated by studying the hydrogen fluoride molecule. It is
demonstrated that the correlation effect for the hyperpolarizabilities B and ¥ can be quite large. The
average polarizability and dipole moment of HF are in excellent agreement with experiment. The relative
importance of the various types of diagrams contributing to electric field properties are discussed. The
dependence of the computed hyperpolarizability on basis sets is also investigated.

I. INTRODUCTION

The nonlinear optical properties of gases have
been of experimental interest for several years.'-’
Recently, a number of real and potential laser
applications utilizing the frequency-tripling pro-
perties of metal vapors and other atomic gases have
been suggested.®* Similar devices employing
polar molecules oriented in an electric field can
be envisioned for frequency-doubling applications.
The utility of such novel devices will be ultimately
determined by properties of the atomic and mole-
cular higher polarizability tensors, but little in-
formation on these quantities currently exists.

Hyperpolarizabilities may be deduced experi-
mentally from direct observations of harmonic
generation in gases®® and from measurements of
the Kerr effect.” However, the experiments are
difficult and the range of uncertainty is often large.
Since hyperpolarizability is a property of a single
atom or molecule, it may also be predicted from
quantum-mechanical calculations. Hence it is
important to have reliable theoretical predictions
for higher polarizabilities to complement the
experimental efforts.

While some coupled Hartree-Fock (CHF) level
calculations of atomic hyperpolarizabilities are
available, mostly for inert gases, '2 very few ab
initio calculations of molecular hyperpolarizabili-
ties have been attempted, *-'® and none of these
has yet shown any kind of agreement with experi-
ment.* The molecular calculations which have
been made frequently employ inadequate basis sets
or are carried out at the level of uncoupled Har-
tree-Fock perturbation theory.’*’!” Only a few
previous studies have even used the full CHF
method, **-'¢ with no work," at all, on molecular
hyperpolarizabilities at the correlated level. Re-
cent papers have addressed the question of picking
adequate basis sets for polarizabilities, '*-*° but
the accurate inclusion of correlation effects is

still expected to be a necessity if a reliable pre-
dictive theory of hyperpolarizabilities is to be
developed. Some recent communications have
demonstrated the importance of correlation for
the dipole polarizability,*®2°-22 and one would anti-
cipate an equally large, or even larger, correla-
tion effect for the hyperpolarizabilities.

Recent developments in many-body perturbation
theory (MBPT)?*-?" and the coupled-cluster ap-
proaches (CCA), ****?° have made it possible to
include correlation in a sufficiently tractable
manner to include a very large part of the net
correlation effect in molecular calculations®
even though comparatively large basis sets are
required in hyperpolarizability determinations.

In the following, we report a study of the hyper-
polarizabilities of the HF molecule, considering
correlation effects due to single, double, and
quadruple excitations.?® HF provides a convenient
example for this initial study since a numerical
CHF result has been obtained for the parallel com-
ponents of the second- and third-order polariza-
bility by Christiansen and McCullough, *%'® and
this result may be used to eliminate some uncer-
tainty in chosing a reliable basis set.

II. HIGHER DIPOLE POLARIZABILITIES

The energy of a molecule in an external field
& may be written in a power series as

WE)=W(O0) - ud,- (21 'a,8.8,
- B8 8,84 - A1)
XY 8,68, , (1)

where the summation over repeated indices is
assumed. &, is a component of the external field,
l; is a component of the permanent dipole, oy a
polarizability, and By, and v, are, respectively,
the second and third polarizabilities."* A com-
ponent of the total dipole moment, p,, is obtained
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from the derivative 8W/88,, which is composed
of the permanent moment and an induced moment
due to the higher-order terms,

274
—<E> ==py=pyt a8+ (21)78, 8,6,

ViniS 848" 2)

The production of second and third harmonic
generation follows from the fact that the Fand'y’
in term in Eq. (2) involve products of electric
field components. Hence for § ;=8 ; sinwt, we
have

8%=8% sin*wt =38%,(1 - cos2wt),

+(31)?

and the cos2wt term gives rise to frequency doub-
ling.! Similarly, the third power in § is responsi-
ble for frequency tr1p1mg

The polarizabilities a ﬁ, 7 are said to be se-
cond-, third-, and fourth-order properties,
respectively, based on the order of the external
field in the energy expansion of Eq. (1), while the
permanent dipole moment is first order. It may
be shown that a Hartree-Fock wave function will
predict a first-order property, like the per-
manent dipole moment, to a comparatively good
accuracy because the first correlation corrections
vanish, 332 but there is no similar reason to ex-
pect the CHF theory'"33 to be adequate for the
higher-order properties.'®?22 Furthermore, for
even highly accurate first-order properties and
especially higher-order properties, correlation
must be considered.

III. MANY-BODY PERTURBATION THEORY

The coefficients in Eq. (1) can be obtained direct-
ly from perturbation theory or by using finite-
field methods. Choosing the latter, temporarily,
we may write the Hamiltonian for the perturbed
molecule as

@) =3+ 12E)=F,+V+12@) e
and

F@)=F,+20@), )

sz(é):xf: w(i):—i:g'r(i), (5)

-E 7 -Z u(i,&). (8)

[3¢)

F, is the usual independent particle self-consistent-
field (SCF) effective Hamiltonian; hence

F@) = [nt) +u,8) - -T@)] @

w, )3 [ 1@ 2t E; 20are, ®

and in the general case the molecular orbitals
{x,} are field dependent.

If we are only interested in the SCF solution in
the presence of the field, then V in Eq. (3) may be
neglected. This defines the CHF model, w1th the
field-dependent solutions

FEC,E)-2C,@)eE). ©)

The molecular orbitals x,(§) are defined as an
expansion in terms of an atomic orbital basis set

|©:

v@)=19c,@). (10)
From Eqgs. (6)-(9) it follows that

F@e,&)=w,&)2,8), (11)
where

2,(8)= alx,(0) - - x,m)], (12)

Wear@) = Wo &) + (2, |[VE) |, - (13)

In the CHF case, the SCF equations are solved
§9r fixed (finite field) values of the field strength
&. From these solutions, the CHF energy may be
obtained as a function of & as

- N -
me):;je,(s)

X ENx, B, B . (14)
i, §=1
The double-bar notation designates the two-elec-
tron integral,

XXl XpXs)

= f ar, f arxF(L)x¥@)ri3(1=Py,)
X xr(l)x,(2) . (15)

The CHF polarizabilities and hyperpolarizabilities
may be derived from second and higherderivatives
of Weyr (&) with respect to the field strength.
Alternatively, the induced dipole moment can be
calculated from the wave function, Eq. (12), with
the polarizability and hyperpolarizabilities ob-
tained as first, second, and higher derivatives

of the induced dipole moment. The rigorous
equivalence between the dipole procedure and the
energy-based procedure depends upon the satis-
faction of the Hellman—Feynman theorem for the
approximate wave functions.?

As an alternative to the CHF model, a perturba-
tion expansion of F(8) and u(S) in powers of & may
be made. This procedure, subject to orthonorma-
lity of the molecular orbitals, leads to the coupled
perturbed Hartree-Fock (CPHF) method.34-3¢ The
results of CPHF and CHF are formally the same.!!

In order to go beyond the CHF level and include
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FIG. 1. Single-particle corrections to the energy dia-
grams. (---X) is the negative of the Fock potential. If
occupied and excited one-particle orbitals are deter-
mined as SCF solutions at any field strength, then these
diagrams component mutually cancel.

effects of correlation, the perturbation V(g ) of
Eq. (6) needs to be considered in more detail. In-
cluding this perturbation, the energy for the per-
turbed molecule can be obtained from the linked-
diagram expansion®® as

W(-g)= WCHF(E)

3 <00 |[VE W, @) - FOFVEP |69 -

(18)

The terms defined by the summation in Eq. (16)
are said to be the correlation corrections to the
energy for a given field strength. Just as in the
zero-field case, by solving the SCF equations in
the presence of the field as in Eqgs. (8)-(10), the
SCF cancellations shown in Goldstone-diagram

form in Fig. 1 (--- X is the negative of the Fock

1

€ & g

(A) (B) (C)
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FIG. 2. Zeroth- and first-order relaxation diagrams
for a second-order property. These terms are all in-
cluded in a CHF calculation for a second-order property.

potential) are still maintained, so that no diagrams
containing these parts are required.

The coefficients in Eq. (1) are given as deriva-
tives of W(&) with respect to field strength. In
the finite-field approach, W(g) must be computed
for several field strengths to allow the determina-
tion of the polarizabilities, which requires taking
small differences between large terms. If the
differentiation is made initially, separate linked-
diagram expansions for i, @, B, 7, etc., in terms
of the zero-field SCF orbitals [x,(0)=X3, €,(0)
=€J], can be used to evaluate the small polariza-
bilities directly.

In the latter case, ordinary double perturbation
theory gives ’

W=W,+Y, (& (V+20)
k=0
X[(Wy = Fo)'P(V+2Q - AW)]*| @) (17)
and, for some component &,
W(E,)=Wo+ (W o+ W, + W o+ " )8,
+(W2,0+W2.1+Wé,2+' o )8:2:*' <+, (18)

weé,)= Wo,w + Wl,,o5,+ Wz'm5:+ Wa',,é’i+ e,

, (19)
Considering a second-order property for illus-

tration, with the definition

Ry= P(W,—-F,)"'P, (20)

where P is the projector for the orthogonal com-
plement to &,

Wi o(B,) = 50,,= (@0 |xBox |@0) + (@ | xR, (x — Wy, )R,V |@ o) +(@6 | VR, (x = W, 0)Rox | )

+{ @, |¥R,(V = Wy, )Rox [@e)+ "« .

The first term on right in Eq. (21), W, ,, is given

by the uncoupled Hartree-Fock (UCHF)' approxi-
mation [ Fig. 2(A)], which is
0 x 0

W= (XO )g >, . (22)

i(occ) atunoce) €i~ €qa

while the higher terms involve the field-indepen-
dent perturbation V(0). The Goldstone diagrams

(21)

r

for second order in an external field and for zeroth
and first order in the two-electron perturbation
V(0) are shown in Fig. 2. The symbol (---e) indi-
cates interaction with the external field.

It is important to recognize that even though
diagrams (B)-(G) of Fig. 2 involve a two-electron
vertex, these diagrams and selection of others
in all higher orders in V(0) are included®™** in the
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CHF results or in the perturbation-theory-equiva-
lent CPHF.3*3% At least in the static case these
terms should »not be considered as correlation
corrections. These terms arise, instead, from
the effective Fock potential (i), now written in
terms of perturbed orbitals, which reflects the
relaxation of the orbitals to the external perturba-
tion.** Beyond first order in V(0), additional
diagrams arise which are nof included in

CPHF, **37 and these terms constitute true corre-
lation corrections. In the finite-field approach,
all terms which arise from derivatives of the
summation in Eq. (16) are actual correlation cor-
rections, while the initial CHF calculation pro-
vides the zeroth- and first-order energy correc-
tions, subject to the field-dependent orbitals.
(CPHF is the static equivalent of time-dependent
Hartree-Fock theory or the random-phase approxi-
mation, which is similarly recognized to sum
selections of many-body propagator diagrams to
all orders.?®3% In the time-dependent context, the
terms so summed are frequently referred to as
“dynamic” correlation.®®)

Even though the direct determination of the
polarizabilities is a distinct advantage, it offers
the disadvantage that separate sets of programs
must be written to evaluate the diagrams for each
order in the external perturbation, while the
finite-field method allows all polarizabilities to
be obtained from simply executing “enough” energy
calculations at a series of field strengths. This
also permits one to exploit the theories and pro-
grams that have been developed for the usual
correlation problem?® which typically offer a much
more sophisticated level of treatment for the
correlation than would be convenient to develop
for each individual order in an external perturba-
tion. Also, the dichotomy into correlation and

relaxation effects is transparent'for the finite-field
method.

1IV. NUMERICAL RESULTS

In the finite-field methods, it is necessary to
obtain the various polarizability components from
formulas for the energy or dipole moment. In the
present work, either procedure may be used at the
CHF level, since &,(&) satisfies the Hellman-
Feynman theorem, but derivatives of W(§) will be
used for the correlation corrections. By consider-
ing Eq. (1), it may be shown that the finite-diffe-
rence formulas listed in Table I hold for the various
polarizabilities. Each of these formulas is obtain-
ed by excluding all even or odd terms in Eq. (1) by
using positive and negative field strengths of the
same magnitude. This ensures that the contamina-
tion from the next higher term in the power series
is completely removed, leaving only the next high-
er term of the same type (i.e., even or odd), which
is about four orders of magnitude smaller (at the
field strengths used here) than any polarizability
being determined. Hence, essentially no error is
anticipated from higher polarizability contamina-
tion. At the same time, however, field strengths
of adequate size must be used to ensure that
significant energy differences are obtained. In
this work field strengths of 0.0, 0.01, and 0.02 a.u.
are found to be suitable.

The formulas in Table I are general, but if some
symmetry is present, formulas 1.3 and 1.6 be-
come much simpler. If the molecule has a rotation
axis, with ¢ representing the direction of this axis,
and j is perpendicular to ¢, group-theoretical con-
siderations show that the components, B;;;, o,
Y35 and vy, are vanishing at zero field strength.
This results in particularly simple formulas for

TABLE I. Energy formulas for finite-field calculations of dipole moments, polarizabilities, and hyperpolariz-

abilities. ?

0Odd order
18 1= =% [W(8;) = W(=8,)1+ s [W28 ;)—W(=28 )]+ O(5) (1)
B1ubi=h (W28 ,)— W(=28 )]+ (WS )~ W(=8,)]+ 0 () @)
B1ii836: =B 1683 = = [W(E; =8 )= W(=8,;+ &)1+ [WE)-W(=8))] - (W) ~W(=)]+ 0(5) @®)
Even order
0, 8=+ W) =+ [W(E,) + W(=8,)1+ & [WE2E;)+ W(=28,)1+ O€) (4)
Vii::8 i =+4[WE;)+ W(=8 )] — [W(2E;) + W(=28,)] — 6W(0)+ O(€) (5)
+7113:636%5 = 20,;6,8; -4 011638 ;47153838 ) = = (W =8 )+ W(= 81+ EN+ (W) +W(-8))] 6)

+ (W) + W(=8,)]—2W(0)+O(€)

2 For a molecule with a rotation axis in the direction i, &j;, 8;;;, ¥jiii» and ¥;;;; will be zero by symmetry.
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(8)

FIG. 3. All second- and third-order correlation dia-
grams provided that SCF (CHF) orbitals are used for
the occupied and excited one-particle states. Anti-
symmetrized vertices are assumed in these diagrams.

the nonvanishing components.

The finite-field correlation corrections included
are shown as antisymmetrized diagrams in Figs.
3-6, where it is understood that the hole and
particle lines are field dependent (or “dressed”)
and that finite differences of these quantities must
be taken before the polarizabilities are obtained.
(See Refs. 27 and 40 for the rules and algebraic

WU U9 U0 U
BORVRRTI gt

Gﬁf@ @ib 6:_0 W,
v Vo Uy U

FIG. 4. All single-excitation fourth-order diagrams
provided that SCF (CHF) orbitals are used for the
occupied and excited one-particle states. Antisymme-
trized vertices are assumed.

formulas corresponding to these antisymmetrized
diagrams.)

These diagrams consist of all terms that occur
through fourth-order in the correlation, subject
to field-dependent SCF orbitals that would arise
due to configuration-interaction (CI) single, double,
and quadruple excitations.?® Triple excitations
also contribute in the fourth-order energy, but
these are excluded.

It is well known that CI-type single excitations
are quite important in determining proper_gies other
than the energy, since operators such as § ‘T, will
mix single excitations directly with an SCF unper-
turbed wave function. In the present work, the
predominant effect of single excitations is intro-
duced by means of the initial CHF calculations,
which, as described in Sec. III, is responsible for
summing a series of diagrams involving such
single-excitation vertices as occur in Fig. 2 (i.e.,
/*) to all orders. This “dresses” the hole and
particle lines involved in Figs. 3-6. The remain-
ing single excitations accounted for by Fig. 4 in-
volve the smaller effect of single excitations of

D)

FIG. 5. All double-ex-~
citation fourth-order dia-
grams provided that SCF
(CHF) orbitals are used
for the occupied and ex~
cited one-particle states.
Antisymmetrized vertices
are assumed.

SSRVRVIRYS
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FIG. 6. All quadruple-excitation fourth-order dia-
grams, provided that SCF (CHF) orbitals are used for
occupied and excited one-particle states. Unlinked dia-
grams (H) and (I) do not contribute to the correlation
energy. Antisymmetrized vertices are assumed.

dressed lines that enter into the fourth-order
energy only by interacting through dressed double
excitations. The very high-order coupling of the
first category of single-excitation effects with
correlation due to double and quadruple diagrams
by using “dressed” hole and particle lines is one
of the additional advantages of the finite-field-
based methods.

The basis set for the present study of HF is
chosen essentially following the prescription of
Christiansen and McCullough (CM)."® We start
from Dunning’s*! 5s3p contraction of Huzinaga’s*?
9s5p basis set for flourine, and Dunning’s 3s con-
traction for hydrogen Slater exponent 1.2. These
functions are augmented by a two-Gaussian fit to
a d-STO for F with exponent 3.358, and a two-
Gaussian fit to a p-STO, exponent 2.082 for H.*®
This results in a 5s3p1d/3s1p initial basis set.

This basis is then augmented in a “well-tempered”

fashion. The smallest exponent for each ! quantum
number per atom is multiplied by 0.4 to obtain a
new, diffuse function to assist in describing the
polarizability. The resulting basis 6s4p2d/4s2p

is expected to be adequate to describe the dipole
polarizability. To also attempt to account for the
higher polarizabilities, the new exponent is again
multiplied by 0.4 to add another p and d function on
F, and an s and p function on H. Finally, the most
diffuse d exponent on F was again multiplied by
0.4 and this function added to the basis set. We
also consider the addition of an extra diffuse s
function on F and the exclusion of the most diffuse
s and p on H and the d function on fluorine. This
provides four different basis sets.

A GTO basis set similar to these has been shown
to account for the numerical CHF results for u,,
Quay Bgzey and v,,,, to within a few percent.’* How-
ever, those authors were unable to reduce the er-
ror in the CGTO value for B,,, below 7%. When we
attempted to use their basis set, with all six possi-
ble Cartesian components of the 4 functions, xx,
vy, 22,%x2,92,xy (CM use only the five normal d-
function components), we found an approximate
linear dependency which made our correlated cal-
culations unstable. We were able to resolve this
problem and also substantially reduce the error
in the SCF 8,,, component by choosing a tighter
d-polarization function on F (STO £=3.358 com-
pared to £=2.25 for CM) and then adding an addi-
tional diffuse d function to the F atom. Both the
tight and diffuse d functions seem to be important
as illustrated in Table II. Using a tight d function
while excluding the most diffuse d-function (bases
A and B) results in a §,,, that differs from the
numerical result by 11%. In the CM basis, which
has avery diffuse d functionbut excludes a tight po-
larizationd function, a similar erroring,,, occurs.
Bycombiningboth, asinbasesC andD, thiserroris
greatly reduced.

The difference between bases C and D is the

TABLE II. Comparison of CHF results for HF in various basis sets with numerical CHF.

(R=1.7328 bohrs; values in a.u.)

Basis set (GTO) w(0) p? Oy Bzez . Y zzz2z
CM (6s5p3d/4s3p)" —100.0535 0.759 5.80 -9.0 310
A (6s5p3d/5s3p)° —100.0563 0.757 5.72 -9.3 250
B (7s5p3d/5s3p)°. -100.0563 0.757 5.72 -9.2 260
C  (6s5pad/4s2p)° -100.0563 0.759 5.73 -8.4 250
D (6s5p4d/5s3p)° —100.0565 0.758 5.76 -8.5 280
Numerical CHF® —-100.0706 0.756 5.76 -8.3 320

2 Coordinate system is chosen such that dipole moment (F-H") is positive.

b Results of Ref. 16.

¢ Basis sets A, B, C, and D use all six Cartesian Gaussian d-orbital functions xx, yy, zz,

xy, vz, and x2.
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exclusion of the most diffuse s and p functions on
H. This is seen to have almost no effect on 8 while
having a somewhat larger effect on v,,,,. The
observation that the diffuse H s and p functions
have only a small effect is partially due to the fact
that the diffuse region of the charge cloud is al-
ready accounted for by the other highly diffuse
functions on F. However, 7,,,, is usually larger
the more diffuse functions that are included in the
basis, as supported by the results of bases sets

C and D.

It is clear from Table II that good agreement
with the numerical results for p,, @,,, B,., and
Yeezz Can be achieved with the present basis sets.
It does not necessarily follow that the other com-
ponents of @, B, and 7 are as well described or
that this basis is entirely adequate for the cor-
relation corrections to the polarizabilities, but the
good agreement with the numerical results for
the parallel components at least provides an indi-
cation that the final correlation corrections to the
different polarizabilities should be indicative of
the size of the true correlation corrections, which
is the primary objective of this study.

In the present correlated calculations, all the
single, double, and quadruple excitation diagrams
that arise through fourth order in the V(&) per-
turbation are included. This model willbe referred
to as SDQ-MBPT(4). Thesediagrams are evaluated
at various field strengths, from which the equa-
tions of Table I are used to provide the different
polarizabilities.

To carry out such finite-field calculations suc-
cessfully, it is necessary to ensure about eight-
decimal-place accuracy in all computations, from
the initial molecular integrals to the actual dia-
gram evaluation. The current computations em-
ploy the MBPT program system developed at ‘
Battelle.** Results for the effect of correlations
on various properties are shown in Table III

The 6s5p4d/5s3p basis set is seen to be capable
of providing about 78% of the observed field-free
valence-shell correlation energy. This is con-
sistent with other calculations, where we have
shown that a 5s3p1d/3s1p basis typically accounts
for three-quarters of the valence-shell correlation
energy.?>*% since the remaining functions in the
current bases are generally too diffuse to contri-
bute much to the field-free correlation effect. On
the other hand, correlation involving the normal
and diffuse functions is important in the presence
of the field, so some balance between a reasonable
description of the valence-shell correlation and
the long-range tails of orbitals is still expected to
be significant in obtaining good correlated results
for polarizabilities.

The effects of correlation on the other properties

1.7328 bohrs; values in
CHF+SDQ-MBPT 4)
-100.30353

0.7089
6.39
5.18
-9.7
-0.6
-10.9
390
140

-0.0491

- SDQ-MBPT (4)
—0.24706
+0.63
+0.70
~1.2
-0.6
-2.4
120
60

(Basis set D; R

Total
~0.00383
-0.0085
+0.176
+0.206
-0.97
~0.47
-1.90

+60
30

Quad.
Ex. Diam.
+0.002 05
+0.002 4
-0.026
-0.014
+0,13
+0.03
+0.,20
~10

Fourth order

Double
Ex. Diam,
-0.00347
-0.0051
+0.079
+0.,080
-0.4
-0.2
-0.8
20
10

~0.00241
—-0.0058
+0.123
+0.,145
-0.7
-1.3

50

20

Single
Ex. Diam.
-0.3

Third order
+0.00156
+0.007 2
-0.230
-0.332
+0.49
+0.51
+1.51

—60
=30

-0.24480
—0.0478
+0.688
+0.826
-0.72
-0.64
-2.0

Second order
110
60

CHF
0.7580
5.76
4.48
-8.48
-0.03
-8.54
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~100.056 47
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TABLE IV. Contributions of different diagrams to dipole moment, polarizability, and hyperpolarizabilities of HF.
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listed in Table III vary from about 7% for the dipole
moment to 12% for the polarizability, and a rather
dramatic change of about 22% for the 8 hyperpolar-
izai)ility. A similarly large change is observed
for the v,,,, component of the hyperpolarizability
of 30%. The correlated dipole moment and polari-
zability are found to be in excellent agreement with
experiment, although the anisotropy is somewhat
farther away. The hyperpolarizabilities seem to
be significantly affected by correlation, and al-
though this is only a single molecule out of many,
it suggests that a theoretical approach that at-
tempts to predict and explain the experimental
values for hyperpolarizabilities must definitely
take into account the effects of correlation.

In Table IV are listed the individual correlation
corrections for HF which are of some interest in
answering questions about the order of perturba-
tion theory needed to get converged correlated
answers as well as the effect of the different types
of diagrams. It is apparent that most of the cor-
relation correction is obtained from just the
second-order energy diagrams. In fact, a com-
parison of the second-order results with the SDQ-
MBPT(4) values demonstrates that there is not
too much change due to the third- and fourth-order
diagrams, which are of opposite sign. In general,
the fourth-order terms have a somewhat larger
magnitude than third order, further augmenting
the second-order result. This is particularly true
of B,,,- This behavior has also been observed in
studies of molecular correlation energies, 2° as
illustrated currently by W(0) for the HF molecule.
At first sight, this may cause some reservations,
but comparison®® between the DQ-MBPT(4) model
for the correlation energy with the infinite-order
sum of double and quadruple excitation diagrams
normally known as the coupled-cluster-doubles
(CCD)?® model shows agreement to within a milli-
hartree for a large group of atoms and molecules.
Hence even though fourth order is larger than
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third order for this example, it does not necessa-
rily follow that higher-order terms will be im-~
portant. However, the very small differences
involved in finite-field calculations might be more
likely to be affected by higher-order terms; hence
this question should be borne in mind. We will
resolve this point in future work.

For each property except the energy, the single-
excitation diagrams provide a larger fourth-order
contribution than the double-excitations, while the
quadruple excitations are typically a factor of 2
to 3 smaller than the fourth-order double-excita-
tion contribution. This reflects the residual im-
portance of single-excitation terms for properties
dependent upon one-electron operators, eventhough
this type of single-excitation contribution only
appears (because of Brillouin’s theorem) in the
fourth-order energy via their coupling through
double excitations. The predominant single-excita-
tion effect, as discussed previously, is included
at the CHF level. Triple-excitation diagrams
also occur in fourth order and are likely to be
somewhat more important than the quadruple ex-
citations. These probably provide a correction
with the same sign as the fourth-order single- and
double-excitation diagrams. The relative unim-
portance of the quadruple excitations plus the
fact that the quadruple and triple excitations should
have an opposite effect on a polarizability suggest
that a limitation to single- and double-excitation
diagrams possibly summed to all orders should
provide reliable results for these properties, if a
well-chosen, well-balanced basis set is used.

ACKNOWLEDGMENTS

The authors appreciate many helpful comments
from I. Shavitt. The authors also appreciate E.
McCullough’s providing us with details about the
GTO basis sets used in Ref. 19. This work is
supported by the Air Force Office of Scientific
Research under Contract No. F49620-78-C-0046.

!p, A.Franken, and J. F. Ward, Rev. Mod. Phys. 35,
23 (1963).

’I. L. Fabelinskii, Molecular Scatteving of Light, trans-
lated from Russian by R. T. Beyer (Plenum, New
York, 1968).

R. S. Finn and J. F. Ward, Phys. Rev. Lett. 26, 285
(1971); J. Chem. Phys. 60, 454 (1974).

‘5. F. Ward and 1. J. Bigio, Phys. Rev. A 11, 60 (1975);
C. K. Miller and J. F. Ward (unpublished).

5J. F. Ward and G. H. C. New, Phys. Rev. 185, 57 (1969).

SA. D. Buckingham and B. J. Orr, Trans. Faraday Soc.
65, 673 (1969).

3. M. Brown, A. D. Buckingham, and D. A. Ramsey,
Can. J. Phys. 49, 914 (1971).

83. E. Harris and D. M. Bloom, Appl. Phys. Lett. 24,

229 (1974).

°E. A. Stappaerts, S. E. Harris, and J. F. Young, Appl.
Phys. Lett. 29, 669 (1976).

YK, s. Krishnan, J. S. Ostrem, and E. A. Stappaerts,
Opt. Eng. 17, 108 (1978).

Uy, D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43,
S34 (1965).

2p. W. Langhoff, J. D. Lyons, and R. P. Hurst, Phys.
Rev. 148, 18 (1966); E. Leuliette-Devin and R. Loc-
queneux, Chem. Phys. Lett. 19, 497 (1973); R. E.
Sitter and R. P. Hurst, Phys. Rev. A 5, 5 (1972).

133, M. O’Hare and R. P. Hurst, J. Chem. Phys. 46,
2356 (1967); A. D. McLean and M. Yoshimine, bid.
45, 3467 (1966); 46, 3682 (1967); S. P. Liebmann and
J. W. Moskowitz, spid. 54, 3622 (1971).



1322 RODNEY J. BARTLETT AND GEORGE D. PURVIS, III 20

4G, p. Arrighini, M. Maestro, and R. Moccia, Symp.
Faraday Soc. 2, 48 (1968).

15p, Lazzeretti and R. Zanasi, Chem. Phys. Lett. 39,
323 (1976).

p, A. Christiansen and E.'A. McCullough, Chem.
Phys. Lett. 63, 570 (1979).

p. w. Langhoff, M. Karplus, and R. P. Hurst, J.
Chem. Phys. 44, 505 (1966).

18y, J. Werner and W. Meyer, Mol. Phys. 31, 855 (1976).

19p_ A. Christiansen and E. A. McCullough, Chem.
Phys. Lett. 51, 468 (1977).

24, J. Sadej, Chem. Phys. Lett. 47, 50 (1977).

YUR. J. Bartlett, J. C. Bellum, and E. J. Brandas, Int.
J. Quantum Chem. 7S, 449 (1973).

223, E. Gready, G. B. Bacskay, and N. S. Hush, Chem.
Phys. 23, 9 (1977); 22, 141 (1977).

2K, A. Brueckner, Phys. Rev. 97, 1353; 100, 36 (1955);
J. Goldstone, Proc. R. Soc. A239 267 (195’7)

%, P, Kelly, Adv. Chem. Phys. 14, 129 (1969); Phys.
Rev. 131, 684 (1963); 136, 896 (1964)

%R, J. Bartlett and G. D. Purvis, Int. J. Quantum Chem.
14, 561 (1978).

%R. J. Bartlett and I. Shavitt, Chem. Phys. Lett. 50,
190 (1977); 57, 157 (1978).

2R, J. Bartlett and D. M. Silver, Int. J. Quantum Chem.
Symp. 9, 183 (1975); Phys. Rev. A 10, 1927 (1974).
#J. Cizek, J. Chem. Phys. 45, 4256 (1966); Adv. Chem.
Phys. 14, 35 (1969).

23, Paldus J. Cizek, and I. Shavitt, Phys. Rev. A 5,
50 (1972).

3L. T.Redmon, G. D. Purvis, and R, J. Bartlett, J.
Chem. Phys. 69, 5386 (1978).

31c. Mdller and H. S. Plesset, Phys. Rev. 46, 618 (1934).

823, Goodisman andW Klemperer, J. Chem. Phys. 38,
721 (1963).
3Bg, Fraga and G. Malli, Many-Electron Systems: Pvo-
perties and Intevactions (Saunders, Philadelphia, 1968).

3T, C. Caves and M. Karplus, J. Chem. Phys. 50, 3649
(1969).

%H. Peng, Proc. R. Soc. A 178, 499 (1941); A. Dalgarno,
Adv. Phys. 11, 281 (1962); S. Kaneko, J. Phys. Soc.
Jpn. 14, 1600 (1959); L. C. Allen, Phys. Rev. 118,

167 (1960); R. M. Stevens and W. N. Lipscomb, J.
Chem. Phys. 40, 2238 (1964); 41, 184 (1964).

%R. J. Bartlett and H. Welnstem Chem. Phys. Lett. 30,
441 (1975); T. S. Nee, R. G. Parr, and R. J. Bartlett
J. Chem. Phys. 64, 2216 (1976).

3TL. Adamowicz and A. J. Sadlej, Chem. Phys. Lett.

53, 377 (1978).

383 J. Thouless, Quantum Mechanics of Many Body
Systems (Academic, New York, 1961).

%M. J. Jamison, Int. J. Quantum Chem. Symp. 4, 103
(1971).

#G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 68,
2114 (1978).

47 H. Dunning, J. Chem. Phys. 53, 2823 (1970).

“23. Huzinaga, J. Chem. Phys. 42, 1293 (1965).

43T, H. Dunning, J. Chem. Phys. 55, 3958 (1971).

44The UMBPT program which does MBPT and coupled
cluster calculations is authored by R. J. Bartlett and
G. D. Purvis. The SCF calculations and integral trans-
formations are accomplished by the program GRNFNC,
authored by G. D. Purvis. The molecular integral pro-
gram used is MOLECULE, authored by Jan Almlof.

#5R. J. Bartlett and G. D. Purvis, Physica Scripta, to be
published.



