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Poisson's summation formula, Walflsx's formula, and certain lattice sums occurring in the
study of a system of ideal bosons

A. N. Chaba
Departamento de Ftsica, Uniuersidade Federal da Paraaba Joao Pessoa, Parasba, Brazil

{Received 1 December 1978)

The equivalence of the results is pointed out for certain lattice sums occurring in the study of a system of
ideal bosons derived by the use of the Poisson's summation formula with those obtained by using the
expression for the density of single-particle states, given recently by Baltes and Steinle, and arrived at by
the use of Walfisz s formula for the number of lattice points in a hypersphere of p'dimensions. Further,
expressions are given for the density of single-particle states in one and two dimensions for periodic,
Dirichlet, and Neumann boundary conditions. In the end the equivalence is shown between the Poisson s
summation formula and Walfisz's formula directly.

From the recent work of Baltes and Steinle, '

one can write the following expression for the den-
sity of single-particle states, derived by the use
of the Vfalfisz s2 formula on the number of lattice
points in a hypersphere of P dimensions, for a
particle enclosed in a cubical box of length L. (It
may. be noted that the notation used here is slight-
ly different from that in Ref. 1):

single-particle state of energy s„o.= —p, /KT,
p = 1/KT, p, being the chemical potential, K the
Boltzmann constant, T the absolute temperature
of the system and A. =k/(2MKT)'~' is the mean
thermal wavelength of the particles. Now to do
the sum over i, one replaces it by an integral and
uses Eq. (1) for the density of states and obtains
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where l=(l, + i~+ f3)', ~ =(~|+m2)
—1, and+1 for'the periodic, Dirichlet, and Neu-
mann boundary conditions, PBC, DBC, and NBC,
respectively (in Ref. 1, the expression is given
for Dirichlet and Neumann boundary conditions
only), Jo is the Bessel function of order zero, and

k is related to the single-particle energy e by
s =5'k'/2M, where M is the mass of the particle.

Using Eq. (1), the expression is calculated for
the number of bosons Nin a finite three-dimen-
sional cubical box as follows:
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where y =(1+82)(vn)'~'(L/X). Using Eq. (3) in
Eq. (2), separating the terms corresponding to l
= 0, rn = 0, and q = 0, and introducing Bose- Ein-
stein functionss g„(5), one gets
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where, (n, ) is the mean occupation number in a where primes on the sums means that the terms
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corresponding to l = 0, m = 0, and q = 0 are ex-
cluded from them. Following Greenspoon and
Pathria, I replace the summations over j by in-
tegrations and doing them, I finally obtain
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where Ko(Z) is a modified Bessel function. Ziff
et al. ' have shown that the replacement of sums
over j by integrations introduces errors of order
0[exp(-L/X)] which, for L»X, are negligible.
We observe that for 8=0 (PBC), Eq. (5) agrees
with the result of Greenspoon and Pathria4 [see
their Eqs. (A12) and (A13)], and for 8 = —1 (DBC)
and 8=+1 (NBC) this equation agrees with the
corresponding results of Zasada and Pathria6
[see their Eq. (9)]. [Also see Eq. (8) of Chaba
and Pathria, ' for DBC].

In view of the result contained in Eq. (5) and
the procedure used to obtain it, I wish to make the
following two comments:

(i) The term involving g3&&(a) in Eq. (5) is the
customary bulk term and, earlier, it was noted'
that the other terms involvingg„(o. ) in Eq. (5)
come from the modification' (of the Weyl term),
due to the finite size of the system, in the ex-
pression for the density of states, which was tak-
ens to be

a3(k) = L3k /2v + 83I k/4v

+ 8 3L/4v + 835(k)/8,

this expression agreeing with non oscillatory terms
of Eq. (1), that is, l=0, m=0, q=0 terms in the
three summations along with the last term in Eq.
(1). Further it was felt that the remaining terms
in Eq. (5) arise explicitly from the discreteness
of states and due to the summationprocedure which
was used rather than replacing the sum by inte-
gration and using expression (8) for the density of
states. But now we note that if we use the more
accurate expression in Eq. (1) for the density of
states, all the finite-size effects are completely
obtained from this alone.

.(ii) Here we have obtained Eq. (5) for N, making
use of the expression in Eq. (1) for the density of
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Again, using Eqs. (7) and (8), one can obtain
expressions for N, U, and lnZ which are identical
with the corresponding results5'~' already ob-
tained by the other approach.

From the equivalence of the results obtained by
the two approaches, one suspects that there is
some basic and direct connection (or equivalence)
between the Poisson summation formula and the
Walfisz formula, in the spirit discussed above,
as is actually seen to be the case. The Walfisz
formula for the number of lattice points N&(x) in a
hypersphere of p dimensions and of radius x is
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where l=(E~)+l~~+ ~ ~ ~ +l~~)' ~ and this for a one-
dimensional case can be written
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states which is itself derived by using the Walfisz
formula, whereas in Ref. 4, 6, and 7, identical
results were obtained, for the corresponding
boundary conditions, by making use of the Poisson
summation formula, so that, we may say that these
two. approaches provide alternate but equivalent
ways of doing such sums. We have verified that
when one uses the former approach to do the sums
involved in the internal energy of the finite three-
dimensional system of ideal bosons, fl=Z,. s,(n, )
(or the pressure) and the logarithm of the grand
partition function

lnZ= —g ln(1 —e ' '~'i'),

we again arrive at the same results, for the cor-
responding boundary conditions. , as obtained earl-
ier by the latter approach "'.

The expressions for the density of single-particle
states in the case of two-dimensional (square of
each side L) and one-dimensional (of length L)
enclosures may also be written down as follows:
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so that, the density of lattice points is given by

n, (x) = ' = 2cos(2vqx).dN, (x)
dx

qz a &)O

Now in order to do the sum Z„'."„E(n), we replace
it by integration and make use of Eq. (12) for the
density of states, that is,

Q E(n)- E(x)a, (x) dx

Here n, (x) dx includes the number of lattice points
in the interval (x, x+ dx) as well as (-x, -x —dx).
If a, (x) is the density of lattice points between x
and x+ dx only, then due to the symmetry of the
lattice points about the origin, we can write

ai(x) =g cos(2vqx) =g e "'"'. (12)

Thus we arrive at the result,

Q E(n) = Q P(q),

where F(q) is the Fourier transform of E(x):

P(e)= f de(x)e "'*' dx. (14)

Equation (13) is just the Poisson summation for-
mula and it has been shown that this formula is
exactly equivalent to replacing the sum inZ„'" „E(n)
by integration and using the expression for the
density of states given in Eq. (12) which itself is
obtained from the Walfisz formula. It is, then,
not surprising that the results arrived at by the
two approaches referred to above are identical.
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