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Self-consistent-field electron-gas local-spin-density model including correlation for atoms
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The model previously derived for the electron-gas exchange in atoms is extended to include Coulomb
correlation effects. Exchange, Coulomb-correlation, and total energies for the atoms He through Ar,
calculated within this spin-density model, are found to correspond closely to the exact values.

with a similar expression for U, '"(1). This corre-
sponds to the potential set up by a Coulomb charge
p,

'" at position 2, given by

p'"(2)=p(2)f (1,2),
with the following properties: .

(2)

p, '"(2)dr2 ——0,

A proposal by Gopinathan, Whitehead, and Bog-
danovic~ based on the properties of the one- and
two-particle density matrices and on the Kutzel-
nigg-del Re-.Berthier analysis of the boundary
conditions for a system with a finite number of
electrons, showed a possible way to derive the Z
dependence of the n parameter in the Xe theory.
They assumed the pair-correlation function for
electrons with parallel spin f„(1,2) .to be linear
in r&2. We have shown that the use of more real-
istic forms for f, ,(1,2), leads to local exchange
potentials for atoms which give total energies very
close to the Hartree-Fock limit.

The purpose of the present work is to extend the
theory developed in Ref. 4 to include the full elec-
tron-gas pair-correlation effects in these local
potentials. A large amount of work has been done
in this direction since Wigner proposed a local
correlation potential for an electron gas of low

density. The relative novelty of the present ap-
proach is that we work directly in real space.

The correlation potential for the interaction be-
tween antiparallel-spin electrons is given by (using
the notation and the equations developed in Ref. 4)

U, '"(1)=ff„(1,2)p, (2)dv, ,

for large r» where it may be assumed that the
electrons move independently. Equation (8) and

(5) are derived from the relations4

)) „(1,2) =p, (1)p,(2) + p, (1)p,(2)f„(1,2)

p, '"(2)=-p, (1)exp " cos
&ra 2ra&

(8)

The standard' approximation pi, (2) = p, (1) near the
center of the Coulombic hole has been made in Eq.
(8). The Coulombic hole is assumed to be spher-
ically symmetric and centered at 1. In order to
satisfy Eq. (3), we define C and a finite r, such
that

The last factor in Eq. (8) has been introduced to
approximately reproduce the typical form of f„(1,2)
(compare Fig. 1 with, for example, Fig. 2 of
Lobo, Singwi, and Tosi7). At the same time we
make use of their numerical result, that their
f„(1,2) and f„(1,2) tend to zero at approximately
the same x&2. Next in making the finite-size hole
approximation for p, (r} and p, '"(r}we shall as-
sume r, =so, where ~0 is the Fermi hole radius,

v,", (1,2}=p, (1)p,(2) .
In accordance with the electron-gas theory ideas,

we need a functional form obeying these conditions
that is able to describe the f„(1,2) obtained with
the theoretical formalism of the Fermi gas. This
can be done with the functional form

p' (2)-o (5)

since the Coulomb correlation induces only density
modulations

p' (1)=-p (1)

as in the case of a fixed negative charge-electron
interaction, 6 and

0

FIG. 1. Approximations
to the parallel pair-correla-
tion function (solid line) and
the antiparallel pair corre-
lation function (dotted line).
wo is the radius of both the
Fermi and the Coulomb

"" spheres.
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that for a modified Wigner form is given by

1
xo —— 4mp, 1 1 ——0.0698+

R f R f
(10)

where n, is the number of spin-up electrons.
This should be regarded as a -plausible useful ap-
proximation. Its value will be assessed from the
good correlation between the numerical results
presented here and the correct values of the total
energies for the atomic systems we have studied
so far. The value of r, could also be chosen from
physical considerations, such as minimizing the
total energy by requiring that the absolute value
of the correlation energy be a maximum.

Then the only unknown parameter in Eq. (8) is
C which can be determined by requiring that Eq.
(9}be satisfied; it is found that C =8.216. Finally,
from Eqs. (1), (8), and (10) one obtains for the
Coulomb hole potential of spin-up electrons (in
Rydbergs}

f/,'*(1)=-C,'*p, / (1)=- 3.90(1+2.5148/n, )

~(1+3.VV23/n, ) '/apt/'(1), (12)

with similar expressions for spin-down electrons.
The variational procedure leads to the set of

one-electron SchrMinger equations for spin-up
electrons

V', "(r)=-,'u,'*(r),

V, '"(r) =-2C, '"p, (r)p, ' (r)
CGOU (p (r) )2/3

(14)

(15)

and

[-v + p(r) + V', *(r)+ V, '"(r)]g„(r)=e„g„(r),
(13)

where Q(r) is the electrostatic potential including
nuclear and self-Coulomb terms

U""(1)=-C' p (1)p "'(1)
=-0.1538(1+3.7723/n, )

'/ p, (1)p, '/'(1),
p, (r) =Q n, y,*,(r)q„(r), (16)

that is to be added to the exchange potential

with similar expressions for spin-down electrons.
To solve Eq. (13}we have modified the original

Herman-Skillman program to handle spin-polar-

TABLE I. Antiparallel-spin pair-correlation energy, total pair-correlation energy, and total energy for several
atoms (Rydbergs).

Atom S
Correlation

energy

Exact total pair
correlation

energy

Exact
nonrelativistic

This work % difference total energy This work % difference

He 2 0.010(0.084)
Li 3 0.051(0.091)
Be 4 0.095(0.188)
B 5 0.143(0.248)
C 6 0.198(0.310)
N 7 0.259(0.372)
0 8 0.371(0.468)
F 9 0.494(0.632)
Ne 10 0.627(0.762)
Na 11 0.742(0.772)
Mg 12 0.874(0.856)
Al 13 1.005(0.918)
Si 14 1.142(0.988)
P 15 1.284(1.042)
S 16 '1.459(1.190)
Cl 17 l.639(1.334)
Ar 18 1.826(1.464)

2.119
3.491
5.379
7.655

10.381
13.655
16.775
20.435
24.635
28.534
32.557
36.781
41.283
46.084
50.845
55.848
61.243

2.066
3.863
5.512
7.627

10.203
13.394
16.502
20.209
24.509
28.336
32.297
36.465
40.940
45.722
50.492
55.602
61.050

2.52
10.65
2.47
0.37
1.71
1.91
1.62
1.11
0.51
0.70
0.80
0.86
0.83
0.79
0.69
0.44
0.31

5.807
14.956
29.334
49.306
75.687

109.174
150.087
199.451
257.855
324.491
400.085
484.671
578.696
682.479
796.199
920.297

1055.098

5.744
15.134
29.306
49.185
75.525

108.999
149.772
199.029
257.416
324.011
399.514
484.049
578.050
681.835
795.446
919.477

1054.245

1.09
1.19
0.10
0.25
0.21
0.16
0.21
0.21
0.17
0.14
0.14
0.13
0.11
0.09
0.09
0.09
0.08

Values in parentheses correspond to the correlation energies defined and reported in Ref. 9 for a comparison. How-
ever, the present values are obtained from a spin-polarized calculation and therefore should be compared with the cor-
relation energy defined from an unrestricted Hartree-Fock calculation.

These values were obtained by adding the values in parentheses to the Hartree-Fock exchange energy which was ob-
tained by subtracting from the total potential energy reported in Ref. 13 the Coulombic energy obtained from a spin-
restricted calculation following the present approach.

([E(true) -E(this work)(/E(true)) X1QO.
~ Hartree-Fock plus correlation as defined in Ref. 9.

Obtained from a Hartree-type calculation including the correlation potential described in the text.
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ized calculations. The results obtained for the
ground states of He through Ar are reported in
Table I. The total pair-correlation energies (ex-
change plus correlation) agree very well with the
exact values (Hartree-Pock exchange plus corre-
lation ), and are comparable to the values ob-
tained with the more sophisticated approach of
Gunnarson, Jonson, and, Lundqvist. ' The pair
correlation energies for antiparallel spin electrons
are in much better agreement with the correct
values than are those given by most of the electron-
gas theories~~ which tend to overestimate the en-
ergies by a factor of 2 or 3. [This is true of the
model of Gunnarson and Lundqvist' (GL) which
predicts the total pair correlation with an Xn ex-
change corresponding to n = —', . This is not good

'for atoms, ' so the GL correlation potential must
be compensating for this. ] The total energies are
in agreement with the known values.

It is interesting to note that the equations derived
for the correlation energy between antiparallel
spin electrons take, for the spin restricted case,
a form similar to the one empirically proposed
by Clementi.
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