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It is shown that the functional form for the energies of a parameter-dependent system can be found by
minimizing an associated semiclassical energy function in configuration space.

Consider the Hamiltonian for a system of n coup-
led oscillators,
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where the real constant g, are positive or negative
and the yj&=—y&j constitute a positive-definite ar-
ray. From the virial theorem for an energy eigen-
state
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Implying that

E(5,r) = u'E(u'h, u-'r)

for all real u, )0, (4) is insufficient by itself to
determine the entire functional dependence of E
on the parameters $, and y, &. However, as indi-
cated by the recent work of Orland, ' (4) can be
supplemented by the approximate conditions
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which follow from (3) and the semiclassical rela-
tion (q,q~) =(qI)(q~); in view of Orland's results
for the n= 1 case, the regime for approximate
validity of (5) (spanned by the parameters g„y,&,

and the quantum numbers of the energy eigen-
states) can be expected to transcend the regime.
of the latter semiclassical relation if E is re-
quired to satisfy E(l. (4). There remains the task
of solving —,'(n +n) nonlinear equations (5) in com-
bination with (4) to determine the parameter de-
pendence featured by E.

My rigorous mathematical result is the follow-
ing: A solution to (4) and (5) obtains as

and the Hellmann-Feynman equations

BE , BE
=(q&qg)
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it follows that the energy E—= (H) satisfies the Euler
homogeneity equation

in which A is an absolute constant (depending on
the quantum numbers of the energy eigenstate but
not on the g s or y&&'s). The intuitive basis for
this result resides in the fact that the kinetic-
energy operator in (1) acts roughly like a repulsive
ll(ill

' term on bound-state wave functions. ' 1 was
led to consider the possibility that (6) satisfies
both (4) and (5) because only the homogeneity or-
der in q (and not the differential operator struc-
ture) of the kinetic energy enters in its virial-
theorem elimination from E, effected above by (2).

Proof of (6). The minimum value of (7) is at

q;= yj~ A (8)
/=i

where y, &
is the positive-definite symmetric ar-

ray inverse to yj& and the reciprocal norm squared
of q is denoted by

By summing (8) over i, one obtains the cubic e(lua-
tion for P

(10)

with a unique positive root. ' The substitution of
(8) into (7) yields (6) as

BE =A/ I, —v, ,
Bg,

with the definitions
ff n
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E=BAQ+-'A Q rj,'5, (t'- —Q r ', hghg (11)
i, /=i 4 j, /=i

Differentiating both (10) and (11) with respect to
g, and eliminating BP/B), between the resulting
equations produces
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Similarly, by differentiating (10) and (11) with
respect to y, z, making use of the formula

-1

l[-y(ny/(+ (f —i)]By

and eliminating Bp/By,./ between the resulting
equations, one obtains

4= A (f& Q)B/ —AQ (Q)v/+ Q/vq) + v~v/ .
By;)

(14)

It is easily verified that the right-hand side of (4)
reproduces (11) after substitution of (12) and (14).
Moreover, the latter formulas for the derivatives
of E satisfy (5). Hence, a solution to (4) and (5) is
given by (6), or more explicitly, by (11) with (10).

Remarks. For n= 1 my solution reduces im-
mediately to that of Orland, ' with $, =—1, y« =z and

Q in (10) and (11) replaced by Orland's p. I have
introduced the constant A in (7) to be precisely the
A which appears in Orland's n = 1 solution [hence
the irrelevant prefactor of 2 in (7)]. For higher-
dimensional systems with n &I, my solution to (4)
and (5) is a member of a one-parameter family of
solutions obtainable from (6) by modifying the
kinetic-energy term in (7); in place of the recip-
rocal norm squared (9), an expression of the form

for all real A. 10 yields a member of the family of
solutions. In particular, the kinetic-energy rep-
resentation with A. =-1 is clearly required by a
system of uncoupled oscillators with the array
(y, /) diagonal. Because it retains the configura-
tion-space rotation symmetry of the kinetic-en-
ergy operator in (1), the X=+1 choice employed
in (7) is indicated on physical grounds for the
most interesting cases of essential (strong) coup-
ling. 4 Then the dependence on g, and y, / is con-
tained exclusively in the permutation-symmetric
summations involving y,. /( in (10) and (11).

By minimizing associated semiclassical energy
functions like (7), the functional form for the en-
ergies of other parameter-dependent systems can
be found and shown to satisfy exact and approxi-
mate equations similar to (4) and (5) in the exam-
ple presented here.

ACKNOWLEDGMENT

This work was supported by NASA under Grant
No. NSG 7491.

H. Orland, Phys. Rev. Lett. 42, 285 (1979); $or an ante-
cedent of the method see G. Rosen, Phys. Rev. D 1,
2880 {1970).

See, for example, R. P. Feynman, R. B. Leighton, and
M. Sands, Lectures on Physics (Addison-Wesley, Read-
ing, Mass. , 1963), Vol. III, pp. 2-6; for this uncer-
tainty-principle representation to have approximate
validity, the wave function must be confined to a con-
nected region about q =0 [E.H. Lieb, Rev. Mod. Phys.
48, 553 (1976)l.

3Putting

Mat. Pura Appl. 110, 353 (1976); G. Rosen, SIAM J.Appl.
Math. 21, 30 (1971)l for n —3:

n 4'n
//" q ~ T„[4)

s=i
—-2/n

= 2-2+2/n &1+1/n(g2 2~)' I' n+1
2

&-2 /n
2' /(n-2) gn~

A=
l BAQ y(jl a dg—=

l

in combination with the ground-state estimation method
of Lich (see Ref. 2, p. 555). By evaluating the right-
hand side of n

one obtains

Q =2 QA cosh[3 cosh (3 A 0 )]

for strong anharmonic coupling with Q~ ~ 3 A; the func-
tions cosh and cosh ~ go into cos and cos ~ in this
formula for 03~3A.

4Systems with weak or partial coupling may be charac-
terized more accurately by A, values in the intermediate
range -1 &A, &1. For any specific system this matter
can be elucidated by estimating the ground-state energy
via an alternative analytical procedure. One such pro-
cedure is to use the Sobolev inequality [G. Talenti, Ann.
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one obtains the tight lower bound on the ground-state
energy Eo —Eo, where Eo is given implicitly by

J (E —&(q)) n/2 gn
8
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