Solutional method for the energies of a parameter-dependent system

Gerald Rosen

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 (Received 20 April 1979)

It is shown that the functional form for the energies of a parameter-dependent system can be found by minimizing an associated semiclassical energy function in configuration space.

Consider the Hamiltonian for a system of n coupled oscillators,

$$H = \sum_{i=1}^{n} \left(-\frac{\partial^2}{\partial q_i^2} + \xi_i q_i^2 \right) + \sum_{i,j=1}^{n} \gamma_{ij} q_i^2 q_j^2, \qquad (1)$$

where the real constant ξ_i are positive or negative and the $\gamma_{ij} \equiv \gamma_{ji}$ constitute a positive-definite array. From the virial theorem for an energy eigenstate

$$\sum_{i=1}^{n} \left(\left\langle \frac{\partial^2}{\partial q_i^2} \right\rangle + \xi_i \langle q_i^2 \rangle \right) + 2 \sum_{i,j=1}^{n} \gamma_{ij} \langle q_i^2 q_j^2 \rangle = 0 , \qquad (2)$$

and the Hellmann-Feynman equations

$$\frac{\partial E}{\partial \xi_i} = \langle q_i^2 \rangle, \quad \frac{\partial E}{\partial \gamma_{ij}} = \langle q_i^2 q_j^2 \rangle, \quad (3)$$

it follows that the energy $E \equiv \langle H \rangle$ satisfies the Euler homogeneity equation

$$E = 2\sum_{i=1}^{n} \xi_{i} \frac{\partial E}{\partial \xi_{i}} + 3\sum_{i,j=1}^{n} \gamma_{ij} \frac{\partial E}{\partial \gamma_{ij}}.$$
 (4)

Implying that

 $E(\xi,\gamma) \equiv \mu^{-1}E(\mu^2\xi,\mu^3\gamma)$

for all real $\mu > 0$, (4) is insufficient by itself to determine the entire functional dependence of Eon the parameters ξ_i and γ_{ij} . However, as indicated by the recent work of Orland,¹ (4) can be supplemented by the approximate conditions

$$\frac{\partial E}{\partial \xi_{i}} \frac{\partial E}{\partial \xi_{j}} = \frac{\partial E}{\partial \gamma_{ij}}$$
(5)

which follow from (3) and the semiclassical relation $\langle q_i^2 q_j^2 \rangle \cong \langle q_i^2 \rangle \langle q_j^2 \rangle$; in view of Orland's results for the n = 1 case, the regime for approximate validity of (5) (spanned by the parameters ξ_i , γ_{ij} , and the quantum numbers of the energy eigenstates) can be expected to transcend the regime of the latter semiclassical relation if *E* is required to satisfy Eq. (4). There remains the task of solving $\frac{1}{2}(n^2 + n)$ nonlinear equations (5) in combination with (4) to determine the parameter dependence featured by *E*.

My rigorous mathematical result is the following: A solution to (4) and (5) obtains as

$$E = \min_{\vec{q}} \tilde{E}(\vec{q}) , \qquad (6)$$

$$\tilde{E}(\vec{q}) = 2A\left(\sum_{i=1}^{n} q_{i}^{2}\right)^{-1} + \sum_{i=1}^{n} \xi_{i} q_{i}^{2} + \sum_{i, j=1}^{n} \gamma_{ij} q_{i}^{2} q_{j}^{2}, \qquad (7)$$

in which A is an absolute constant (depending on the quantum numbers of the energy eigenstate but not on the ξ_i 's or γ_{ij} 's). The intuitive basis for this result resides in the fact that the kineticenergy operator in (1) acts roughly like a repulsive $\||\bar{q}\||^{-2}$ term on bound-state wave functions.² I was led to consider the possibility that (6) satisfies both (4) and (5) because only the homogeneity order in \bar{q} (and not the differential operator structure) of the kinetic energy enters in its virialtheorem elimination from *E*, effected above by (2).

Proof of (6). The minimum value of (7) is at

$$q_{i}^{2} = \sum_{j=1}^{n} \gamma_{ij}^{-1} (A\phi^{2} - \frac{1}{2}\xi_{j})$$
(8)

where γ_{ij}^{-1} is the positive-definite symmetric array inverse to γ_{ij} and the reciprocal norm squared of $\overline{\mathbf{q}}$ is denoted by

$$\phi \equiv \left(\sum_{i=1}^{n} q_i^2\right)^{-1}.$$
(9)

By summing (8) over i, one obtains the cubic equation for ϕ

$$A\left(\sum_{i, j=1}^{n} \gamma_{ij}^{-1}\right) \phi^{3} - \frac{1}{2} \left(\sum_{i, j=1}^{n} \gamma_{ij}^{-1} \xi_{j}\right) \phi = 1$$
(10)

with a unique positive root.³ The substitution of (8) into (7) yields (6) as

$$E = 3A\phi + \frac{1}{2}A \sum_{i, j=1}^{n} \gamma_{ij}^{-1}\xi_{j} \phi^{2} - \frac{1}{4}\sum_{i, j=1}^{n} \gamma_{ij}^{-1}\xi_{i}\xi_{j}.$$
 (11)

Differentiating both (10) and (11) with respect to ξ_i and eliminating $\partial \phi / \partial \xi_i$ between the resulting equations produces

$$\frac{\partial E}{\partial \xi_i} = A\phi^2 u_i - v_i , \qquad (12)$$

with the definitions

$$u_{i} \equiv \sum_{j=1}^{n} \gamma_{ij}^{-1}, \quad v_{i} \equiv \frac{1}{2} \sum_{j=1}^{n} \gamma_{ij}^{-1} \xi_{j}.$$
(13)

20

© 1979 The American Physical Society

Similarly, by differentiating (10) and (11) with respect to γ_{ij} , making use of the formula

$$\frac{\partial \gamma_{kl}^{-1}}{\partial \gamma_{ij}} = -\frac{1}{2} [\gamma_{ik}^{-1} \gamma_{jl}^{-1} + (i \leftrightarrow j)],$$

and eliminating $\partial \phi / \partial \gamma_{ij}$ between the resulting equations, one obtains

$$\frac{\partial E}{\partial \gamma_{ij}} = A^2 \phi^4 u_i u_j - A \phi^2 (u_i v_j + u_j v_i) + v_i v_j .$$
(14)

It is easily verified that the right-hand side of (4) reproduces (11) after substitution of (12) and (14). Moreover, the latter formulas for the derivatives of E satisfy (5). Hence, a solution to (4) and (5) is given by (6), or more explicitly, by (11) with (10).

Remarks. For n = 1 my solution reduces immediately to that of Orland,¹ with $\xi_1 \equiv 1$, $\gamma_{11} \equiv z$ and ϕ in (10) and (11) replaced by Orland's *p*. I have introduced the constant *A* in (7) to be precisely the *A* which appears in Orland's n=1 solution [hence the irrelevant prefactor of 2 in (7)]. For higher-dimensional systems with n > 1, my solution to (4) and (5) is a member of a one-parameter family of solutions obtainable from (6) by modifying the kinetic-energy term in (7); in place of the reciprocal norm squared (9), an expression of the form

- ¹H. Orland, Phys. Rev. Lett. <u>42</u>, 285 (1979); for an antecedent of the method see G. Rosen, Phys. Rev. D <u>1</u>, 2880 (1970).
- ²See, for example, R. P. Feynman, R. B. Leighton, and M. Sands, *Lectures on Physics* (Addison-Wesley, Reading, Mass., 1963), Vol. III, pp. 2–6; for this uncertainty-principle representation to have approximate validity, the wave function must be confined to a connected region about $\vec{q}=0$ [E. H. Lieb, Rev. Mod. Phys. <u>48</u>, 553 (1976)]. ³Putting

$$\Lambda = \left(6A \sum_{i, j=1}^{n} \gamma_{ij}^{-1} \right)^{1/2} \text{ and } \Omega = \left(\sum_{i, j=1}^{n} \gamma_{ij}^{-1} \xi_{j} \right)^{1/2},$$

one obtains

 $\phi = 2 \Omega \Lambda^{-1} \cosh[\frac{1}{3} \cosh^{-1}(3 \Lambda \Omega^{-3})]$

- for strong anharmonic coupling with $\Omega^3 \leq 3\Lambda$; the functions cosh and cosh⁻¹ go into cos and cos⁻¹ in this formula for $\Omega^3 \geq 3\Lambda$.
- ⁴Systems with weak or partial coupling may be characterized more accurately by λ values in the intermediate range $-1 < \lambda < 1$. For any specific system this matter can be elucidated by estimating the ground-state energy via an alternative analytical procedure. One such procedure is to use the Sobolev inequality [G. Talenti, Ann.

$$\left(\sum_{i=1}^{n} |q_i|^{2\lambda}\right)^{-1/\lambda}$$

for all real $\lambda \neq 0$ yields a member of the family of solutions. In particular, the kinetic-energy representation with $\lambda = -1$ is clearly required by a system of uncoupled oscillators with the array (γ_{ij}) diagonal. Because it retains the configuration-space rotation symmetry of the kinetic-energy operator in (1), the $\lambda = +1$ choice employed in (7) is indicated on physical grounds for the most interesting cases of essential (strong) coupling.⁴ Then the dependence on ξ_i and γ_{ij} is contained exclusively in the permutation-symmetric summations involving γ_{ij}^{-1} in (10) and (11).

By minimizing associated semiclassical energy functions like (7), the functional form for the energies of other parameter-dependent systems can be found and shown to satisfy exact and approximate equations similar to (4) and (5) in the example presented here.

ACKNOWLEDGMENT

This work was supported by NASA under Grant No. NSG 7491.

Mat. Pura Appl. <u>110</u>, 353 (1976); G. Rosen, SIAM J. Appl. Math. <u>21</u>, 30 (1971)] for $n \ge 3$:

$$\sum_{i=1}^{n} \int \left| \frac{\partial \psi}{\partial q_{i}} \right|^{2} d^{n}q \geq \tau_{n} [\psi]$$

$$\equiv 2^{-2+2/n} \pi^{1+1/n} (n^{2}-2n) \left[\Gamma\left(\frac{n+1}{2}\right) \right]^{-2/n}$$

$$\times \left(\int |\psi|^{2n/(n-2)} d^{n}q \right)^{1-2/n}$$

in combination with the ground-state estimation method of Lieb (see Ref. 2, p. 555). By evaluating the right-hand side of

$$E_0 \geq \min_{\psi} \left(\tau_n \left[\psi \right] + \int \left| \psi \right|^2 V(q) d^n q \right) \left/ \int \left| \psi \right|^2 d^n q,$$

one obtains the tight lower bound on the ground-state energy $E_0 \geq \hat{E}_0$, where \hat{E}_0 is given implicitly by

$$\begin{split} &\int_{s} \left[\hat{E}_{0} - V(q) \right]^{n/2} d^{n}q \\ &= 2^{1-n} \pi^{(n+1)/2} (n^{2} - 2n)^{n/2} \left[\Gamma\left(\frac{n+1}{2}\right) \right]^{-1} , \\ &\quad S \equiv \left\{ q \colon V(q) \leq \hat{E}_{0} \right\} \,. \end{split}$$

1288