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It is shown that the functional form for the energies of a parameter-dependent system can be found by
minimizing an associated semiclassical energy function in configuration space.

Consider the Hamiltonian for a system of n coup-
led oscillators,

H= Z;( aq7 Hhu )+L2;m,qfq3, (1)

where the real constant £; are positive or negative
and the y;,=v;; constitute a positive-definite ar-
ray. From the virial theorem for an energy eigen-
state
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and the Hellmann-Feynman equations
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it follows that the energy E =(H) satisfies the Euler
homogeneity equation

E= ZZE; 5, 73 E Vu . 4)
i
Implying that

E(£,7) = u E(uE, uby)

for all real u >0, (4) is insufficient by itself to
determine the entire functional dependence of E
on the parameters &; and y;;. However, as indi-
cated by the recent work of Orland,! (4) can be
supplemented by the approximate conditions
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which follow from (3) and the semiclassical rela-
tion (gg%) = (¢3)X¢%; in view of Orland’s results
for the n=1 case, the regime for approximate
validity of (5) (spanned by the parameters &;, v,
and the quantum numbers of the energy eigen-
states) can be expected to transcend the regime .
of the latter semiclassical relation if E is re-
quired to satisfy Eq. (4). There remains the task
of solving %(#*+ n) nonlinear equations (5) in com-
bination with (4) to determine the parameter de-
pendence featured by E.

My rigorous mathematical result is the follow-
ing: A solution to (4) and (5) obtains as

(5)
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in which A is an absolute constant (depending on
the quantum numbers of the energy eigenstate but
not on the £;’s or y;,’s). The intuitive basis for
this result resides in the fact that the kinetic--
energy operator in (1) acts roughly like a repulsive
[IglI"? term on bound-state wave functions.? I was
led to consider the possibility that (6) satisfies
both (4) and (5) because only the homogeneity or-
der in § (and not the differential operator struc-
ture) of the kinetic energy enters in its virial-
theorem elimination from E, effected above by (2).
Proof of (6). The minimum value of (7) is at

q;:Zy (Ap% - 5E) (8)

where y“ is the positive-definite symmetric ar-
ray inverse to y;; and the rec1procal norm squared
of § is denoted by

)

By summing (8) over i, one obtains the cubic equa-
tion for ¢

<'§ 7’!1)‘1’3*‘(2 Yii ) (iO)

with a unique positive root.® The substitution of
(8) into (7) yields (6) as

E=3A4¢ +1A Zw 1g; ¢ —-ij . (1)

Differentiating both (10) and (11) with respect to
&; and eliminating 8¢ /0&; between the resulting
equations produces
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&,

with the definitions

- 1 .
Ui E]:'}’g}y vy 52—;74351 . (13)

1287 © 1979 The American Physical Society

=Ad%u; - v, (12)



1288 GERALD

Similarly, by differentiating (10) and (11) with
respect to y;;, making use of the formula
8t Aty s s
Tr— Ayt + G — )],
8%y
and eliminating 8¢ /8y, ; between the resulting
equations, one obtains
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It is easily verified that the right-hand side of (4)
reproduces (11) after substitution of (12) and (14).
Moreover, the latter formulas for the derivatives
of E satisfy (5). Hence, a solution to (4) and (5) is
given by (6), or more explicitly, by (11) with (10).
Remarks. For n=1 my solution reduces im-

mediately to that of Orland,! with &, =1, y,;=2 and
¢ in (10) and (11) replaced by Orland’s p. I have
introduced the constant A in (7) to be precisely the
A which appears in Orland’s »=1 solution [hence
the irrelevant prefactor of 2 in (7)]. For higher-
dimensional systems with % >1, my solution to (4)
and (5) is a member of a one-parameter family of
solutions obtainable from (6) by modifying the
kinetic-energy term in (7); in place of the recip-
rocal norm squared (9), an expression of the form
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for all real A#0 yields a member of the family of
solutions. In particular, the kinetic-energy rep-
resentation with A= -1 is clearly required by a
system of uncoupled oscillators with the array
(744) diagonal. Because it retains the configura-
tion-space rotation symmetry of the kinetic-en-
ergy operator in (1), the A=+1 choice employed
in (7) is indicated on physical grounds for the
most interesting cases of essential (strong) coup-
ling.! Then the dependence on §; and v, is con-
tained exclusively in the permutation-symmetric
summations involving ¥;} in (10) and (11).

By minimizing associated semiclassical energy
functions like (7), the functional form for the en-
ergies of other parameter-dependent systems can
be found and shown to satisfy exact and approxi-
mate equations similar to (4) and (5) in the exam-
ple presented here.
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3Putting

n 1/2 n 1/2
A= <6AZ y;}) and QE(Z y{,‘-&,—) ,
1
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one obtains
¢=2QA"1 coshl§cosh~1(3A Q73]

for strong anharmonic coupling with Q=3 A; the func-
tions cosh and cosh™ go into cos and cos™! in this
formula for Q*=3A.

4Systems with weak or partial coupling may be charac-
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in combination with the ground-state estimation method
of Lieb (see Ref. 2, p. 555). By evaluatmg the rlght—
hand side of

Eozmwin<f,. [¢]+II¢IZV(q)d"'q)/ [91%a"q,

one obtains the tight lower bound on the ground-state
energy E, = £,, where bo is given implicitly by
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