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Phase-transition behavior of a hard-core lattice gas with a tricritical point

Mark W. Springgate and Douglas Poland
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

(Received 10 July 1978)

The phase-transition behavior of a hard-core lattice gas with nearest-neighbor exclusion and next-nearest-
neighbor attraction on the plane-square lattice has been determined using high- and low-density activity
series including double series in the sublattice activities reported here. The model exhibits a line of second-
order transition points at high temperature and a line of first-order transition points at low temperature
intersecting at a tricritical point. The series for the various thermodynamic functions do not converge equally
well at all temperatures, requiring the utilization of a strict criterion (outlined here) for assessing the
reliability of numerical results. From the combined, behavior of the thermodynamic functions we have
determined the radius of convergence of the series at all temperatures, the position of the singularities (in
terms of the fugacity) on the real axis approaching the intersection of the unit circle at low temperature.
Along the second-order line the critical exponents are estimated to be a 0.0 (logarithmic singularity),

P 1/8, and y 7/4. At the tricritical point a, 1 and y, 1 are in agreement with the e-expansion
results of Stephens and McCauley for d = 2. The density series are poorly behaved, and we can only
estimate the phase diagram.

I. INTRODUCTION

In a previous paper' we reported the high- and
low-density activity series through, 11 terms for
the plane-square lattice gas with nearest-neigh-
bor exclusion and next-nearest-neighbor attrac-
tion. The remodel is illustrated in Figs. 1 and 2
and compared with the plane-square Ising model.
Figure 1(a) illustrates the Ising model where,
given a particle at a lattice site (solid dot), there
is an attractive interaction if another particle is
on a neighboring lattice site (these siteS being
shown by the open circles) there being no inter-
action if two particles are separated by more than
a single lattice spacing. The model we are
treating is illustrated in Fig. 1(b): given a par-
ticle (solid dot) at a lattice site, no particle can
occupy the nearest-neighbor sites (indicated by
x's) but there is an attractive interaction be-

tween particles on next-nearest-neighbor sites
(indicated by open circles). The model can also
be viewed in a slightly different fashion. Given
the Ising model as illustrated in Fig. 2(a), the
present model is obtained if one subdivides the
space further and introduces a new lattice (which
we call the B sublattice, the original being the
A sublattice) shown by dotted lines in Fig. 2(b).
In this view particles exclusively on the A sub-
lattice or exclusively on the B sublattice behave
exactly as in the Ising model with nearest-neigh-
bor attraction (nearest neighbor with respect to
a particular sublattice). In general for particles

FIG. l. (a) Schematic il-
lustration of the two-dimen-
sional Ising model; a par-
ticle at the site indicated by
the solid circles interacts
only with particles on the
sites indicated by open cir-
cles. (b) Schematic illus-
tration of the present model;
given a particle at the site in-
dicated by the solid circle,
no particles are allowed at
the sites indicated by &'s
while the central particle in-
teracts between particles at
the sites indicated by open
circles.

FIG. 2. (a) Schematic illustration of a configuration
of particles on the plane-square lattice for thy Ising
model. (b) Schexnatic illustration of a configuration of
particles for the present model. In addition to the lattice

.of 2(a) (solid lines) there is an additional set of lattice
points representing a sublattice (dashed lines).
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both on the A. and B sublattices, there is no at-
traction between particles on different sublattices,
but there is exclusion between. nearest-neighbor
A-B sites. The essential difference between the
present model and the Ising model is that in the
limit of close packing all the particles must
either be on the A or the B sublattice (while at
low density both are equally probable). Thus the
present model contains a long- range oi'dering
tendency not found in the Ising model.

Since this model is the simplest lattice analog
of a gas that takes into account both the repulsive
and attractive parts of the potential, the phase-
transition behavior of the model is of some in-
terest. In the present paper me report new
double series in the sublattice activities for this
model and present an analysis of the activity
series using Padb approximants and the ratio
method.

In the high-temperature limit, in which one has
just the nearest-neighbor repulsion, the present
model has been discussed by a number of workers.
Domb discussed the model in connection with the
theory of melting. 2 Approximate treatments have
been given by Ternperly3 using the Bethe approxi-
mation, Burley4 using exact and approximate
series expansions, Levesque and deerlet~ and
Jancovici and Stell6 using the Percus- Yevick
and hypernetted chain integral equations, and
Kaye and Burley' using a Kikuchi approximation.
The results of these approximate methods range
from a result of no transition5 to a first-order
transition. ',Runnels and Combs, a Ree and Ches-
nut, and Nisbet and Farquhax'0 calculated exact
properties for finite strips of lattice and extra-
polated the results to the thermodynamic limit,
their results agreeing very mell with the series
results of Qaunt and Fisher. " Qaunt and Fisher
found a second-order or continuous transition at
z =3.76 (z the activity) with no discontinuity in
density betmeen the coexisting phases at the
phase- transition point. The only completely
rigorous result for the model is the work of
Dobrusin' who proves using a modified Peierls
argument that a phase transition must exist of
the kind found by Qaunt and Fisher. '~

The present model was first treated at all
temperatures by Runnels, Salvant, and Streiffer'3
mho extrapolated exact numerical results for
finite lattice strips to the thermodynamic limit.
Kaye and Burley, ~4 using a Kikuchi approxima-
tion, came to the same results as Runnels et gl.
although their values for the transition para-
meters differ greatly. The essential conclusion
of the two works is the same. Above a charac-
teristic temperature a line of second-order or
continuous phase-transition points separates an

ordered and disordered phase, the transition
point marking the beginning of a difference in
sublattice densities for the ordered phase; below
the characteristic temperature a line of first-
order phase-transition points separates the or-
dered and disordered phases which differ both in
the sublattice density and normal density. The
temperature at which the line of second-order
transitions meets the line of first-order transi-
tions is known in the literature as a tricritical
point (TCP) .

These studies leave a number of important
questions unanswered concerning the nature of
the first- and second-order phase transitions,
horn the various thermodynamic quantities behave
along the line of phase-transition points, and
what happens at the tricritical point where the
line of second-order phase-transition points
joins the line of first-order phase-transition
poin ts .

In Sec. II me define the activity series for the
various thermodynamic functions we will examine
and define the appropriate critical exponents re-
quired to describe the singularities in these quan-
tities along the second-order line and at the tri-
critical point. We then briefly review the analysis
of the high-temperature limit for the present
model given by Qaunt and Fisher'~ and the two-
dimensional Ising model in the neighborhood of
the critical point, using these two cases to illus-
trate difficulties in the analysis of activity series.
We propose a method for testing the reliability of
results obtained from extrapolation of the series
using the ratio method. Using this criterion for
accepting and rejecting numerical results, we
report the radius of convergence of both the lom-
and high-density activity series as a function of
temperature, and the critical exponents at selec-
ted temperatures along the second-order line and
at the tricritical point. Unfortunately the corres-
ponding series in the density are poorly behaved
and we are not able to determine the phase dia-
gram from the radius of convergence of the den-
sity series. We do give an approximate phase
diagram based on the extrapolation of activity
series. We conclude mith a discussion of the
phase- transition behavior.

II. SERIES EXPANSIONS

In the present section we outline the series
expansions we will use and define symbols.

A. Activity series

In a previous paper' we reported the coeffi-
cients b„and b„' through n=11 for the series
(P =1/kT, p is the pressure, and z is the activity)
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I}P=g b„z" (low density) the high-density series for the pressure is given

by

2PP =—ln(z'x2) +g b„'z™(high density)

where b„and b„' are finite polynomials in the in-
teraction parameter x (where e is the interaction
energy)

2pib=- lny'+g c„'y'",

where

c' =b'/ x~2

(10)

x=e" (2) One can also define sublattice fugacities in ana-

logy with Eqs. (6) and (9) giving, for example,
for the low-density series for the pressure

z' =1/zx4.

As was mentioned iri the Introduction and illus-
trated in Fig. 2(b), the present model can be
viewed as consisting of an 4 and B sublattice.
Introducing activities z, and z~ for particles, res-
pectively, on the A and B sublattices, then PP
can be represented as a double series in z, and

z~ (which can be thought of simply as labels indi-
cating whether a particle is on the A or B sub-
lattice). In the Appendix high- and low-density
series in the sublattice activities are given for
the present model; these series have been cal-
culated using the Toeplitz matrix technique of
Spiinggate and Poland. ' The high- and low-den-
sity series are (for low density)

pp=+gc„„y,""y2"

c „=b /x'"

(12)

C. Thermodynamic functions

Given the low- and high-density activity series
for the pressure one can obtain activity series
for other thermodynamic functions by use of
standard thermodynamic relations. Below we
list the thermodynamic functions that we will use
giving the series for the low-density expansions.
Pressure:

Pp=ggb„„z™z, (4a)

(for high density)

2pp =—ln(z,'x') +gab' „(z,')"'"(z',) ",
n m

z,'=1/z, x', z,'=1/z, x' .

We have obtained the b „ through n =9 and the
b' „through n =8.

B. Fugacity series

(4b)

Density:

p =, =+22b„z" .
81"

n

Sublattice densities:

a 8 lnz mn a

n-~
pq — — mb z zq .

nm

Long-range order parameter:

R=2(p, —p,) .

(14)

(15b)

(16)

It is useful to introduce the fugacity

p =zx

since in the plane-square Ising model the phase
transition occurs at y =1. The low-density
series for the pressure then becomes

f}p=P c.y"

where

c„=b„/x ".
Defining

y'=1/zx =z'x,

Modified isothermal compressibility:

n
e'r

X s(I )2 g bll

Staggered compressibility:

}f =(8/slnz, —8/S Inz~) I'.
The isothermal compressibility K~ is given by

&r =p 'sp/sp=px/p

Since all the functions listed above are obtained

by taking the logarithmic derivative with respect
to z, the series in y have the same form. For
example,
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(20)

temperatures with a tricritical point marking the
change in order). Thus in the complex-z plane
we expect a singularity of some kind on the real
positive axis at all temperatures; we designate
the position of the singularity by z, (or in terms
of the fugacity, y,).

D. Density series

From Eg. (14) one has p as a series in z. On
inverting the series one obtains

A. Numerical techniques

Letting S(z) be any of the activity series [Eqs.
(13)-(18)], then if S(z) has a singularity of the
form

z= g„p
n

(21) S(z) =g A„z"-(z.—z)-" (24)

with analogous equations in terms of the sublat-
tice activities and densities. Using Eq. (21) in
Eg. (13), for example, yields the virial expansion
for the pressure

there are several techniques'6 to determine v and
z, given a finite number of the coefficients A„.
Domb and Sykes" have shown that for a singular-
ity of the type shown in Eq. (24) the ratios
successive terms should behave as

(22)
r„=A„/A„, =z,' [1+(v —1)/n] (25)

with similar expansions for g, R, and y~.

X(z) -&r(z) —(z.—z)

Z(z) -(z.—zP,
X'(z)-(z.-z)"

(23)

We will use a subscript f (i.e., e„P„y,) to dis-
tinguish the exponents at the TCP from those
along the second-order line. We will use a
prime [as in Eq. (3)] to indicate high-density
series; thus z,' is the position of the singularity
on the positive z' axis for the high-density ac-
tivity series with the exponents defined as n',
P', and y'. The nature of the singularity of
course remains the same when one expresses the
thermodynamic functions as fugacity series.

III. REVIEW OF THE BEHAVIOR OF ACTIVITY SERIES

E. Critical and tricritical point exponents

Along the second-order line and at the TCP the
thermodynamic functions will diverge with char-
acteristic exponents. In this paper we will follow
the notation of Qriffiths' and use the following
definitions for these exponents. Let z, be the
position of the singularity on the real positive z
axis for the low-density activity series. Then
along the second-order line we take

lnS(z)' =9 lnS(z)/9 lnz - v/(z, —z) (26)

yielding z, as a simple pole on the real axis and
v as the residue of that pole (throughout this
paper a prime indicates the logarithmic deriva-
tive) .

Most of the work on obtaining critical exponents
from series expansions have utilized series in P
or functions of p (high-temperature series). '6

The reason for this is twofold: activity series
are in general both more difficult to obtain and
analyze than high-temperature series. Thus be-
fore presenting our analysis of the activity'series
for the present model, we review briefly the
analysis of Gaunt and Fisher of the activity series
for the high-temperature limit of the present
model and also the behavior of the activity series
for the Ising model in the neighborhood of the
critical point.

yielding z, ' as the intercept and (v- 1)/z, as the
slope when r„ is plotted versus 1/n. If a, singu-
larity other than that at z, determines the radius
of convergence, then often a Euler transform can
be found that maps the z plane such that the
singularity on the real positive axis, z„deter-
mines the radius of convergence. Alternatively
one can use the technique of Pads approximants
introduced by Baker et gl. , '8 applying the technique
to the logarithmic derivative of S(z)

Based on the previous work on the present model
outlined in Sec. I we expect that there will be a
transition of some kind at all temperatures (first
order at low temperatures, second order at high

B. High-temperature limit

Gaunt and Fisher" analyzed the activity series
for the present model for the special case of
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infinite temperature (x=1) in which case the
model reduces to that of hard particles with
nearest-neighbor exclusion. They utilized ac-
tivity and density series and series based on
the following Euler transforms:

u, =z/(1+z),

u, =p/(1+p) .
(27a)

(27b)

For the low-density series they found that for
all of the S(z) the coefficients alternate in sign
and increase in magnitude indicating that the
radius of convergence is determined by a non-
physical singularity on the negative real axis
which we designate as z,' . From a study of
Pads approximants to p(z) and X(z) Gaunt and
Fisher found

(29)z, =3.76+3 .
Application of the ratio method to )ft(p) yielded

(30)p0 =0.368 + 17 .

From numerical calculations of the isotherm
Gaunt and Fisher concluded that K~ remains finite
at p„although they could not rule out the possi-
bility of a logarithmic singularity.

The ratio method applied to the high-density
series gave a singularity on the negative real
axis (z,' ' = —3.8) which dominates the behavior
of the series. The behavior of poles obtained
from Pads approximants applied to g and y~ were
not very regular but indicated a singularity on
the real positive axis at z, =3.80 in agreement
with that found from the low-density activity ser-
ies [Eq. (29)]. Pade approximants applied to If
gave P =0.12+2; Gaunt and Fisher conjectured
that P =0.125 =-,' exactly. Gaunt and Fisher found
that the ratio method worked fairly well for 8 and
Xt when the series were expressed in terms of
u,' [Eq. (27a) utilizing z'].

In summary, Gaunt and Fisher were able to
determine z„p„and the exponent P. In general,
the activity and density series were poorly be-
haved, the series being dominated by singularities
on the negative real axis close to the origin. The
series that proved most useful were gt and B,
both of these functions being derived from the
double series in the sublattice activities [Eq. (4)]
(it is for this reason that we calculated the

(28)

which is apparently a branch point (as evidenced
by the alternation of poles and zeros on the nega-
tive axis). This singularity dominates the be-
havior of all the S(z) series. Pads approximants
to X (u, ) and PP(u, ) were able to pick up a singu-
larity on the real positive axis giving

double series for this model as a function of
temperature) .

~ =y/(1+Ay) (31)

the curve marked (b) in Fig. 3 shows the ratios
for y(y, Q) with Q =0.5 [the quantities shown are
x„'=r„—Q; see Eq. (44)]. The ratios no longer
oscillate and form a smooth curve that extrapo-
lates to y, ~ =1 with slope slightly less than zero
(in fact for y(y), v =—'4 giving a slope of —

—,', ).
Figure 3 thus illustrates the. utility of the Euler
transform in analyzing ratios.

While in the Ising model one knows exactly the
value of g„ in the present model we do not know
the value of xTcp With this in mind we examined

I. IO

I

rn

I, OO-

A
/

I

/

B
o

0.90-

0,80
0.00 O.IO 0.20 - 0.30

FIG. 3. Ratios r„' for X (y, $) for the two-dimensional
Ising model at the critical point. Curve (a) is for $= 0.0
(no Euler transform) while curve (b) is for P =5. The
ratios are shown through n =S.

C. Ising model near the critical point

In the previous subsection we reviewed the be-
havior of the activity series in the high-tempera-
ture limit, indicating that the analysis was diffi-
cult because of a singularity close to the origin
on the negative real axis. At low temperature,
at or below the TCP, one would expect the pre-
sent model to behave in a fashion similar to the
Ising model, the effect of the next-nearest-neigh-
bor attractions being more important than the
hard-core exclusive at low temperatures.

The curve marked (a) in Fig. 3 shows the ratios
r„as a function of 1/n for )l(y) for the two-di-
mensional Ising model (using through r8) evaluated
at the critical point (x, =[1/(M2 —1)] =5.282. . . ).
In the Ising model the singularity occurs at y, =1
(all the roots of the grand partition function being
on the unit circle); the ratios are seen to oscillate,
the oscillations becoming smaller as 1/n-0, r„
approaching y, ' =1. Utilizing the Euler transform
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I.20 IV. ANALYSIS OF ACTIVITY SERIES

I. I 0—
x=4.5

«

I .00—
x = xq= 5.828

0.90—
~ ~W x= 7,5

0.10
I/n

0.20 0.50

FIG. 4. Ratios x„' for X (y, P) for the two-dimensional
Ising model for x &x~, x=x~, and x &xc; each set of
curves is for /=0. 5, 1.0, and 1.5. The dashed curve
near 1/n = 0 is the behavior of the ratios predicted by
the driplet model of Fisher for x&x, (essential singul-
arity). The ratios are shown through n = 8.

the ratios for the Ising model above and below x,
to see if there was a characteristic pattern that
might help in recognizing xTcp Figure 4 shows
r„' =r„—P for }!(y,P) for Q =0.5, 1.0, and 1.5 for
@=4.5, x=x„and +=7.5. All of the ratios vary
smoothly and if the curves are interpreted using
Eq. (42b) (to be discussed shortly) one finds ap-
parent values of y, and v that vary with x (temp-
erature); in particular one finds y, &1 for x&x,
(T & T,) and y, & 1 for x & x, (T & T,) . In fact for
T &T, there no longer is a singularity on the real
positive axis and for T & T,

' the singularity is at
y, =1. The analysis by Fisher" of the droplet
model supports the conjecture that below T, the
singularity is an essential one. For an essential
singularity of the sort predicted by the droplet
model the ratios behave like the dotted line in
Fig. 4, the curve hooking into y, =1 with an in-
finite slope.

The curves in Fig. 4 for the Ising model indi-
cate that even though the ratios appear to extra-
polate smoothly, one can be greatly misled as to
the true value of y, and v if one is in fact at a
temperature below the TCP (in the present model
a singularity persists on the real positive axis
up to infinite temperature, unlike the case of the
Ising model). The diagnostics for being at a
temperature below T, seem to be that the apparent
value of y, (T) increases as the temperature de-
creases and the ratios do not converge well with
respect to the value of Q used in the Euler trans-
form of Eq. (31) (they appear to "float" one above
the other).

In our first attempt to analyze the activity
series for the present model we ran into a num-
ber of problems. At high temperature the be-
havior of the series is dominated by nonphysical
singularities, and while the use of the Euler
transform often improved the behavior, the re-
sults (y, and v) often were found to be strong
functions of the parameter Q used in Eq. (31).
In addition the different S(y) did not always give
the same y, and v, and y, and v were found to
vary with temperature in a nonmonotonic fashion.
It was thus clear that the series were not equally
well converged at all temperatures and that it
was essential to develop a test for reliability.
We begin by describing the criterion we used.

A. Criterion for convergence

S(y) =A, @+A„y".
n=i

Introducing the transformation

u =y/(1 +Qy)

with the inverse transformation

y =u/(1 —Qu)

one then has for S(u)

(32)

(33)

(34)

S(u) =AD +g B„u",
n= 1

where

(35)

(36)

(37)

A„=A„'y.",
A„' =v(v +1) ~ - ~ (v +n —1)/n!,

(38)

For the A„of Eq. (38), the ratios for S(u) are

As is illustrated by the work of Gaunt and
Fisher and the ratios for the Ising model given
in Fig. 4, it is necessary to utilize a transforma-
tion of variable such as the Euler transform of
Eq. (31) to obtain information from activity
series. To proceed it is necessary to analyze
the nature of the Euler transform in more detail.

Consider the series
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For the case of /=0, S(y)=S(u) and

r„=y,' [1+(v —1)/n]

(40)

(41)

following steps:
(i) One makes an initial estimate of v, either

f»m Eq. (42b), Pads approximants [using Eq.
(26)], or from theoretical notions concerning the
values of the exponents.

(ii) One then forms the series

S,(u) =[S(u)]'~"-[1/(I —u/u, )] . (45)

as noted previously [Eq. (25)].
As u-u„where u, =y,/(1+Py, ), then one has

the asymptotic relations

The ratios, r„' of Eq. (44), for the function S,(u)
should be independent of both of P and n

(iii) One further forms the series

S2(u) =[S(u)']' "-[1/(1—u/u, )]'""". (46)
(42a)

r„- (y, ' +P) [1+(v—1)/n] . (42b)

(43a)

One of the problems of using the Euler trans-
form is apparent in Eq. (40): while r„ is a func-
'tion of the unknowns y, and v, it is a complicated
function. In principle, two values of r„are suffi-
cient information to calculate y, and v; one could
then extrapolate the values obtained from pairs,
e.g. , r„adnr„„asa, function of 1/n but this is a
troublesome procedure since one has to scan a
space of two variables. In general the ratios for
S(u) do not give a, straight line when plotted ver-
sus 1/n. From Eq. (42b) the ratios are asymp-
totic to a straight line from which y, can be cal-
culated from the intercept and v from the slope.
However, to use Eq. (42b) one must have enough
terms in the series to estimate the limiting be-
havior.

For special values of v, Eq. (40) simplifies
considerably. For v=0, 1, and 2 one has for
v =0 (logarithmic singularity)

The ratios r„' for the function S,(u) should be
functions both of n and P and should converge to
y, ' as 1/n-0 according to Eq. (43c) [using Eq.
(44)].

(iv) If the initial estimate of v does not lead to
the properties of S, and S, given, r spectively,
in (ii) and (iii) above, one either tries another
value of v or rejects the series as being poorly
converged at the temperature in question.

The essential feature of the above scheme is
the use of at least three values of the parameter
Q in the Euler transform to give S(u). For a
single value of P one often obtains smoothly
varying ratios that give grossly incorrect values
of y, and v (we will discuss an example shortly
in connection with Fig. 10). In order to trust the
results of ratio plots, S&(u) must be independent
of P and S2(u) must give converging ratios.

The use of this scheme is illustrated in Fig. 5
where the ratios are given for the high-density
modified compressibility X(y', Q) (derived from the

l.40

for v=1

r„=( .'y+y);-
for v=2

(I+20 ./ ))

(43b)

(43c)

1.50

I.20

In particular for v=1 [in which case S(y) has a
simple pole at y =yo] the ratios of S(u) are inde-
pendent of n. If one forms

(44)

then for v=1 the ratios are independent of n and
independent of P giving a straight line pointing
directly (with zero slope) at y, ' as 1/n-0.

Based on the above properties of the series
S(u) we have devised the following scheme to
determine y, and v and to assess the reliability
of the calculation. The scheme involves the

I. I 0

I .00-

0.90
0.00 O. IO

I/n
0.20 0.30

FIG. 5. Ratios r„' at x = 6.0 for (a) [X (y', P)]
(b) IX (y', $)']~ . Each set of curves is for /=0. 5,
1.0; and 1.5. The ratios are shown through n =11.
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11-term z' series for PP). Since at low tempera-
ture one might expect the behavior to be similar to
that for the Ising model, we make the initial guess
that the exponent is —'. Figure 5 shows the ratios

15
r„' for the two functions

S =[X(y' y)]"'" S =[)~(y', 4)'1"~" (47)

from /=0. 5, 1.0, and 1.5 at x=6.0. The ratios
for S& are seen to be independent of n and P
giving a straight line of zero slope. The ratios
for S, are functions of n and Q and give a set
of three straight lines that converge to the same
intercept as S, . As we will-discuss in Sec. VI,
it is not clear whether the exponent for y(y') is
f 5 or 1.0 ~ But clearly the exponent is very close
to 1 and the ratios for both S, and S, clearly
point to the same intercept y, '. If one uses only
S& one frequently has slight undulations in the
ratios; any uncertainties in the horizontal extra-
polation of the ratios for S, are greatly lessened
by having the converging set of straight lines for
S2 pointing to the same intercept. If, as is fre-
quently the case, the r„'(Q) for S, do not give a
set of curves that converge to a single y, ', but
rather give a set of three parallel lines, one can
make no reasonable estimate of y, and v and must
conclude that the series at this particular tempera-
ture are not well converged.

In Sec. IV 8we will give several examples of ratios
failing to converge well at certain temperatures
that illustrate our criterion of accepting and re-
jecting results. In general throughout the rest
of this paper we will use the behavior as illus-
trated in Fig. 5 as the criterion for accepting the
results of ratio plots: if S,(u) gives ratios that
are independent of n and P and if S~(u) gives ratios
that converge to the same y, ', we accept the
values of v and y, as reliable. To avoid crowding
in graphs, we will show only S, in the ratio plots
to be given in Secs. V and VI; we emphasize that
all of our estimates of y, and v have been ob-
tained from ratios that have a behavior similar
to that shown in Fig. 5.

Before beginning our discussion of the analysis
of the series we point out that we do not know the
value of xTcp. From numerical extrapolations of
high- and low-density isotherms for Pp we be-
lieve xTcp &3.7 (this estimate will be discussed in
Sec. V). From the study of all the thermodynamic
functions, our educated estimate is that xTCP
probably lies in the range x=4 to x=5. Thus in
the temperature range x=1.0 to x=3.7 we assume
we are along the second-order line. For x in the
range x=4.0 to x=5.0 we assume we are in the
region of the TCP.

Of course we have evidence to support these
assumptions, a portion of which will be given in

the following discussion. The important point
is that there is no dramatic change in the behavior
for partial series over a small temperature
range. This is illustrated by the ratios for the
Ising model shown in Fig. 4 where the behavior
(with respect to slope) of the ratios does not
change qualitatively in the range x=4.5 to x=7.5
(with x, =5.828) .

B. Low4ensity activity series
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FIG. 6. Hatios y„' at x=4.5, 4.0, 3.5, 3.0, and 2.5

for y (y, P) ~~~. Each pair of curves is for /=0. 5 and
1.0. The ratios are shown through n =11.

At x=1 Gaunt and Fisher found a singularity on
the negative real z axis at z,' ' =y,' ' = —0.12
while the singularity of interest on the positive
real z axis was at z, =y, =3.76. The singularity
at z,' ' completely dominates the series at x=1
and Euler transforms using a wide range of
values for Q do not significantly improve the
ratios. For x-4, one finds that y,' ' has moved
close to —1 while y, is now close to +1. In the
neighborhood of x-4, the function of y(y, Q) gives
very smoothly varying ratios for P in the range
0.5 to 1.5. Figure 6 shows r„' for [y(y, P)]" '4 at
P =0.5 and P =1.0 at several values of x. As
with the high-density function )f(y', Q) shown in
Fig. 5, we anticipated that the low-density series
X(y, Q) would behave like the Ising model at x,
and chose the exponent e, =—,', as a trial-value.
At x=4.5 and x=4.0 the ratios become independent
of n and P as n is increased giving straight lines
with approximately zero slope. As x is decreased
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from 3.5 to 2.5, the ratios become increasingly
poorly behaved, the singularity on the negative
real axis moving in toward the origin and domin-
ating the behavior of the series as x-1. From
the high-density series we will give evidence that
o. ' =0 (logarithmic singularity) along the second-
order line. If n =n', then n changes from n,
= 1 in the region of the TCP to n, =0 along the
second-order line. The poor convergence of the
ratios as x is decreased is presumably due to the
change in the exponent; in general one will not
see an abrupt change in the beginning terms of
a series even though there is an abrupt change in
the exponent. Qn the high-density side we will be
able to follow the change in the ratios as a func-
tion of temperature in more detail.

Padh approximants to in'(y, Q)' and in'(y, Q)"
substantiate the finding that n, = 1.0 in the temp-
erature range corresponding to x-4 to 5. [The
use in general of lnS" gives an additional esti-
mate of the exponent: if S- (y, —.y) " then the re-
sidues of lnS' and lnS" for the pole y =y, are v

and v+1, respectively, [see Eq. (27)]; throughout
a prime indicates 8/8 lny. ] For example, at
x=4.0 and x=4.5 one obtains the following values
of y, (with the corresponding residue given in
parentheses) from the diagonal and off-diagonal
approximants to the series in'' and in)(" (with

Q =1.0) for x=4.0

1n)f': 1.116 (0.948), 1.123 (0.981), 1.126 (0.998);

1n)f": 1.103 (1.839), 1.142 (2.151), 1.132 (2.058) .

(48)
for x=4.5
jnX': 1.077 (0.904), 1.078 (0.912), 1.082 (0.935);

in'": 1.062 (1.783), 1.090 (2.025), 1.081 (1.940) .
Our best estimates of y, (calculated from aver-
aging the values of y, obtained from approximants
to in'' and in'" at several values of f and from
ratio plots) are y, =1.115 at x=4.0 and y, =l.083
at x=4.5. If one removes a pole at y=y, from
the approximants to lny' and lng" and calculates
the residues, then using the above best estimates
of y, one obtains the following estimates of n, :
for x=4.0

at x=4.0 and n, =1.03 at x=4.5. The problem is
that we do not know the value of xycp and from
the data given in the region x=4.0 to 4.5 there is
no criterion for us to choose one value of x over
another. For x&4.0, the ratios as shown in
Fig. 6 are clearly increasingly poorly behaved,
and do not give reliable estimates of y and v.
For x&5.5 the ratios give a set of parallel lines
similar to those shown in Fig. 4 for the Ising
model for x&x, (x=7.5); in this temperature
range the apparent values of y, vary with Q and
show a general tendency to increase as the temp-
erature is lowered. In this temperature region
we conclude that x&x~cp and as with the Ising
model for T & T„ the ratios are giving incorrect
values of y, and e„probably because one has ari

essential singularity below xycp Qur conclusion
is that the, apparent temperature dependence of
n, shown in (49) is not real and arises for the
same reason that the apparent value of o, [obtained
from applying Eq. (42b) to the data of Fig 4] for
the Ising model varies with temperature in the
neighborhood of x, . From the data of (49), it is
clear that if we knew y, (xrcz) accurately, we
could obtain a very accurate estimate of e, .
Since we do not know xzcp accurately, our best
estimate is

n, =1.00+ 0.05 . (5o)

In general, if one has ratios that vary smoothly,
as do those shown for x=4.0 and x=4.5 in Fig. 6
and those in Fig. 5, the Pads approximants also
give consistent values of y, and v such as those
given in (48) and (49). We note the following
technical point concerning Pade approximants
that we observed in our calculations. If one cal-
culates the residue for lnS' at the pole y=y, as
a function of P, then the residue is invariant to

P for fixed y, for the diagonal approximant.
For Xt one finds that the ratios are well behaved

only in the range x=1.3 to x=1.8. From Padh
approximants, one finds y= 1.6 to 1.9; since this
brackets the Ising model exponent 1.75, we make
the initial estimate y=4. In the. range x=1.3 to
1.8 [yt(y, P)]~~' gives ratios that are approxi-
mately independent of n and Q. From Eqs. (17)
and (18) one has the relation

lny': n, =0.957, 0.957, 0.956;

lny": n, +1=1.945, 1.944, 1.950;
X =X —4X,

gt =8 'F/s inc, s in', .
(51)

for x=4.5
lnX': Q, =1.031, 1.017, 1.010;

lny": n, +1=2.041, 2.033, 2.033 .

(49)

The sets of data for a given value of x in (49)
are internally quite consistent, giving n, = 0.95

Following Gaunt and Fisher, we investigated
gt (the "essential" part of g~) with the hope that
the interferring singularities in y would be re-
moved (from Fig. 6, the ratios for y are poorly
behaved above x=4.0). We find that in the range
x=2.0 to 4.0, X~ indeed gives good ratios. Since
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FIG. 7. Batios r„' at @=3.0, 2.5, and 2.0 for
[y~~ (y, $)] ~ . Each set of curves is for /=1.5, 2.0,
and 2.5. The ratios are shown through g = 8.

y~ and y~ have the same exponent y, we use our
estimate y=1~ and form the ratios for [y,(y, P)]4~'.
These ratios r„' are shown in Fig. 7 for x=2.0,
2.5, and 3.0 at Q =1.5, 2.0, and 2.5 and clearly
support the estimate y=4~ . In particular, at
x=3.0 th6 ratios are independent of n and Q to a
degree that one cannot expect to exceed in this
type of experimental mathematics; at x=-2.5, the
ratios are quite good, becoming independent of
n and Q as n is increased; finally at x=2.0 one
can infer from the behavior of the ratios at
x=2.5 and @=3.0 that if one had more values of
x„', the ratios would converge to a limiting be-
havior that was independent of n and &f&. But
clearly, if one had just the ratios for x=2.0, the
convergence would be in question as of course
would be the values of y, and v obtained there-
from. As with Fig. 6, Fig. 7 illustrates that at
certain temperatures the ratios are very well
converged, but that in general one systematically
loses the convergence as the temperature is
changed. Note in particular, that if one examined
only the lower curve for x=2.0 (for a single value
of P) one would calculate quite incorrect values of

gy and v.
As mentioned previously, the ratios for g (y, Q)

support the results of Fig. 7 that y=4 but only
in the range @=1.3 to 1.8. At lower temperatures,
in the region of the TCP (x-4), yt(y, Q) again
gives smoothly varying ratios. For x&5 the
ratios for yt(y, Q) are independent of n and Q

suggesting that the exponent y, is approximately
unity. pads approximants support the estimate
y, =1.0. Below we give the residues obtained
from the diagonal and off-diagonal pad6 approxi-
mants to 1n)tt(y, Q)' at x=5.5 and x=6.0. For x
= 5.5

From }f(y, Q) in the range x=1.3 to 1.8 and from
}ft(y, p) in the range x=2.0 to 3.0 (see Fig. 7)
we estimate that y=4 along the second-order
line. For x in the range 3.0 to 4.5 the ratios
for Xt and y, do not converge well and presumably
this is due to the change in y at xTc~. From (51)
one sees that y&

—1 for x&5.0 Since we expect
xTcz, -4, the data of (52) are probably for x&xTc~
and one has the problem discussed in connection
with Fig. 4 of the possibility that one is dealing
with an essential singularity and that the apparent
small drift with x of the exponent is due to this.

In summary, we obtain good convergence for
the thermodynamic functions of interest in the
following temperature ranges.

X: x=3.7 to 5.0;
X~: x= 1.3 to 1.8;

X, : @=2.0 to 3.9.
(53)

Fortunately, the ranges of x given in (53) collec-
tively cover the range x=1.3 to 5.0. We thus
have a good estimate of y, (x) in the range x=1.3
to 5.0 [from Gaunt snd Fisher'~ we have y, (x=1)];
the values of y, we accept are obtained from the
extrapolation of ratios such as those for g~ at
+=3.0 in Fig. 7 and are backed up by the values
of y, obtained from Pads approximants [as illus-
trated in (48) and (49)]. For x&5.0 we have es-
timated y, (x) from the intersection of pp(y) and
pp(y') by simple curve fitting of the series; we
will discuss this approach further in Sec. V.

Figure 8 shows y, (x) as obtained collectively
from the thermodynamic functions in the manner
just discussed. We also show y' ', the singularity
closest to the origin on the negative real axis.
From Fig. 8 one sees that y, (x) drops from 3.76 at
+=1.0 to y, - 1 rapidly as x is increased. Like-
wise y,' '(x) moves from —0.12 at x=1.0, away
from the origin, approaching —1 as x is increased.
In Fig. 8, the lines y =+1 and y ' =- 1 indicate
the corresponding singularities in the Ising model
(for x&x„ there is no singularity on the real
positive axis in the Ising model, this being indi-
cated by a dashed line in Fig. 8). Thus clearly
for the present model, the singularities in y on
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FIG. 8. Radius of convergence of the activity series
expressed as the fugacity y~ =z~x2 as a function of x.
The upper dashed curve shows y, , the position of the
singularity on the real positive axis while the lower
curve (y~- ~ ) shows the position of the singularity clos-
est to the origin on the neggtive real axis. The lines
at+1 and —1 are the values of y and y~ for the two-
dimensional Ising model; the dot indicates the Ising
model critical point.

the real axis approach the intersection of the
unit circle with the real axis rapidly as x is in-
creased and in general the behavior of all the
series becomes Ising-like for x&4.0. Qf course
as x-1, the position of the singularities changes
dramatically, becoming dominated by the hard
core, a feature not present in the Ising model.

C. Hilh4ensity activity series

The behavior of the high-density series is in
general better than that of the low-density series.
The reason for this is clear from the analysis of
Gaunt and Fisher of the high-temperature (x=1)
limit: the position of the singularity on the real
positive x axis is the same (within the error of
the numerical techniques, ' for both the high- and
low-density activity series; however, for the low-

density series the interfering singularity on the
negative real axis was at z,' ' =- 0.12, while the
corresponding singularity for the high-density
series was at z' '=-z =-3.8. This means that
the singularity on the negative real axis has much
less influence in the high-density series than in
the low density series.

We will give a detailed analysis only for y(y', Q),
the behavior of the other thermodynamic func-
tions being much the same (with in general better
convergence) as for the low-density series. Be-
fore discussing g, we review the results obtained

FIG. 9. Ratios r„' at x=1.0 and /=3. 0 for (a) p(y');
(b) y (y'); and (c) X (y')'. The ratios are shown through
n = 14. The solid lines are the asymptotic behavior of
the ratios expected for n'= 0.0.

1
8 (55)

Figure 9 shows the ratios for p(y', Q), )t(y', Q),
and y(y', Q)' for x=1.0 and $ =3.0 using the 14-
term high-density series given in Ref. 1. The
straight lines are plots of r„'=r„—P with x„given
by Eq. (42b) for n =0.0 (logarithmic singularity).
The data of Fig. 9 support the conjecture that

x(y )

Note that

Sy-1 Xa-

Thus the intercept in Fig. 9 is (y,') ' =y~=3.76
confirming nicely the estimate of Gaunt and Fisher
at x=1.0.

We note that the ratios of Fig. 9 were obtained
using P =3.0, while most of the other ratio plots
we have shown are for Q in the range 0.5 to 1.5.
From Eq. (40) one sees that the characteristic
variable in r„(Q) is Py, . In the Ising model and
the present model for x &2, y, = 1 and we use P
such that Py, = 1. At x=1.0, y, =3.8 and y,'

for the other functions.
For yt(y', Q) we obtain very good ratios in the

range x=1.5 to 3.5. In this range of x, ratios
for the function [)(t(y', $)]4' are independent of
n and P being similar to those shown in Fig. V.

These results are consistent with the conjecture
'(y—
4

along the second-order line.
For R(y', Q) we have the estimate of Gaunt and

Fisher that at x=1, P =—,'. The function [&(y', P)')8~~

gives ratios that are independent of n and Q over
the range x=1.5 to 6.0. For x&6.0, the ratios
begin to drift apart as a function of Q. Thus we
estimate that along the second-order line
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= 1/3.8; in the high-density series the variable
that occurs in Eq. (40) is Py,'. Thus using Q =3.0
again gives Qy,'=1. We note that, in general, the
range of Q that is appropriate is determined by

J
g~ ol

One of the major problems in the analysis of
the behavior of the present model has been to
decide when not to accept the results of ratio
plots or Pads approximants. We wish to con-
clude this section on the analysis of series by
giving another example of a poorly converged
series. We will use as our example the tempera-
ture dependence of the ratios for y(y', Q). From
Fig. 9 we note that the ratios support the conjec-
ture that at x=1.0, a'=0.0 (in Fig. 9, the middle
curve is for y). One obtains the same behavior
down to about x= 1.3 and we conjecture that n'
=0.0 all along the second-order line. Figure 5
shows the ratios for g(y', Q) at x=6.0 and here
a', =1.00. It is of course impossible for the be-
ginning terms of a series (which are finite poly-
nomials in x) to exhibit an abrupt change such
as n' changing from n'=0. 0 along the second-
order line to n,'=1.0 at the TCP. Thus what one
observes is a gradual change in character in the
beginning terms of a series, for example, from
that shown in Fig. 5 to that shown in Fig. 9. Fi-
gure 10 shows the ratios for y(y', P) and y(y', P)'
at x=2.0 for p =0.5, 1.0, and 1.5. From the
ratios for [R(y', Q)']8~' which converge well at
x=2.0, we know that the intercept is at the star
shown in Fig. 10 at 1/n=0. 0. The data of Fig.
10 indicate clearly how misleading the ratios can
be, especially if one had only the beginning terms.
Consider the case if one had only the ratios
covering the straight-line portion shown in Fig.

10; if oneused only asingle value of P, one
would conclude that the ratios gave a very good
linear plot and one would obtain therefrom com-
pletely erroneous values of y,' and n.

V. PHASE DIAGRAM

A. Density series

Gaunt and Fisher' found that at x=1.0 y (p)
gave smoothly varying ratios yielding p, =0.37 as
the radius of convergence. For x greater than
about 1.2 none of the S(p, Q) give smoothly varying
ratios and the Pads approximants are very irre-
gular. It is disappointing that the density series
do not yield p, (x). One can only hope that perhaps
some form of transformation of the series other
than the Euler transform will give useful results.
But we have been unsuccessful in obtaining any
useful information from density series for x&1.

B. Numerical isotherms

%Phile the analysis of density series with res-
pect to obtaining p, and exponents was unfruitful,
numerical Pad4 approximants to Pp(p) do yield an
est™ateof p from the intersection of the low- and

high-density series. Figure 11 shows the diagonal
Pads approximant to PP(p) using 10-term high-
and low-density virial series as a function of x.
In the range x=1.0 to x=2.5 the high- and low-
density isotherms doubly intersect. At x=1.0,

l.8i

l.5—

'n

1.75

1.65—

1.55—

1.45—

1.35—

1.25
0.00

/

8 B
aa

0.10 0.20

~a'a ~-~--e- ~ - A

0.30

l.2—

I

04 05

/
I

l

Pv x= I.O ]
0.9—

I //
/ y (l

0.6— /I]I
/ I

// -4 I I)
/]/

0.5 =

=——W- 55
I I I

0.0 O. I 0.2 0.5

I /n

FIG. 10. Hatios r„' at x=2.0 for (a) y(y')' ~; (b)
[X(y')'] ~ . Each set of curves is for /=0. 5, 1.0, and
1.5. The star at 1/g = 0 indicates the actual values of
y~'. The ratios are shown through g =11.
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FIG. 11. Diagonal Pad6 approximants to Pp (p) using
ten term low- and high-density virial series. The pairs
of curves are, from top to bottom, for x=1.0 to x=3.5
in increments of 0.5. In the range x= 1.0 to x = 2.5 the
low- and high-density approximants doubly intersect.
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the midpoint of the double intersection agrees
with p, =0.37 obtained from ratios for gt(p).
For x=1.0 to 2.5 in increments of 0.5, the mid-
point of the double intersection occurs at p,
=0.37, 0.36, 0.34, and 0.32, respectively, giving
an estimate of the variation of the second-order
line p, with temperature (x). For x&3 one does
not obtain a double intersection, presumably due
to poor convergence and the fact that one is
approaching xTcp below which the transition den-
sities differ on the high- and low-density sides.

C. Extrapolation of activity series

For x&3.5 the partial series

m m

Pp(m) =g b„z", p(m) =g nb„z" (58)

vary smoothly and monotonically with m when

PP(m) and p(m) are plotted versus 1/m. This is
true of both the high- and low-density activity
series. Fitting the Pp(m) to a polynomial in
1/m and calculating Pp(1/m =0) one can obtain
an estimate of z, from the intersection of the
high- and low-density isotherms. One can ob-
tain the transition density by differentiating the
polynomial for Pp(z) or by fitting p(m) to a poly-
nomial in 1/m; the two methods give the same
transition density to within 1%.

Using the data from Fig. 11 for p,(x) along the
second-order line and the slopes at the intersec-
tion of extrapolated high- and low-density activity
series for Pp for p, (x) for x&3.5, we obtain an
approximate phase diagram as shown in Fig. 12.

J

I.O

2.0-

4.0—

50-

Disordered
Phase

I
I Ordered

l
Phase

TCP

/
/

..t " """""~. "- -""-.--" ...

7.0 ":,

80 I

00 O. I 0.2 0.3 0.4 0.5
P

FIG.-12. Phase diagram for the present lattice gas.
The upper solid line gives the second-order line as
determined from the data of Fig. 11. The lower solid
lines indicate the first-order lines as determined from
the extrapolation of activity series for Pp; the dashed
curve indicates the portion of the diagram where the
convergence of the extrapolation procedure is in doubt.
The dotted curve gives the coexistence curve for the
two-dimensional Ising model; the dot is the Ising model
critical point.

In Fig. 12, the portions of p,(x) that we have the
highest confidence in are given by solid lines.
These portions include the second-order line
from x=1.0 to x=2.5 and the first-order lines
for x&6. The dashed portion of the first-order
lines we have less confidence in; one notes that
the first-order lines meet the extrapolation of the
second-order line at the following point

xTcp =3 65~ pTcx —0.29 (59)

The reason we do not have great confidence in the
dashed portion of the first-order lines is that
when one applies the same extrapolation procedure
to the two-dimensional Ising model, one obtains
the coexistence curve quite accurately for x&6.5,
but one misses the true critical point at x, =5.828,
the two first-order lines coming together at x- 4.0. For comparison, the two-dimensional
Ising model coexistence curve is shown by the
dotted curve (interpreting the density scale as
varying from zero to the maximum possible
density). Thus at low temperature, the extra-
polation of activity series is quite accurate, but
for the Ising model in the neighborhood of x„ the
convergence is quite slow. Since the extrapola-
tion procedure to obtain the first-order lines for
the Ising model overestimates the critical temp-
erature, we conjecture that x~p of Eq. (59) is
an underestimate and that pTcp is an overesti-
mate.

Runnels, Salvant, and Streiffer'3 have estimated
the transition densities for the present model by
extrapolating data obtained for lattice strips of
finite width (or diameter, since they use periodic
boundary conditions). Their Fig. 4 is qualitatively
similar to our Fig. 12, the main difference being
that their diagram has the shape of a A. transition,
the first-order lines asymptotically coming to-
gether in a cusp. They estimate the value of x at
which the first-order lines finally meet as xTcp
= e ' =1.49. From our experience in the present
work with extrapolating partial series for PP, we
find for both the Ising model and the present model
that the partial series extrapolate very smoothly.
The problem is that for the Ising model in the
neighborhood of x„ the extrapolation completely
misses the true critical point, giving, as men-
tioned previously, x, -4 as the point where the
first- order lines come togethe r.

Kaye and Burley, ' using a Kikuchi approxima-
tion applied to the present model, find xTcp
=e' '=2.86. This value is considerably larger
than the estimate of Runnels et al. , ' but smaller
than our estimate of the upper limit given in
Eq. (59).

It is clear that the central remaining problem



1280 MARK W. SPRINGGATE AND DOUGLAS POLAND 20

concerning the present model is an accurate de-
termination of grpcp.

VI. PHASE-TRANSITON BEHAVIOR
/

An understanding of the behavior of the present
model centers around the sublattice structure
illustrated in Fig. 2(b). In brief review, at low
densities both sublattices are equally favored
and one has a system that resembles a gas or a
fluid above the critical point with no long-range
order. At very high densities most of the parti-
cles will exist on only one of the sublattices (at
close packing all of the particles are on one sub-
lattice), the nearest-neighbor exclusion forcing
alternate sites to be occupied. Figure 2(b) illus-
trates a high-density configuration of particles
where all of the particles are on one sublattice ex-
cept one near the center. The high-density phase
can thus be viewed as the lattice-model analog of
a solid with long-range order (favoring of one
sublattice). As the density is decreased from
close packing (p=2), particles are first removed
from the dominant sublattice; as enough holes are
created on the dominant sublattice, it becomes
possible for particles to become "unlocked" from
the dominant sublattice and form small islands
of particles on the other sublattice (Gaunt and
Fisher'~ use the analogy of islands breaking
away from the mainland). This migration from
the dominant sublattice is graphically illustrated
in the high-density series given in the Appendix
where one can see precisely how many particles
can exist on the nondominant sublattice (taken as
the B sublattice) as a function of the number of
particles removed from the system. Thus the
present model is the lattice-model analog of the
gas-solid transition in contrast with the Ising
model which is an analog of the gas-liquid transi-
tion. At the conclusion of this section we will
return to the question of lattice models that are
analogs of the complete gas-liquid-solid system.

From the above comments it is clear that the
sublattice structure of the present model is
crucially important in determining its behavior.
One gains considerably insight into the present
model by introducing a parameter (the "stag-
gered activity") that. measures the difference
between the activities of the two sublattices

the present model were used to treat surface
adsorption where there w'ere indeed different
alternating binding sites, then z„c1, but one
could not manipulate this variable experimentally
at will. For certain magnetic systems the mag-
netic field analog of z„would be a variable under
experimental control. Thus the introduction of
the z„dimension in the thermodynamic field
space for the lattice gas is to be viewed as a
mathematical constru tion that gives additional
insight into the behavi r of the model, the real
world being represented by z„=1.

If z„ is turned on (made larger than 1) the A
sublattice will be favored for the occupation of
particles over the B sublattice for z &z, . Like-
wise if z„ is turned off (made smaller than 1)
most of the particles will occupy the B sublattice.
Figure 13 schematically shows the coexistence
surfaces for the present model in the space
(x, z, z„). The descending dashed curve in the
x-z plane repiesents z, (x) (as given in Fig. 8;
y, =z,x ). The shaded surface in the x-z plane
above z,(x) is a coexistence or first-order
phase-transition surface. The two coexisting
phases are the phases dominated by occupancy
of the A or B sublattice depending on whether
z„ is greater or lesser than 1. These two
phases are related by symmetry [p„(x,z„)
=ps(x, I/z„)] and will have the same chemical
potential at sit 1.

From the above point of view as the system

z„=z./z, . (6o)

Our discussion then is with reference to a three-
dimensional thermodynamic field space (x, z, z„)
rather than the two-dimensional field space
(x, z) 20

For a lattice gas z„=1 since one has no way of
making one sublattice favored over another. If

FIG. 13. Coexistence surfaces for the present model
in (x,s,est) space. The shaded area represents the re-
gion where the A and B sublaftice phases are in equili-
brium. The A or B sublattice phases are in equilibrium
in the "wings" (sides of the "tent") with the disordered
phase. The origin of the g,t axis is at g,t=1.
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passes through a second-order phase transition
point from the ordered phase (z &z„z„=1)the
A. and B sublattice phases become identical and
hence the line of second-order points is more
correctly looked upon as a line of critical points.

The A and B sublattice phases can be stabilized
for z &z, if z„ is made different from unity.
This accounts for the "wings" in Fig. 13. The
wings are first-order coexistence surfaces
with either the A. or B sublattice phases being in
equilibrium with the disordered phase. The line
of first-order phase-transition points is actually
then a line of triple points with the A and B sub-
lattice phases and the disordered phase coexisting.
The significance of the point at which the transi-
tion changes from second order now becomes
clear. At this point three phases become identi-
cal simultaneously and hence this point is a tri-
critical point. Tricritical points have been found
in a number of systems including 3He- He mix-
tures, magnets, three- and four-component
fluids, and NH4CI. '

Having discussed the general nature of the
phase transition behavior, we turn now to a dis-
cussion of the divergences of the thermodynamic
parameters along the first- and second-order
phase- transition lines.

In the Ising model the critical exponents can
be classified according to the path of approach to
the critical point and the direction of the deriva-
tive involved relative to the coexistence curve.
Following Griffiths and Wheeler, ' one can dis-
tinguish between paths that are parallel or per-
pendicular to the coexistence curve [y,(x)]. Quan-
tities such as K~ which are second derivatives of
the chemical potential in directions not parallel
diverge strongly at the critical point while quan-
tities such as C„which are second derivatives of
the chemical potential taken parallel to the co-
existence curve diverge weakly. For example,
in the two-dimensional Ising model

n =o. ' =0 (logarithmic singularity),

r =r' =-4 P =-8 o'+20 +r =2 . (62)

Further evidence for the truth of such a conjec-
ture is Fisher's result of P =—', and n =0 exactly
for his superexchange lattice gas'4 (this model has
half the bonds of the present model with the same
hard core; Fisher's exact solution is for the iso-
therm x=2).

At the tricritical point one has the renormaliza-
tion-group & expansion of Stephens and McCauley'
who find

n, =~+1/2@+

where & =d- 3. Hence for d=2

n, =1.0.

(64}

(65)

TABLE I. Summary of functions used.

In the present work we find that the ratios for
the series presented in Table I are asymptotically
independent of n and Q.

Our results outlined in Table I support the.
values for the exponents given in Eqs. (62) and

(65). We emphasize that the problems we have
outlined concerning the analysis of activity series
(loss of convergence outside of certain ranges of
x, lack of a precise value for xycp and the possi-
bility of an essential singularity for x &ere ~)
preclude, in our view, any stronger statement
concerning the values of the exponents. As an
example, we refer back to Fig. 5. For the two-
dimensional Ising model along the critical iso-
therm

(66)

We initially guessed that since at low tempera-
tures (in the neighborhood of @=4 to 5) the series
for the present model behaved in a similar fa-
shion to the series for the Ising model that one
would have n,'=—', =0.934. Figure 5 shows the

Kr - (T T,) ~, C» -——ln(T —T,) (61)

for T &T, along the critical isochore.
As illustrated in Fig. 13, in the present model

one has a coexistence surface. Since

(62)

one sees that y is a derivative in the direction
parallel to the coexistence curve while yt is a
derivative in, the perpendicular direction. Thus
one expects that y~ will diverge strongly and X

weakly at the line of critical points (second-order
line}. Invoking current ideas on universality22
and smoothness23 one in fact would expect

Function

x(y, Q)

[x~(y, y) ~'~'

[g$(y y) ]4/7

x~(y, 4)

x(y', Q)'

Temperature range

Low density
x —= 3.7 to 5.0
x = 1.3 to 1.8
x =—2.0 to 3.9
x =—5.0 to 6.0

High density
x ~ 1.0 to 1.3

x =.5.0 to 6.0
x —-1.5 to 3.5
x ~1.5 to 6.0

No. of terms
in series

11
9
9
9

14 at x=1
11 forx &1

11
8
8
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ratios for y(y', Q)" '4 and one obtains points that
are independent of n and Q. On the other hand the
e expansion of Eq. (64) predicts n', =1.0. As we
have discussed in connection with the data of (49),
our lack of knowledge of x~~p does not let us dis-
tinguish between a', =—,

' and n,'=1.0. Our data
thus support any prediction that c).~

= 1.00+ 0.05.
This kind of analysis of series can then clearly
tell the difference between the exponents 0.0,
1.0, and 1.75 (in the ranges of x where the series
are well converged), the general confidence limit
on a particular exponent being about +0.1 and in
some cases quite a bit better.

For the exponents at the tricritical point we
find a, = 1.0 and y, = 1.0. We do not see any
change in P from P = —,

' down to about x=6.0. The
uncertainties in n, and y, (due largely to the un-

certainty in the value of x~c~) are such that these
results do not imply a violation of the scaling
law n, +2P, +y, =2. From a computer simulation
for the two-dimensional spin-1 Ising model,
Arora and Landau found P, =0.09 and y, —- 1.0.

We conclude with some comments on the rela-
tion of the present model to the general question
of a gas-liquid-solid system.

Lattice models can be viewed as a construct
used to approximate the multidimensional config-
uration integral in continuous space, a degree of
realism being traded for high precision in ob-
taining series and hence detailed knowledge of
the nature of the singularities associated with
phase transitions. And the close agreement be-
tween experimental critical exponents and those
obtained from the three-dimensional Ising model
supports the idea, that the discretization of space-
does not lead to results that have no connection
with the real world. One anticipates that as one
makes a lattice of finer and finer grid that lattice
models would approach the continuous space limit
more closely. The present model can be viewed
as the first step in this direction as illustrated
by Figs. 2(a) and 2(b), the present model being an
increase by a factor of 2 in the number of lattice
points keeping the particle size constant. The in-
teresting feature of the present model is that by
increasing the density of lattice sites over the
two-dimensional Ising model one has not improved
the degree to which the preyent model describes
a gas-liquid critical point, but one has changed
qualitatively the nature of the transition, the ex-
tended hard-core repulsion introducing an order-
ing effect making the present model represent a
gas- solid system.

There is evidence that by introducing an ex-
tended region of attractive sites around each par-
ticle one can produce a lattice model that includes
the gas, liquid, and solid phases, the simple idea

being that one must have the possibility of low-
energy configurations that do not necessarily lead
to a regular arrangement of the particles in order
to produce the liquid phase. Since high-tempera-
ture series are expansions about the independent-
particle state, such expansions are not possible
for systems containing an extended hard core.
Hence the most detailed knowledge of singularities
in such systems, in lieu of exact solutions, must
come from the analysis of activity series. The
present work illustrates both the difficulties and
the positive results to be encountered in such an
approach that hopefully can be applied in the fu-
ture to a model exhibiting full three-phase be-
havior.
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APPENDIX: SUBLATTICE ACTIVITY SERIES

In this Appendix we give exact low- and high-
density series expansions in the sublattice ac- .

tivities as defined by Eqs. (4a) and (4b). For a
given value of n, if one sums the b „and b'„
over m one obtains, respectively, the b„and b„'

previously published. ' The asterisks on the terms
in bz indicate that we are uncertain to + 1 in the
last digit for the terms indicated (one obtains the
coefficients by solving simultaneous equations in
two variables, z~ and x and the uncertainty arises
from having reached the computer's limit of
accuracy).

For the low-density series. we give only those
terms that cannot be determined by the symmetry
relation b „=b„~,

A. Low4ensity series

bpg
——» bp2 =- 1g +x; b~2 =- 2; bp3 =56 —Sx+3x1

b(3 —,11—6x; bp4
———26—,'+59x- 42~x +9x +2x .

b&4
———70+84x- 24x; b24

———91+76x- 17x .

b()5
——147-, —436x+463x —200x +21~x +4x5 .

b (5
——478 —894x+528x' —90x3 —4~ x4 .

bp,
——760 —1006x+442x' —66x .

.bp6 =- 894—+3260x- 4572x +29963+

—8252x +15x5+20x6+x~

5 g6
———3402 +8656x —7864x' +2876x —250x4 —44x

b26
———6388 +12 058x —8208x +2352x

—2082x —12x
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b36
———7726—,'+12 912x- S176x +2320x3 —250x .

bp7
——56987 —24 664x+42 97Vx —37 820x

+16 804~ —2832x —243x +68x'+11x .

bf 7
——24 883 —80 120x+98 832x~ —56 582x3

+18 415x —114x —260x —12x .

b)q
——53 S61—134002x+127 168x —56 324x

+10 743x —262x —116x .
b37

——75 997 —161698x+136457x —56 654x

+11215~@ —684x —4&&
/

bps
———37 619~ +188520x —392 545~@ +433 835x

—266098~x +82 395x —6661~x

—1993x +97~x +67x +3x'p .

b, s
———185 568+722 976x- 1 129 806x +887 328x

—348 9'86x'+50 560x'+4590x'

—1000x7 —154xs .

b~s
———454 809+1414 028x —1 74'7 948x +1078 599x

—332 964x +38 732x

+2489x —571x —31x .

b~s
———731 550+1 935 112x- 2 083 924x +1 159368x

—341664x +44912x +94x —428x .

b4s
———849 844~ +2 11.8 240x - 2 188 821x +1 188 700x

—349 205~x +4V 962x —707x —324x —Sx .

bpe
——255 304', s

—1 453 478x+3 520 021x

-4683 826~x~+ 3 665 016~x

—1 641 164x5 +345 867x +2556xv —9893x

0x9 +270xf0 +36xff +1x12

bfq
——1 404 147 —6 420 508x+12 163 116x

—12 185 366x +6 738 644x

—1 859 290x +122 277x +39 524x

344~~xs 1072xs 45

bqe
——3 S43 004 —14 385 886x+22 095 878x

—17 765 220x +7 799 767x

—1 685 656x +80 214x~

+24494x'- 985x'- 396x'.

b39
——6 9318583 —22 1S6946x + 29 518 860x~

—20 975 906x +8 409 747x

—1 776 160x +125 204x +15358*x

1820xs 114xs

b4~
——9 130744 —26 784 398x+33 296 381x

—22 549 022x +8 809 948x

—1 875 032x +151361*x +11 940*x

—1919~*x —76*x .

B. High4ensity series

bpf =1) bpp —2p +2x~ bp3 =103 16x+6x ~ bf3=1 .

bp4
———52~ +118x—85x +18x +x;

b', =—l2+Sx; b' =2 .
b' =295—,

' —872x+926x —400x +43x +Sx .

bf5 110 —144x +40x +4x; b&5
———30 +20x;

b35
——6; b45

——1 .

bp6
———1789- +6520x- 9144x +59923x

—165lx +30x +40x +2x .

bf6
———928 +1816x—1056x +104x3 +44x

b,', =309-,' —418x+120x'+12x';

b,', =- 1OS+64x+4x'.

b4
—-3+12x,. b' =8; b' =2.

bpq
——11397-' —49 328x+85 954x —75 640x

+33 609x —5664x' —486x +136x +22x .
b' =V580 —19800x+17 798x —5540x

—289x'+268x'+18x'.

b)7 —2742 +5656x —3448x' +372x' +138x +4x ~

b37
——1254 —1544x+328x +88x .

b47 —97 —122x +102x +8x

b5, =- 137+100x+8x .

b67 ———12+28x; b77
——22;

bs, ——6; bs, ——1

bps = 75 2388 + 377 040x 785 091x +867 670x

—532 196~x +164 790x

—13 323m —3986x +l,94~x +134x +6g

b f s
———61 072 +199896@—244 580x +129336x3

19260x4 5560x'+963x6+216x~+4„8

b~s
——22 404 —62 906x+60 148x —19 960x

—724x +858x'+102x .

b3s 11976+22 920x —12052x +48x +804x +48x' .
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b48
——1781—350x- 1828x +622x +116x +4x .

b)8
——1508 —2312x+588x +176x ..

b68
———80 —358x+282x +20

b', 8
=- 468+312x+28x .

b88
———51+92x+4x; b98

——40+16x .

b10 8 30~ b11 8 8~ bi2 8

~M. W. Springgate and D. Poland, J. Chem. Phys. 62,
680 (1975).

C. Domb, Nuovo Cimento Suppl. 1 9, 9 (1958).
3H.

¹ V. Temperly, Proc. Phys. Soc. London 74, 183,
432 (1959); 77, 630 (1961);80, 813, 823 (1962).

4D. M. Burley, Proc. Phys. Soc. London 75, 262 (1960),
D. Levesque and L. Verlet, Phys. Lett. 11, 36 {1964).

6B. Jancovici and G. Stell, Physica 31, 1017 {1965).
~B. D. Kaye and D. M. Burley, Proc. Phys. Soc. 77,

451 (1965).
L. K. Runnels and L. L. Combs, J. Chem. Phys. 43,
2840 (1965).

9F. H. Ree and D. A. Chesnut, J. Chem. Phys. 45, 3983
(1966).

'OB. M. Nisbet and I. E. Farquhar, Physica 76, 259
(1974).

"D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43, 2840
(1965); D. . S. Gaunt, J. Chem. Phys. 46, 3237 (1967).

~~R. L. Dobrusin, Funct. Anal. Appl. 2, 292, 302 (1968).' L. K. Bunnels, J. P. Salvant, and H. B. Streiffer, J.
Chem. Phys. 52, 2352 (1970).
R. D. Kaye and D. M. Burley, J. Phys. A 7, 843 (1974).' R. B. Griffiths, Phys. Rev.' B 7, 545 (1973).

~~H. E. Stanley, Introduction to Phase Transitions and
Critical I'henomena (Oxford University, New York,

1971);-Chap. 9.
~VC. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1963).

G. A. Baker, Jr., J. L. Gammel, and J. G. Willis, J.
Math. Anal. Appl. 2, 405 (1961);D. L. Hunter and G. A.
Baker, Jr., Phys. Rev. B 7, 3346 (1973).
M. E. Fisher, Physica 3, 255 (1967).
B.B. Griffiths and J. C. Wheeler, Phys. Rev. A 2,
1047 (1970).

~'M. Blume, V. J. Emery, and B. B. Griffiths, Phys.
Rev. A 4, 1071 (1971);D. M. Saul, M. Wortis, and
D. Stauffer, Phys. Rev. -B ll, 4964 (1974); F. Harbus
and H. E. Stanley, Phys. Hev. B 8, 1141, 1156 {1973);
B. Widom, J. Phys. Chem. 77, 2196 {1973).

~~L. P. Kadanoff, in Proceedings of the Enrico Fermi
Summer School, edited by M. S. Green (Academic,
New York, 1971).

~3R. B. Griffiths, Phys. Rev. Lett. 24, 1479 (1970).
M. E. Fisher, J. Math. Phys. 4, 278 (1973).

~5M. J. Stephens and D. McCauley, : Physics Lett. A 44,
89 (1974).
B.L. aurora and D. D. Landau, AIP Conf. Proc. 10,
870 (1973).

~YJ. Orban, J. Van Crean, and A. Bellemans, J. Chem.
Phys. 49, 1778 (1968).


