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The equilibrium velocity distribution of classical free particles interacting with random cIassical radiation is
investigated using the model of Einstein and Hopf, and extended to allow relativistic particle velocities. The '

model considers a massive free particle which has an electric dipole oscillator mounted inside; the oscillator
provides the interaction between the particle and the random radiation. In this paper we give the calculations
leading to a Fokker-Planck equation for the equilibrium distribution of particle momenta, and evaluate the
equation for a number of radiation spectra. We find the following results: (i) If the random classical
radiation is the Rayleigh-Jeans law for thermal radiation, then the equilibrium particle distribution follows
the Boltzmann distribution only at low temperatures where nonrelativistic particle velocities are involved. The
Rayleigh-Jeans law does not lead to the Boltzmann distribution for relativistic free particles. (ii) If the
random classical radiation is the zero-point radiation spectrum, then the equilibrium particle distribution is
the Lorentz-invariant distribution. (iii) If the random classical radiation is the Planck spectrum with zero-
point radiation, then the equilibrium particle distribution goes over asymptotically to the Lorentz-invariant
distribution at velocities near the speed of light. Thus no finite number of free particles can form an
equiIibrium velocity distribution if zero-point radiation is present. The particles will diffuse to velocities ever
closer to the speed of light. We conclude that equilibrium for a finite number of particles must involve some
explicit mechanism for confinement if classical zero-point radiation is present.

I. INTRODUCTION

The interaction between radiation and matter
provides one of the. major problems of 20th-cen-
tury physics, and the ramifications of this problem
have led to the creation of quantum theory and
quantum electrodynamics. In the present paper we
turn to one small aspect of the problem which most
physicists regard as already solved. VVe consider
here the equilibrium velocity distributions of clas-
sical free particles interacting with random clas-
sical radiation. This situation, which lies entire-
ly within classical electrodynamics, was first ex-
plored" over 70 years ago with results confirm-
ing conventional expectations. However, the cal-
culations at that time used nonrelativistic particle
mechanics. The present paper extends the work
to the relativistic domain and finds unexpected
results.

The model for the calculations is that provided
by Einstein and Hopf' in 1910. A massive particle
is assumed to contain an electric dipole oscillator
which interacts with the random classical radia-
tion. The random radiation causes oscillations of
the dipole and hence exerts forces on the massive
particle. The particle thus executes a Brownian
motion under the influence of the random forces
from the random radiation. By appropriate cal-
culations from the electromagnetic forces, it is
possible to obtain a Fokker-Planck equation for
the distribution of particle momenta in terms of
the energy spectrum of the random radiation.

The equilibrium particle distributions can be ob-
tained by numerical computation.

In the original work of Einstein and Hopf' and of
Milne, ' it is assumed that a finite number of free
particles will come to equilibrium with classical
thermal radiation, and it is concluded that the
Rayleigh-Jeans law leads to the Boltzmann dis-
tribution for particle momenta. Both this assump-
tion and conclusion are lost when one treats the
particle velocities relativistically. The calcula-
tions that follow will instead lead us to these con-
clusions: (i) The Rayleigh-Jeans law for thermal
radiation enforces the Bolt'zmann distribution for
particle momenta in the case of nonrelativistic
particle velocities only. For relativistic particle
velocities there is an inconsistency between the
Rayleigh-Jeans law for thermal radiation and the
Boltzmann distribution for free particles. (ii) If
the random classical radiation is the zero-point
radiation spectrum, then the equilibrium particle
distribution is Lorentz invariant. (iii) If the clas-
sical radiation spectrum includes zero-point radia-
tion, as, for example, in the Planck spectrum with
zero-point radiation, then the equilibrium particle
distribution goes over to the Lorentz-invariant
distribution for high velocities, and the equili-
brium distribution cannot be normalized to a finite
number of particles; For any finite number of
particles, the random motions will eventually
bring the particles to a high velocity, where the
thermal radiation at low frequency is not impor-
tant, and the particle will diffuse out into the di-
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vergent high-velocity tail caused by the zero-point
radiation at high frequencies. If zero-point radia-
tion is present, then equilibrium for a finite num-
ber of particles requires some explicit mecha-
nism. for confining the particles.

In the account to follow, we will first discuss the
model of Einstein and Hopf, and then carry out the
calculations of the random forces for insertion into
a Fokker-Planck equation for the distribution of
relativistic particle momenta. Once we have ob-
tained the Fokker-Planck equation, we discuss the
Hayleigh-Jeans law for thermal radiation and see
that it leads to the Boltzmann distribution for free-
particle momenta in the nonrelativistic limit, but
causes departures from the Boltzmann distribu-
tion for relativistic particles. We subsequently
discuss the equilibrium particle distributions
caused by the Planck law without zero-point radia-
tion, by the zero-point radiation spectrum, and by
the Planck spectrum with zero-point radiation.

II. BASIC CALCULATIONS

A. Model of Einstein and Hopf

In the rest frame of the particle the mechanical
motion of the oscillator can be treated accurately
with nonrelativistic mechanics, since the velocity
of the charge e is given by wo times the displace-
ment of the charge, and we may go to the limit of
a point dipole when the displacement vanishes.

The force 6'„ in the laboratory frame can be
found from the force 0:„' in the particle frame by
means of a Lorentz transformation. Since the
particle is moving with velocity v = equi, we use
the Lorentz transformation for the force' in the
direction of the transformation velocity,

V.'+ (v/c')S' u'
1 + vzz„/c

since u'= 0 is the velocity of the particle in its
own rest frame.

For insertion in the Fokker-Planck equation for
the distribution of particle momenta, we need the
average change and the mean-square change in the
particle momentum during a short time interval

Since this change of particle momentum is
given by the impulse

The particle model used in the present paper is
merely an extension to relativistic velocities of
that proposed by Einstein and Hopf' in 191,0 and
used again in our work' of 1969. A particle of
large mass M, constrained to move along the x
axis, contains a small electric dipole oscillator
p=pE oriented along the z axis. The dipole oscil-
lator can be pictured crudely as a fixed negative
charge -e along with a particle of mass m and
charge e at the end of a spring of natural frequency
&u„giving a damping constant I' = 2e'/Smc'. The
charge e, which determines the size of the inter-
action between the particle and the radiation, may
be chosen arbitrarily small and even taken to
vanish when the equilibrium particle distribution
is established. The magnitude of the charge e
determines the time rate at which. equilibrium is
approached, but does not affect the final equilibri-
um distribution.

From the Lorentz force on a point charge
F =e[E+ (v/c) xB] it follows that our oscillating
point dipole. experiences a force

F'= (p" V')E'+ c 'p'xB'

when the center of the dipole is at rest, as it is in
the rest frame of the massive particle, which we
take as the prime frame. In the present case we
are interested only in the x component of the force
on the dipole, since our massive particle is con-
strained to move along the x axis.

delivered to the particle during '.he time v, we
need the average impulse ( &) = F„7', where F„is
the average force

F„=(~„),
and we need the mean-square impulse ( LP) de-
livered to the particle during the time ~,

The length of time v is assumed sufficiently long
that the oscillator has carried out many oscilla-
tions, but sufficiently short that no significant
change in the particle velocity will have occurred.
By taking the charge e and hence the oscillator
damping constant I' sufficiently small, we can al-
ways obtain a suitably long time interval.

The random classical radiation is written in
terms of a superposition of plane waves with ran-
dom phases':

E(r, t)=Re g fd k)(R X)))(v.„)'
X=&

xexp[ik r —i&et+ t8(k, A.)],
(7)

xexp[zk 'r —i&et+ i8(k, h)],
8E„', 1, dp'
8z' e " dt' (2)
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where the polarization vectors i(k, A), A =1,2 are
orthogonal to k and to each other:

variable is the standard Lorentz transformation, '
including the frequency and wave vector'

and

~(kg, ) F(k, Z') = 5„„,
k ~(k, x)=0,

2

kjA ef kgb =off- '2

v'I'((d) =g(~)

(9)

(10)

(12)

k'=y(k-Pk„), k„=y(k„-Pk), k„'=k„k,'=k. ,

where ~= ck and y= (1 —P') 'j'.
The dipole oriented along the z direction oscil-

lates with simple harmonic motion in the particle
rest frame while driven by the electric field
E,'(0, i') and damped by the radiation reaction
force, '

corresponds to the electromagnetic energy density
per normal mode at frequency w. The phase
8(k, A) is a random variable' distributed uniformly
on [0,2v] and distributed independently for each k
and A. .

In the rest frame of a particle moving with vel-
ocity v = ePi along the x axis, the electromagnetic
waves are seen as fields E '( r ', i ') and 8'( r ', i ')
obtained from a Lorentz transformation, '

R'(r', r ) Re&'=f s(idr„+jr[r, —(j%xr).]

+@[~,+ p(k x~),]]y(~„-)

xexp[ik' r' —iu&'t'+ i8(k, A)],

,2 + e',p ' —I' „=-,'I'c'E,'(0, i'),dt"

—', r c'= e' /m= b. (17)

If we substitute Eq. (13) for the random radiation
field E„'(0',i') into the equation of motion (16), we
find the steady-state motion of the oscillator,

2

p'=Re g d'kbC '(&u')y[e, + p(k xe), ]fj(&o)
X=1

where we have placed the oscillator at the origin
of the primed coordinate system. The combination
—', I'c' corresponds to e'/m in the crude picture of
the osci1.lator as a charged particle on the end of
a spring', for convenience we will write

(13)

'(Rr', ')j= eRg f d')(i()) xc), r+ jr(())x(), +))r, )
X=1

+I~y[(k xe). —p~, ]] Il(~-„)

x exp[ik ' ' r ' —i &u't'+ i 8( k, A.)] .

xexp[-i(u't'+ i8(k, z)],

where

C((d ) = —(() + co() —LT()j'

B. Calculation of the average force I'„

(18)

(19)

(14)

The connection between the primed and unprimed

The fluctuating force „' on the particle in the
particle rest frame can be obtained from Eqs. (2),
(13), (14), and (18). Transforming the force back
to the lab frame with Eq. (3), we ha, ve

2

5„=Re g d'k, ~,„ik,', 0(&u,)exp[ —ie,'f'+ i8(k» A,)]
X I= 1

2

x Re g d'k, bC '(v,') [ „yap+(k, xe,),]g(&u, )exp[-i&o,'i'+ i8(k„A.,)]

2-c 'Re d'k, y[(k, x e,)„+p~„])(a),)exp[-iv),'t '+ i8(k„x,)]

2

x Re Q d'k, bC '((o,')y[q, + p(k, xq), ](—i(d,')$((d,)exp[-i(d,'i'+ i8(k„x,)] .
X2= l

To find the average force Ii„=(g:„), we carry out the average over the random phases 8(k, A),

(exp[i8(k„A. ,)]exp[ —i8(k„h.,)])= 5„, &'(k, —k, )

(exp[i8(k„A.,)]exp[i8(k„A,)])= 0.
Then integrating and summing over the 5 functions we find,

(20)

(21)
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r, =' g fd'k(~y[~+p(k~'4]br~"ale(~)I'~*(~)

-c 'y[(k x t)~+ pe, ] y[e, + p(k xe),]ra' b
~

C(ar')
~ f (&)j, (22)

k„kgX g
k'

E (k X~)~ ——
q

kg

)t= I.

kX& q kX& y
——

~g~»= 1—kg

)t= 1

2

E (k XE)q ———
~

)t=j.

Furthermore, we can change the variable of inte-
gration over to d'k' by using the Jacobian of the
transformation in Eqs. (15),

where, as always, the primed and unprimed var-
iables are connected by the Lorentz transformation
as in (15).

Now using Eq. (11), we carry out the sum over
the polarizations

smaller, it requires a longer time for the oscil-
lator to give a fixed size response to a fixed inci-
dent wave, and hence phase coherence between the
oscillator and the random radiation is limited to
a narrower range of frequencies. In the narrow-
linewidth limit we have'

lim (e'/m)
~
C((u) (

'
g2/yg ~0

= (—', vc'/(u', )[5((u —(u, ) + 5((u+ ar,)], (28)

where here b=e'/m. Introducing this narrow-
linewidth limit into (27), and carrying out the in-
tegration over w, we have

.)
Z(~.y(1+ PX))

d'k=d'k'y(k'+ Pk.')/k'. (24)

Inserting Eqs. (23) and (24) into (22), we find

d'k' y(k'+ pk„')brc'k"
~

C(~')
~

'll'(~)1

x k '[yk.'[k.(pk —k„)]

x k'(k" —k"). (26)

Since the variable of integration is a dummy var-
iable, we may now drop all the primes.

Next we change to spherical polar coordinates
choosing. the x axis as the polar axis, k„=kcose.
The integration in P may be carried out easily
and the integration in 8 changed to one in the dum-
my variable X=cos8. We find

br~' ( ll'(~y(1+ px)) 1

-y'k'[Pk'+ Pk„' —(1+P')k„k]}. (25)

At this point Eq. (15) is used to eliminate all un-
primed variables. When the expression is sim-
plified, the force becomes

„,„, brc'k" 5'(y(~'+ pck„'))&~

I C(~') I

' y(k'+ Pk„')

I"o
8 c (1 —pX)

-1 o
dg((o, ))(+ (go pX

d(do J

2r',
(

d
5 c dc'

(30)

where g(&o) = n'g'(&u) from (12) is the energy per
normal mode.

There are two easily available checks on ex-
pression (29) for the average force F„. The first
involves the zero-point radiation spectrum g(u&)

In this case it is easy to see that the in-
tegrand in (29) becomes simply —,

' KX(1+X'),
which, as an odd function of X', vanishes on in-
tegration from -1 to +1, giving E„=0. This is
as it should be; zero-point radiation is a I orentz-
invariant spectrum, "and hence no velocity-depen-
dent forces are possible.

The second check involves the nonrelativistic
limit which was calculated originally by Einstein
and Hopf, ' and also given in our work' of 1969. If
we retain terms only through first order in P, we
have from a Taylor series expansion

x qX(1+X') . (27)

If we recall the connection between the spectral
energy density p(&u) and the energy per normal
mode g((u),

The dipole oscillator p' responds mainly to
radiation at its natural frequency co'= wo As the
charge e and hence damping constant I' becomes

p((o) = ((u'/v'c')g((o),

we see that (30) is in exact agreement with the
earlier nonrelativistic expression. "

(31)
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C. Calculation of the mean-square impulse (h2)

The fluctuating impulse & follows from the fluc-
tuating force F„as in Eq. (4). Now the time t' for
the action of a force on the massive particle cor-
responds to the time in the rest frame of the par-
ticle, and thus involves a proper time interval
with

(&'= &Iy

Hence from (3) and (32) we can rewrite the im-
pulse (4) delivered to the particle during time v

as

C It j+7/r I t +7'/r

t

(34)

, aBV'' XE'= -c-'
at' ' (35)

to give

and then neglect the evaluated end-point term in
brackets since it does not depend upon the length
of time T'. Next we use the y component of Max-
well's equation,

ted +7'

0:„dt=
ty

&'ydt'

pE„', 1 ~, dP'

1

(33)

e=yf '

t ~+7 /r
=y

t'g

f3Ez' 'p dt.ax' (36)

We can integrate the second term of the last line
of (33) by parts to obtain

We now introduce the explicit forms for 8E,'(0, i')/
Bx' and p' from Eqs. (13) and (18) to obtain

t'~+7 /r 2

e=y t Redg f d' 't,ry]t + g(gxt)„], tg,', j(( re)e xp-](re't' et(g r„rt)]
t) Xy=l

C(i i%i) = -(i tMt) + N() —i (pi%~)

where p, ,= +1 is a parameter in a summation to take the real part, so that Eq. (37) becomes
I

i ,f=dt —Q P j' d'g, y]r„+g(g, x ),]t ,t'ge( g)A, re

g l, y=l

2

x —g g d'a, bC '(q, ~, )y [~,-+ a(k, x~),]f](~,)A, .
)t2=1

2«e g fd'g. gC '(rel)y(t. .+ g((r, xt ),1(t(re)eep( rre t'+tg(te„x, )l
X2-1

For convenience in later manipulations we will introduce the notations

A, = exp(-i[p, &u,
'f' —p, 8(k„A.,)]j,

(37)

(3S)

(3S)

The time dependence is eritirely contained in A, and A2 so that the time integral becomes

f dt'A, A, = '
',

' ', exp[ i[(p, (d,'+-p, (d2)f,' —(V,8, + A, 8,)]j.z(exp[ —z(p, (d,'+ p,,&u,') w/y] —1j
t g,~, + IIL2~2

Next we square the expression, giving

(41)

Q fd'g, d'g, y']t„+g(g, xt ),1]t„eg(g, xt )]]t„eg(g, xt ),1]t,+g(il e )]
Xg X4

xi g,k,'„ip, ,k,'„bC '(p, ,(o,')bC '(p, (t],') ), f]2f],$,
i(exp[-i(]]L,(u,'+ p.,(d,') ~/y] —1} i(exp[-i( p,,u&,'+ p, (u,') ~/y] —1j

P, ,M, + P,2~2 P.,Cd, + P4Cd4

x exp(-i[(g, ur,'+ g, (t],'+ p, (d,'+ p, (d,')t( —(p,8, + p, 8, + P, 8, + p, 8,)]j,.

(43)
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We now average over the random phases:

(43)

(44)

2

(a') = (6 g Q g g fd*kfd'k, y'[e„,+ l)(k, x),),]'[e„+()(&x],)„,] &',&,
'

ll 1 lL 2 )t 1 )t2

-p, ,k,'„p,k,'„bC '
p, ,, ' bC '

p,,, ' v'y '

( "p['(I"& &+ 4"2 2+ I"3 3+ &4 4)])= &»&-2& &3&&-4&+ &»&-3& &2&(-4&+ &»&-~& &2&(-S&

where 6 (] ) ( 2) stands for

5 (() (-2) = 5.,-~,6i,~,6 (k& -k2) ~

The dependence of & upon the starting time t, is seen to vanish upon averaging. After summing and inte-
grating over the 5 functions, we find

O'
I exp[-i(p, (d,'+ ([L,(o,') ~/y] —1 I'

'"
I C(~2) I' (I&,~&+».(d.')'

b b I exp[-i( I&, &d,
'

,+ I&,&d,') 7'/, y] —1 I

'
C(—I& &((&i) C(I&g((&2) ()U &((&&+ f12((&g)

where we note that C(-g&g') = C*(p(d'), and where we have set

(45)

(46)

Now the first term for (6') in Eq. (45) involving
the factor 7' is just (F„7')', where Il„ is the average
force given in Eq. (29). In the present case we
have F„ in the form

F,= —p Q fd'). y'[e, +()(kx)),]'&'

as co,' passes through w„so that there is a cancel-
lation between the large plus and minus contribu-
tions, as there is not for

i
C(((&,&o,') i', which is al-

ways positive. Another way to see this higher-
order behavior is to convert the expression
bC '( —i&, (d'&) to the form

xi]&,k„'bC '(g(o') . (47)
bC '(-», ,(d,') = bC(». ,(o,')/i C(~,')

i

'

- (3«c'/4(o', )[(-(u,"+ (o', )

The sum over p gives C '(v') —C '(-ur') = 2ir&o "/
i
C(&u')i'. Introducing the sum over polarizations

as in Eq. (23) and changing to the prime variables
as in Eqs. (15) and (24), we arrive at exactly our
earlier expression for E„ivge inn Eq. (26).

The last term for (&') in Eq. (45) includes the
factors bC '( —][(,&u,')bC '(g, +2). It is second order
in the oscillator damping constant I' and hence
negligible compared to the middle term in (45).
This higher-order behavior can be seen from the
fact that the real part of C '(-p, &u,') changes sign

—ir ( Ij,,(u,')']5((u,' —(d 0)

= (3wc'/4(o,') [—ir(I&, ,(u, )']5((d,' —(u,),

where the 5-function behavior follows from the
narrow-linewidth approximation in Eq. (28). The
expression bC '(p, &o', ) can be converted in the same
manner giving the second -factor of I".

The middle term for (6') in Eq. (45) is linear in
both I' and y, and will be designated by (i&,',) so
that

r f I'). , fd');, y'[e, +()(&,x],),]'[~„+e(&., x),),]'
I 1 ~2 j. ~2

b' l exp[-i(», ,(d,'+ &&2(d2)7'/y] -1 I'
'" IC(co,') I' (48)
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The dependence upon the parameters p, , and p., is contained entirely in the last factor, which can be re-
written as

The needed sums over the polarizations appear in the Eqs. (23). We also change the variables of integra-
tion over to the prime variables of the particles's rest frame using (15) and (24). We obtain from (48):

2

(2')=
2 fd'2,'fd 2y'1,+','*

y 1+,'* y'[y'(1 , +2k „')] '(k,"'—2,",)2,",2'(y(w,'«dc )2)

x 5'
~
C{~,)

~

'y'[y'(I, + 8a,'„)] '(u,"—~,",)y'{y(~,'+ 8cu,„)}

x {((u,'+ (o,') 'sin'[-,' ((o,'+ u),')r/y]+ ((d,' —(o,') 'sin'[ —,
'

((d2' —(o,')~/y]f. (50)

At this point we may drop the primes on the variables of integration and introduce spherical polar co-
ordinates with the x axis as the pole, r axis. .The integrations in (f&, and (t), are easily carried out, and the
integrations in 8, and 8, can be changed over to integrations in the dummy variables X=cosO„F= cos6I, .
Expression (50) for (b', ) then becomes

00 1

(k,')= —f dk, k', 2«f dX
2 0 1.

~ 1+&'
~ ~ ()'(~,y(1+ 0&)) b'

1 . 2(&u, + (()2 V 1

Now we go to the limit of times w long compared
to the characteristic frequency co, of the oscillator.
In this case, the term in w, + +, remains small
while the term in ~, —co, is sharply peaked at
~, —~,= O. Also in the narrow-linewidth approx-
imation,

~
C(&u, )

~

' gives a sharp peak at ~2= ~0.
Hence we first integrate with respect to coy: ck y,

changing the variable to u= v, —m„extending the
lower limit of integration to -~, and using

9 I co«') =r
32 c

'
dXX'(1+X*) d( '«('+2

)(d y(1+[3X)
'
d~(I FX) g((d.r(I+ PF))

(dor(I + P I')

(53)

J
l " sin'7u

dQ = 'Jl'T ~

Q
(52)

The same two checks on our result that were
available earlier for F„are also possible here.
In the case of zero-point radiation, g((()) = —,

' 8 ru,
the integrations in X and F collapse to

Thus all factors of co, not appearing in the com-
bination w, —(d, are replaced by the value co, .
Next we integrate with respect to m, while assum-
ing the narrow-linewidth limit for the oscillator
a,s given in (28). This changes all factors of (d,
not appearing in

~
C(&u, )

~

' over to (d, . Finally,
introducing g((d) = m't)'(&u) and I'= 2b/3c' from (12)
and (17), we obtain our result

dXX'(1+X')f d«(1+ Y'),

giving {6,') = constyr. We will see in Sec. IIID
that this is precisely the form which leads to a
Lorentz-invariant particle distribution, as physi-
cally it should since the zero-point spectrum is
Lorentz invariant. The nonrelativistic limit cor-
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In this case the integrals in X and F are again
elementary, and the result for &4,'(0)) agrees ex-
actly with the nonrelativistic result published
earlier, "

&b, ,'(0)) = -' (I'&u', /c')ig'(&u, ), (55)

when we make the connection between g(~,) and

p((d, ) given in (31).

D. Fokker-Planck equation for momentum distribution

The Fokker-Planck equation for the distribution
of particle momentum in equilibrium is of the
form'

1 a-P(p)F.T+; —, (P(p) «;&)= 0, (56)

where P(p)dp is the number of particles with mo-
mentum between p and p+ dp. The quantities
F, and &b, 5), which determine the momentum
changes enforced by the random radiation, are
given in Eqs. (29) and (53). We note that the
Fokker-Planck equation (56) is linear in the oscil-
lator damping constant I' because F„and &6,') are
linear in I'. Thus the equilibrium distribution is
unaffected by how small the interaction between
the oscillator and the radiation is, provided the
interaction does not completely vanish.

The momentum distribution P(p) is given on the
infinite interval —~ &p & ~. In some cases it is
convenient to give the velocity distribution (P(P) on

the finite interval —1 (p (1, where 6'(p)dp is the
number of particles with velocities between P and

P+ dP, where P = v/c. The connection between

P(P) and 6'(P) is derived from the relationship be-
tween the momentum and the velocity:

P =McrP, r=(1 P') "'—
It follows from (57) that

dp =Mcy'dp,

and thus the equality

P(p)dp = (p(3)d p

implies

P(p) = O(p)/Mcy'.

(57)

(58)

(59)

responds to evaluating &&,') for the particle at
rest, P=O,

g p 4 1

45(0)) =——;—7 dXX (1+X')
h)p

1

dF(1+v )g'"'.
-1 h)p

(54)

The Fokker-Planck equation (56) for the momen-
tum distribution is a first-order differential equa-
tion which can be solved directly as

(60)

.&~,'(0)&
a (p) = consty'

&

, 2 cr"F,(p') 7
x exp M d3' (61)

In this case the mass dependence is exhibited
clearly. The functions E„(P) and &b ', (P)) depend
only upon the velocity P and the spectrum g((d);
the particle mass M appears in 6'(P) as only a
multiplicative factor in the exponential.

III. EQUILIBRIUM DISTRIBUTIONS

A. Rayleigh-Jeans law and nonrelativistic limit

At this point in our analysis we have established
the Fokker-Planck equation for the equilibrium
distributions of particle momenta; we need only

specify the spectrum of random classical radia-
tion, and we can immediately obtain the associated
equilibrium particle distribution.

Our first example will be the familiar case of
the Rayleigh-Jeans law of thermal radiation,

Ãaz(&) =~T
~

(62)

corresponding to energy equipartition with an
average energy —,

' kT per normal mode at an ab-
solute temperature T. It is this spectrum which,
within classical physics, is familiarly connected
with the Boltzmann distribution on phase space.
Now all of the published derivations" for the as-
sociation between the Rayleigh-Jeans law and the
Boltzmann distribution actually involve nonrela-
tivistic particle mechanics. Hence we will also
go to the nonrelativistic limit.

In this nonrelativistic case, the values for I',
and &&,') are those of Eqs. (30) and (55), which
when substituted into the solution (61) for the
Fokker-Planck equation (56), give for the Ray-
leigh-Jeans spectrum (62)

&a,'(0))
PRJ(p) = const

&

'd, 2(-(2t'ru', /6e)a'(. 7']v

)(41'(d,'/5c') (0T)'~

= const exp( —p'/2M' T), (63)

„„„&~l(0)&, & 'd ~ ».(p')~
&~,'(p)& '

~ . &~;(p')&

with the velocity p' appearing in F„(p') and &&,(p'))
related to the momentum p& by the usual relations
(5'((). The velocity distribution (P(p) follows direct-
ly from (59) and (60):
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where we have used the nonrel t t'a ivis ic connection
between velocity and momentum,

P =Mv=McP. (64)

This is exactl the
tion f

y anticipated Boltzmann d t 'b

or nonrelativistic free particles
ls rl u-

B. Ra lei h-Jey 'g - ans 1aw and relativistic mechanics

Next we considerer the equilibrium particle dis-
tribution for the situation of relativistic

e use of relativistic mech
of course the

ec anics is,
e rigorously correct choice w'th'

p ysics, since it consistently matches
the relativistic content of the Mth ' '

o e axwell equations
or electromagnetic fields. In this cis case we find

m equations (29), (53), and (62) that

3 I (dpo dXX(1 +X')
8 c (goy(1 + eX)

3 I Q)p 2 2 1+—, ——, 1+—, 1+ 9

(1+ )k f
' (1+ Y')kT9 P 4 . ]. ~2 2

32 e &ay(1+ pX), ~ay(1+ pY)
dI'

9 I Q)p ~

~(uT)' —+ —
~

1

x —, 1+—+ 1 1+p2 28 1 t ]
)

(65)

(66)

If these expressions for I' and '~"
stitus ituted into the solution (60) of the F

ion, e result seems quite complicated.
Some physicists anticipate that the

~ ~ ~

ri u ion should be the Boltzmann d t 'bis ri ution for
relativistic free particles " The arey argue that the

oo s connect classical Boltzmann stat' t'
and the Ra lei h-

is ics

hence for r
y eig -Jeans law for thermal d' t'a ra ia ion;

or relativistic particles the B lt
par ic e energy isibution for a relativistic rt' l

needed. However, this will not do. If ex
an ~66' are substituted into the Fokker-

Planck equation (56), it is clear that the Boe oltz-

P = 0. The temperatures T o
M c. k where k i

p s T' are given in units of
is Boltzmann's constant. It is

clear that the Raayleigh-Jeans law leads to the
Boltzmann distribution at low temperatures wher

e velocities arare nonrelativistic; indeed, the
ow e

1.4

1,2

1.0

I's(P) = const exp[ —(p'c'+ M' ')' '/k&] (67)

for relativistic free artipar icles is not a solution of
e equation. The

classical ele
here is an inconsistenc 'th'

electrodynamics between the Ra l '

r thermal radiation and the Boltzmann
vis ic ree particles.distribution for relativist f

In Fig. 1 we plot the results of corn
t"n' f" thor e velocity distributions (P(p) =M
or both the Boltzmann d t 'b '

& and then xs ribution 67& and the
distributions (61) (65) e5, and (66) enforced b the
Rayleigh-Jeans law. The dit' btric etween o ' '

e istribution is symme-

is 111

t p sitive and negative vel 't'oci ies, and

The distribu '
independent of the oscillat fi a or requency Q)p.

e istributions are normalized to (Pj=1 at

0.6

0,4

0.2

.0.0 I

QO 01 Q2 Q3 Q4 05 ~ OJS 07 0.8 09 1.0
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FIG. 2. Average kinetic energy per particle. The
average kinetic energy KE per particle is given in units
of Mc, the temperature T in units of Mc /k, and the
frequency p in units of Mc /~1. Only curve P for the
Planck spectrum depends upon the choice of oscillator
frequency, taken here as co p-—0.1. The straight line
labeled E gives the equipartition value for the average
kinetic energy per particle, KE= ~kT. Curve 8 gives
the average kinetic energy per particle for the Boltz-
mann distribution (67). Curves RJ and P give the
average of the distribution (61) when substituting the
Rayleigh- Jeans and Planck spectral distributions (62)
and (68), respectively.

FIG. 3. Particle distributions for various radiation
laws. The curves give the particle velocity distribu-
tions (Pg ) for the Boltzmann distributions (59) and (67),
and for the distributions (61) when various radiation
spectra (62), (68), and (75) are present. Curve B
corresponds to the Boltzmann distribution. RJ labels
the curve for the Rayleigh-Jeans spectrum (62), P the
Planck spectrum (68), and PZP the Planck spectnun
with zero-point radiation (75). The choice of frequen-
cy p= 0 0025 affects curves P and PEP, but not B and
RJ. The three curves at the left-hand side are for
temperature T= 0.0025 and the three on the right-hand
side are for T= 0.07. The normalization and choice of
units is as in Figs. 1 and 2.

curves at T= 0.01 are indistinguishable in the
figure. However, at high temperatures involving
relativistic energies there is an increasingly large
departure between the distributions. fThe positive
slopes seen for small P when 7=0.6 in Fig. 1

arise from the use of the distribution (P(P) on
velocity space with the associated factor of y in
(59). The increase does not appear in a phase-
space distribution. ]

In Fig. 2 we find the average particle kinetic
energy predicted by the Boltzmann distribution
for relativistic free particles and by the Fokker-
Planck results (29), (53), and (61) for the Ray.-
leigh-Jeans law (62). The kinetic energy and
temperature are given as fractions of the particle
rest-mass energy. Thus the average particle
kinetic energy is given in units of Mc' and the
temperature in units of Mc'/k. At low tempera-
tures where the average kinetic energy is far be-
low the particle rest energy Me', the kinetic en-
ergy becomes the equipartition value —,

' kT for a
free particle given in curve E. However, at high-
er temperatures the Boltzmann distribution for
relativistic free particles increases" above the
equipartition value as seen in curve B, while the
average kinetic energy enforced by the Rayleigh-
Jeans distribution increases enormously as seen
in curve RJ. The average energy values reflect
the departures seen in Fig. 1 where the Boltz-
mann distribution has a smaller number of par-
ticles at high velocity than does the distribution
due to the Rayleigh-Jeans spectrum.

I

g~((u)= k (u/fexp(S(u/kT) —1]. (68)

This spectrum can be substituted into Eqs. (29),
(53), and (61) to give the associated equilibrium
distribution +(8) for classical particles. Some
results obtained from computer calculations are
given in Figs. 2 and 3.

At very low temperatures AT « I&„ the Planck
spectrum without zero-point radiation becomes
the Vfien spectrum,

g (~) =m& exp(-I~lkr) (69)

which is much smaller than the Rayleigh- Jeans law,
and hence at low temperatures the associated par-
ticle distribution 6'~(P) falls well below the Boltz-
mann distribution (P~(P) appropriate for nonrela-
tivistic velocities. Just this situation is seen at
T=0.0025 in Fig. 3.

In the high-temperature limit kT» Iw„ the
Planck spectrum without zero-point radiation
comes close to, but still below, the Rayleigh-
Jeans distribution g»(&u) = kT, since (68) becomes

g~(a)) -=kT ——,
' I (u. (VO)

The curves in Fig. 3 for T= 0.07 correspond to
this situation and show the equilibrium distribu-

C. Planck spectrum without zero-point radiation

The Planck spectrum without zero-point radiation
corresponds to an energy per normal mode
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tion (P~(P) for the Planck spectrum near, but still
below, 0'» (P) for the Rayleigh-Jeans spectrum.

In Fig. 2, curve P shows the average kinetic
energy for particles in the Planck radiation spec-
trum. We note that the average kinetic energy at
low temperature lies far below the equipartition
value, corresponding to the small amount of radia
tion (69) at low temperatures interacting with the
oscillator at natural frequency w, . The choice of
&uo in Fig. 2 is wo = 0. 1, in units of Mc / —,

' h.

D. Zero-point radiation spectrum

If the radiation spectrum is that of classical
zero-point radiation-

1.8

1.6—

1.0

0.8—

g,~((o) = —,
' 5(u, (71) 0.6—

then the average force F„ in (29) vanishes, and
the mean-square impulse delivered to the oscil-
lator is

04-

(&6) = y41 cuov/5c'. (72)

Substituting these values into the solution (60) for
the Fokker -Planck equation, we have the equi-
librium distribution of momenta

P(p) = consty '= constE ', (72)

or, from (61), the equilibrium distribution of
velocities

6'(P) = const y'. (74)

These distributions are Lorentz-invariant, a,s we
would expect since the spectrum of zero-point
radiation itself is Lorentz-invariant. " Thus any
observer moving with constant velocity along the
x axis, which is the axis of constraint for our
particles, will see the sa,me momentum distribu-
tion of particles independent of the observer's
velocity. If there are P(p)dp = const dp/E parti-
cles between p and p+ dp in the lab frame, then
a,n observer moving along the x axis with velocity
V sees this same number of particles- in the inter-
val

dp *= y(dp —V dE/e ) = y(1 —VP /E)dP

at an energy E*=y(E —Vp), where y = (1 —V'/
c') ' '. Hence the moving observer reports

P*(P*)dP*=P(P)dp = const dp/E = const dp*/E*

particles, corresponding to a distribution P*(p*)
= const/E* which is identical in form to the original
distribution in the lab fra, me. The distribution is
Lorentz invariant.

The equilibrium velocity distribution of (74) is
plotted in Fig. 4 as the curve labeled 7=0 cor-
responding to zero temperature, normalized to
0'(P) = 1 at P= 0. It is clear that the curve in-

0.0 I I

00 02 04 ~ 06 0.8 1.0

FIG. 4. Particle distributions for the Planck law with
zero-point radiation. Curves are normalized to 6 pzp(P )
=1 when P =0. Temperatures are measured in units of
Mc2/k and the frequency &oo-—0.1 is in units Mc 2/2K,
where Me~ is the particle rest energy. All equilibrium
distributions show divergent tails at high velocities.
The curve for T=0.0 is given by(Pz, zp(p)=p . High-
and low-temperature curves occupy the same region of
the diagram but have different shapes.

E. Planck spectrum with zero-point radiation

Experimental measurements of therma, l radia-
tion, random radiation in excess of that present
at zero temperature, are in good agreement with
the Planck spectrum (68). However, there is also
strong experimental evidence" which suggests the
presence of zero-point radiation. Thus it may
well be that the spectrum of random classical
radiation which describes nature most closely is
Planck's spectrum with zero-point radiation,

gasp(~) = 5~/fexp(k (o/kT) —1]+—,
' h (o

= —,
' 8 v coth(h m/2k T) .

This spectrum leads to quate curious behavior for
the equilibrium velocity distribution of free par-
ticles.

Figure 4 gives the graphs of the computer re-

(75)

volves an infinite number of particles and infinite
total energy. Also, the average kinetic energy per
particle is infinite, so that we cannot enter the
value at T= 0 in Fig. 2.



20 EQUILIBRIUM DISTRIBUTIONS FOR RELATIUISTIC FREE. . . 1257

d0' 2cr "F„7'/(&6)

appearing in the exponential of Eq. (61) is finite
for the upper limit of integration extended to P= 1.
The integrands for the two integrals needed for
(&,') in Eq. (53) are both positive, and for large
P will be dominated by the zero-point 'radiation at
large frequency in gpzp Thus we can replace
g~zz, in (53) by gz~ and so obtain for large 8,

«;& r4r(u,'(-,' k)-'/5c'. (76)

suits when the Planck spectrum with zero-point
radiation (75) is substituted into Eqs. (29) and (53)
for F„and (&',), and then these are inserted into
the result (61) for the Fokker-Planck equation.
The gra. phs are normalized so that &(P) = 1 at
P=O, and are given for a large value, Q)p:0 1p

of the oscillator frequency (d„ in order to show
clearly the unusual aspects of the distribution.

All of the graphs diverge at a high velocity. At
zero temperature, T=O. O, we have the Lorentz-
invariant distribution S'(P) = y'. At temperatures
slightly above zero, the distribution becomes
flatter before increasing into the high-velocity
tail. This is found in the curves labeled T=0.05
and T=0.055 in Fig. 4. For still higher tem-
peratures, seen in the curves T=0.06 and T=0.1,
the low-velocity distribution falls more sharply
and begins to approximate the shape of the Boltz-
mann distribution before rising at a high velocity.
However, the curve at T=0.1 corresponds to a
limiting situation; at higher temperatures the
curves lie above that for T=0.1. At very high
temperatures the momentum distribution in phase
space gets quite flat at low momentum, and hence
the velocity distribution p(P) ~ y'P(p) increases .

as y' for low velocities. This rise is seen in
curves T=0.5 and T=1.0 in Fig. 4.

If we choose a smaller frequency u„ it be-
comes clearer that the low-velocity distribution
goes over to the Boltmann distribution for tem-
peratures such that 8 wp «kT «Mc'. This situa-
tion is found in curves PZP of Fig. 3, which cor-
respond to the Planck spectrum with zero-point
radiation for ~0=0.0025. If 8 ~p«OT«Mg', the
low-velocity behavior is separated from the high-
velocity tail by a region where (P(P) is extremely
small, the region corresponding to the Boltzmann
exponential falloff. In Fig. 3, the probability
density drops below 10

p the smallest value
carried by the computer, before going over to the
divergent tail.

A clearer idea of the high-velocity asymptotic
behavior for the velocity distribution (P»~(p) can
be obtained as follows. The crucial step involves
showing that the quantity

The integrand for the function F„ in (29) is quite
different. In this case the integrand receives both
positive and negative contributions depending upon
whether X & 0 or X & 0, and the integral vanishes
if g is linear in frequency. For large values of

P, the integral is dominated by the contribution
for X- —1, where the denominator u,y(1+ 8X) is
small. and the numerator g»~(ur, y(1+ 6X)) involves
the Rayleigh-Jeans limit kT holding at small fre-
quencies. Thus F„ is dominated by the integral

3 I'&s ' X(1+X')k7'
8 c, &coy(1 + PX)

(77)

where we have taken the upper limit x= 0. This
involves the same integrand that appears in the
case of the Rayleigh-Jeans law, and so has the
same behavior at large P as Eq. (65),

F„-——,
' (I'uP/cy) k T2 in[2/(1- P)] .

Thus at large P the integrand in (61) for S'(8) in-
volves

(78)

'd~, 2cy "(3I'aP/8cy')kT2 ln(1 —p)
(y'4r(u', /5c')(-,' 8')'

1

-const dP'y'ln(1 —P')

-const dP'(1- 8') '~'1n(1 —8') . (79)

Substituting u'= 1 —P', we see that the integral
becomes

J 0
dulnu= (ulnu —u) l"-',

which is finite. Thus from (61) and (76) we find
that the velocity distribution S'(P) normalized to
give (P(p) = 1 at 8= 0 behaves for large 8 as

( ', 2cy".F,(P')~
6'(~) =r' xpl M dP' (~2(p",))

= const y'. (80)

This is just the Lorentz-invariant distribution (74).
From equations (29), (53), (75), and (80), we

see that the value of P where the Lorentz-invariant
tail becomes evident depends upon the ratio
kT/8 &g, starting with P=-0 for T= 0 and moving to
higher P as T becomes larger. The value of the
constant multiplying the tail distribution depends
upon the particle mass M, and, since E„is nega-
tive, becomes exponentially smaller as M be-
comes larger. It is for this reason that in Fig.
4, where we wished to illustrate the high-velocity
behavior of the distributions, we used a small
value of M or, equivalently, large values of co,
and T relative to the value of M. In the reverse
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situation involving large values of M, or small
values of &, and T, such as in Fig. 3, the diver-
gent tail would be lost at the /=1 edge of the
diagram.

In summary we conclude the following. For the
Planck spectrum with zero-point radiation, the
equilibrium velocity distribution for free particles
evolves smoothly from the zero-point distribution.
In every case, the equilibrium velocity distribu-
tion involves an infinite number of particles, an
infinite total energy, and an infinite average kin-
etic energy per particle. No finite number of free
particles can be in velocity equilibrium with ther-
mal radiation at any finite temperature. If a finite
number of free particles start at a finite velocity,
they will gradually diffuse to ever-higher velo-
cities. At high velocity, a particle sees the therrn-
al radiation. Doppler-shifted to frequencies which
do not interact significantly with the internal os-
cillator at a frequency ~,; it is the Lorentz-
invariant zero-point radiation which interacts with
the oscillator and pushes the particle toward a
Lorentz-invariant distribution at high velocities.
We conclude that particle equilibrium in the pres-
ence of the Planck radiation spectrum including
zero-point radiation is not possible for a free
particle, but rather requires particle binding to
eliminate the high-velocity tail on the distribu-
tion. '

IV. CLOSING SUMMARY

Within classical physics, the equilibrium dis-
tribution for particles at a given temperature and
the distribution of random radiation at a given
temperature arise from very different lines of
argument. The distribution of particle velocities
is usually found from statistical mechanics in
which electromagnetic interactions are ignored.
Thermal radiation is usually considered as a re-

suit derived from previous results for particle
equilibrium. In the present paper we reverse
tQis last procedure and derive the distribution
of particle velocities for free particles when we
assume various results for the equilibrium spec-
trum of classical thermal radiation.

Our investigation starts from the model pro-
posed by Einstein and Hopf in 1911, but extends
their work to the realm of relativistic particle
velocities. The model envisages a massive free
particle which contains an electric dipole oscil-
lator interacting with the random classical radia-
tion. The radiation delivers random impulses
to the oscillator which cause it to execute a
Brownian motion. Using a Fokker-Planck equation
in the particle momentum, we obtain the equi-
librium distribution of the particle momentum im-
posed by the radiation spectrum. Finally we
solve the Fokker-Planck equation to obtain the
actual momentum distribution.

Our results for the equilibrium distributions
yields some expected and some surprising re-
sults. We find that the Rayleigh-Jeans law leads
to the Boltzmann distribution for nonrelativistic
free particles; however, the Rayleigh-Jeans law
does not lead to the Boltzmann distribution for
relativistic free particles. Here relativity inter-
jects a new element into the problem of thermal
equilibrium of particles and radiation within clas-
sical theory.

For the zero-point radiation spectrum, we find
the expected Lorentz -invariant particle distribu-
tion; however, for the Planck spectrum with zero-
point radiation, this Lorentz-invariant distribution
still appears as the asymptotic particle distribu-
tion at high velocities. Hence if zero-point radia-
tion is present, a free particle is never in equi-
librium with thermal radiation. Only if the parti-
cle is bound can it be prevented from diffusing
gradually up to velocities ever closer to the speed
of light.
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