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Theory of simple classical fluids: Universality in the short-range structure
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It is shown to within the accuracy of present-day computer-simulation studies that the bridge functions (i.e.,
the sum of elementary graphs, assumed zero in the hypernetted-chain approximation) constitute the same
universal family of curves, irrespective of the assumed pair potential. In view of the known parametrized
results for hard spheres, this observation introduces a new method in the theory of fluids, one that is
applicable to any potential. The method requires the solution of a modified hypernetted-chain equation with
inclusion of a one-parameter bridge-function family appropriate to hard spheres, and the single free
parameter (the hard-sphere packing fraction) can be determined by appealing to the requirements of
thermodynamic consistency. The assertion of universality is actually demonstrated via the application of this
new method to a wide class of diA'erent potentials: e.g., hard spheres, Lennard-Jones, an inverse fifth power
(r ') applicable to the helium problem, the Coulomb potential (i.e., the one-component plasma), charged
hard spheres, an oscillatory potential proposed for certain liquid metals, and the Yukawa potential,

I. INTRODUCTION

Central to the theory of fluids is the radial dis-
tribution function (RDF) g(r), defined for classical
systems by

V' f ~ ~ f e&-eo&d
g(r„) = lim r f' (gC )z-, v-, w/v-p ~

~ ~ ~
~ e dr ~ ~ ~ dr

where p =1(kaT and w = 4(r„. . . , r~) is the total
interaction potential for the system. The long-
range behavior of g satisfies

limg(r) =1, (r=r» IF& r
7 neo

In particular, the RDF for a system of identical
particles interacting with central pairwise forces,
l.e.)

u(r, q),

has been the object of many investigations. The
quantity that is determined from scattering ex-
periments is, however, the structure factor S(k)
related to g(r) by

S(k) =1+p~ [g(r) —1]e'"'' dr.
V

There are many approximate methods' for cal-
culating g(r), the most accurate of which, and
sometimes referred to as "exact," is the method
of computer simulations. Indeed, Monte-Car lo
(MC) or molecular-dynamics (MD) methods with
sufficiently long runs and with proper, regard to
the N (number) dependence, yield both the RDF
and the equation of state (EOS) to an accuracy of
better than 1'//~. In addition to providing valuable
information for particular physical problems, the

MC or MD results serve as reference points, to
which all other semianalytic methods can be com-
pared and tested. These simulation methods have,
however, two main shortcomings: (i) g(r) is only
given in the range 0&r&~L, where L' is the volume
of the "basic cell." For a dense liquid, with N
-10, this range only covers about the first three
peaks of g(r) (ii) In. the region of very strong
repulsion close to r= 0, where, say, g(r) 6 10 ',
there is generally no means of calculating the be-
havior of lng(r), which as we shall see is an im-
portant quantity in the theory of fluids.

The first of these difficulties prohibits an unam-
biguous determination of S(k), since this quantity
depends on the way one extends the RDF beyond
the simulation range of ~L. Despite the fact that
more or less satisfactory solutions for this prob-
lem can be achieved by joining the RDF ' tails" to
the solution for g(r) from approximate integral
equations, ~'3 there is, apparently, not a single
case in the literature where the results of such a
scheme are actually tested for thermodynamic
consistency with the original simulation results.
The second difficulty exposes a far more severe
problem, as will become clearer later on.

Semianalytic approximate methods are divided
into two classes': (i) those based on integral
equations, and (ii) those based on perturbation cal-
culations. The integral equations, generally being
approximate, cannot give thermodynamically con-
sistent results. In most cases the "energy equa-
tion" seems to be the closest to the MC or MD
equation of state. Integral-equation methods fail
to yield satisfactory results for systems described
by I ennard-Jones (12-6) potentials, but on the
other hand constitute (by the hyperchain equation)
the best semianalytic method to treat plasmas.
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Different integral equations appear to work better
for different systems, but because none of them
has the ability to reproduce the MC or MD g(r)
data for rather steep potentials in the very im-
portant region of the first peak, they have given
way to perturbation methods.

These perturbation methods treat the equation
of state and g(r) on very different footings. They
prove successful for calculating tbe equation of
state of systems with harsh short-range repul-
sion, and either a short-ranged attraction [like
Lennard-Jones (12-6)] ox a, weak long-range tail,
but they fail to treat correctly systems whose po-
tentials exhibit strong lang-range tails, 4 to say
nothing about soft repulsive potentials (like r '
or r '). Even in the more successful cases, the
resulting g(r) will fail to give the same level of
accuracy as the corresponding perturbation ex-
pression for the free energy.

There are two important problems in the litera-
ture, for which all existing semianalytical treat-
ments fail, namely plasmas (e.g. , the one-com-
ponent plasma model), and variational calcula-
tions of ground-state energies via a Jastrow-type
wave functions where the quantum problem is
mapped on a related classical problem. 5 This lat-
ter problem provides a very severe test for any
theory since it demands agreement with the MC
g(r) not merely on a rough basis, but also indi-
rectly through stringent moment tests.

The overall picture that emerges therefore is
one of many approximate treatments, each de-
vised to tackle a different kind of problem, with
some of them being moderately (even very) suc-
cessful in particular cases. This by itself could
constitute just a healthy state of a field in which
theoretical methods are compared with experi-
ment (i.e., MC, MD) in order to improve the under-
standing, except however for the fact that in most
cases the link to experiment is summarized in a
statement of the form: thus we find that method
"X"agrees to "I'" extent (e.g. , Y percent) to the
MC (or MD) results. The hard-sphere system
being the most extensively studied system in the
literature, is perhaps the only case where criti-
cal comparison to "experimental" data yields
some useful information. DeWitt has performed
an exhaustive analysis of the Monte-Carlo results
for the one-component plasma. His as-yet-un-
published results, (kindly made available to us)
have proven extremely helpful, particularly when
viewed in conjunction with the published results
for the hard spheres.

The basic motivation for the present work
starts from premise that there is already suffi-
cient computer-simulation data for various sys-
tems, and that provided a proper method can be

found for its analysis it can be used to extract
information to improve our understanding of just
why method "X"compares "so and so" with ex-
periment. Further, it ought to be possible to use
this information to improve on existing methods,
particularly for the cases where none of those
methods prove sufficiently accurate.

The two most important integral-equation me-
thods lead to the Percus- Yevick (PY) and hyper-
netted-chain (HNC) equations. ~ Both equations can
be derived via the diagramatic analysis of g(r)
provided one ignores a certain class of diagrams.
Clearly, if one knee@ the function represented by
the sum of diagrams ignored (the "E" set for HNC,
or the "IP set for PY) then one could write the

I

appropriately modified integral equation and thus
get the exact g(r). Percus- Yevick and hypernet-
ted-chain theories lead to integral equations cor-
responding to well-defined diagrammatic state-
ments. In addition there are hybrid or mixed in-
tegral-equation methodsv' whose diagrammatic
basis is less clear. As we shall see, however,
one of these (a recent formulation by Lados for
the charged hard-sphere problem) turns, out to
have a practical similarity to the method we pro-
pose, a similarity that is best exposed when viewed
in terms of the interesting properties of the E set.
It will become evident however, that the observa-
tions we make concerning E are of a general na-
ture and not confined to the charged hard-sphere
system.

One should keep in mind that since the radius of
convergence of the diagrammatic power series in
the density is not generally known, a thermodynam-
ically consistent solution of, say, the modified
HNC equation that we shall introduce, that com-
pletely agrees with the Monte Carlo data (as-
suming that it is exact), actually defines the func-
tion E(r) required in the theory. It should also
be kept in mind though that the integral equations
(like PY, HNC, and the mixed type) can be de-
rived by functional differentiation, soithout resort
to the diagrammatic expansion. ' It is certainly
conceivable that the exact results (the Monte
Carlo results in the present state of the art) con-
tain features not explicable by the diagrammatic
approach. It is the usual and often reasonable
practice in the theory of liquids, however, to ex-
tend diagrammatic ideas and their results to the
treatment of dense matter. Thus E(r) can be de-
fined in terms of diagrams at low densities, while
the thermodynamically consistent solution of the
modified HNC equation (an equation derived by the
diagrammatic analysis) that is compatible with
the Monte Carlo results at high densities, de-
fines a function E(r) that merely represents a
practical parametrization of these Monte Carlo
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results. This particular parametrization in terms
of (an) E(r), as it stands, will enable us to com-
pare this function with assumptions implied about
it in various theories, thus satisfying the basic
motivation mentioned before. It is possible, how-
ever, that this particular form of the "experimen-
tal data" (the Monte Carlo results) will enable us
to make general statements of a predictive char-
acter, i.e., to formulate a new approximation
scheme in the theory of fluids. It is worth noting
that the hard spheres constitute the only system
for which the quantity H(r) =lny(r) =ln[g(r)e "'"'],
at small separations (r=0) can be related directly
to the equation of state, thus enabling the para-
metrization to also include the interior of the
core. ' Generally speaking, the unknown function
is practically undefined (by this way of parame-
trization) in the region where g(r) is essentially
zero.

Suppose we indeed try to parametrize all simula-
tion data for all systems considered in the litera-
ture. We should demand from the resulting fit
that it will agree with MC or MD data to within
the noise inherent in these methods, and that the
resulting g(r) must satisfy any rigorous moment
conditions known to exist. We expect the fitting
function [for the unknown D(r) or E(r)] to be sen
sitive to the requirements of thermodynamic con-
sistency, otherwise our fit is indeed ill defined.

In the spirit of perturbation theory we could ex-
pect that the unknown functions will look similar
to those of the hard spheres if the potential is
strongly repulsive. Moreover, recall that in the
variational calculations it is possible to determine
a single variational parameter (i.e., the hard-
sphere diameter) that yields good results, even
for the one-component plasma. " Since at rela-
tively high densities many structural features can
be regarded as universal for all simple fluids, it
cannot be ruled out a Priori that a single one-
parameter family of functions like those for the
hard spheres will also yield, by this approach,
reasonable results for all such systems. Indeed
it is worth noting that E(r) can be written en-
tirely in terms of diagrams containing h(r) bonds,
and since to the extent the g(r) is universal we

may expect, from the nature of the diagrams, the
E(r) to be more so. There are certain features,
of the results of the HNC equation that seem to
prevail for any system for which this equation has
been solved and its results compared with com-
puter-simulation data. This, together with other
features of the HNC method leads us to place
strong emphasis on this equation, and to choose
E(r) (assumed zero in HNC) as the function to
seek. ' Now, suppose the task has been completed,
and we have parametrized all the data available,

i.e., found for each potential a family of functions
E(r) such that the solution of the modified HNC

equation [an equation that takes into account these
E(r)] is thermodynamically consistent and agrees
with the MC or MD results to within the accuracy
of the latter. Then it would be reasonable to ask
whether there are certain universal features of
the fitted functions, that if taken alone, (ignoring
a residuum that is peculiar to each potential)
could still yield both thermodynamic consistency,
and good agreement (but of course more restric-
ted) with the simulation results.

Our work started, in fact from this proposition
and resulted in the following anzatz of universality:
To tvithin the accuracy of present day co-mputer
simulation studies [usually about 2% for g(r)] the
bridge functions [i.e., the sum of the elementary
graphs = E(r), assumed sero in HNC] constitute
the same family of curves, irrespective of the
assumed pai r potential.

In view of the known parametrized results for
hard spheres the above assertion, if correct, de-
fines a nese method in the theory of fluids and one
that is applicable to any potential. It proceeds
as follows: Solve the modified HNC equation (with
inclusion of the one-parameter bridge functions
appropriate to hard spheres), and determine the
only free parameter ri (related to the hard-sphere
diameter) by requiring thermodynamic consis-
tency. (See Sec. III.)

The most important physical result of the pre-
sent work is that our starting ansatz is demon-
strably correct, to surprisingly high accuracy,
and for a variety of potentials: hard spheres,
Lennard-Jones, an inverse fifth power (r ') appli-
cable to the helium problem, Coulomb potential
[the one-component plasma (OCP)], Yukawa po-
tential, charged hard spheres, and finally an os-
cillatory potential proposed for liquid gallium and
other metals with significantly large screened
fluctuating-dipole interactions. Further, an ob-
servation about the relation between the solutions
of the PY equation for hard spheres and the "ex-
act" computer results, enables us to generalize the
method to mixtures.

With these introductory remarks in mind the plan
of the paper is now this: In Sec. II we briefly re-
view the results of the diagrammatic expansion of
h(r) and record the HNC and PY integral equa-
tions and the corresponding modified equations.
In Sec. III we comment on some possibilities of
establishing the thermodynamic consistency of a
given g(r) (radial distribution function). Section
IV is devoted to an analysis of the role of the ele-
mentary graphs and the relative importance of the
information needed. Some useful inequalities are
derived. In Sec. V we describe the hard-sphere
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bridge functions. Certain results in the literature
that feature universal characteristics of the bridge
functions are discussed in Sec. VI. Finally, the
new method proposed in this work is tested for
various potentials in Secs. VII (the one-component
plasma), VIII (Yukawa), IX (ground state energy
of liquid 4He via the z 5 potential in the Jastrow
wavefunction), and X (Lennard-Jones) and XI (an
oscillatory potential for certain liquid metals).
The combined results lead to a re-examination of
the mean spherical approximation which is given
in Sec. XII. Some concluding remarks are given
in Sec. XIII. Finally, Appendix A deals with pos-
sibilities of checking the "Ewald-method" Mon-
te Carlo results for plasmas. In Appendix B we
present a diagrammatic analysis of the HNC equa-
tion for the Coulomb potential and discuss the
asymptotic behavior in the low-density regime.

1 ~ h(r) e Bu(r)+e(r) E(r-)-
where

B(r) = h(r) —C(r)

(2)

and C(r) satisfies the Qrnstein-Zernike (OZ) equa-
tion

)r(r) =C(r)rp Jdr')r(~~ r —r'~~)C(r') . (4)

The quantity E(r) in (2) is the sum of the elemen-
tary diagrams that are not nodal. Note that E(r)
can be written entirely in terms of diagrams pos-
sessing h(r) bonds. 6 The usual HNC equation is
obtained via (2) and (4) from the assumption that
E(r) =0, i.e.,

g(r) = e '"'""'" C(r) =g(r) —1 —8(r),

with 8(r) given in terms of h(r) and C(r) by (4),
1.e.~

2m X+f'

8(r) = p h(x)x dx C(y)y dy .
o I x"rl

(6)

Now with some given function E(r) (not necessarily
the correct sum of the elementary graphs) one can
clearly solve a modified HNC equation, (5) but
with u(r) replaced by an effective potential
u(r) —(I/P)E(r). With the exact E(r) this modified

II. DIAGRAMMATIC EXPANSIONS AND INTEGRAL

EQUATIONS

%e briefly review some standard' definitions
required in the subsequent development. Define
the total (or pair) correlation function

h(r) =(g(r) —1.
It is possible to formally expand h(r) in a power
series in the density p (without guarantee of con-
vergence at liquid densities) and resum in the form

C(r) =(e "'"' —1)y(r)+D(r),

where
(

y(r) = e'"'"'g(r) .

(8)

As noted earlier we shall also need the quantity
H(r) = lny(r) [where H(r) +(Bu(r) is the potential of
mean force]. If we assume D(r) =0 we get the
PY equation:

C(r) =[1—e8"'"']g(r), C(r) =g(r) —1 —8(r) . (10)

Evidently we can define a modified PY equation by
the inclusion of an assumed function D(r) [not
necessarily the exact D(r)]. With the exact 'D(r)

the modified PY equation is, of course, also exact.
Analysis in terms of E(r) [rather than, say,

D(r)] seems to us more attractive for two main
reasons: (i) E(r) enters the modified HNC equa-
tion as an effective potential which can be given
physical meaning. (ii) E(r) is a much better be-
haved function than D(r). To illustrate this point
let us consider the system of hard spheres. Near
and outside the hard core -E(r) and D(r) behave
similarly, i.e., are rapidly decaying functions that
take on values O(1) at the core. Inside the core,
however, say at r= 0, E(r) = 1 —C(0) ——H(0) and
for a dense hard-sphere fluid takes values O(10)
(see below). But D(r) under the same conditions
takes values D(0) = C(0) + e"' ' = O(e'0) . Inside the
core E(r) behaves nearly linearly, while D(r) be-

havess

exponentially.

III. THERMODYNAMIC CONSISTENCY

There are simple formulae that express the
thermodynamic functions of a system in terms of
the structural functions C and g. The pressure,
for example, can be given in terms of g and the
virial, and the isothermal compressibility in terms
of C. These are themselves related for the pres-
sure once known can be differentiated with res-

HNC equation would also be exact. Otherwise for
an approximate E(r) the modified HNC equation
takes the form

(r) &
(Su-(r) B(r-)lre(r)

C(r) =g(r) —1 —8(r),

8(r) = dx x(g(x) —1) C(y)y dy .27l'p

o I x-rl

We shall return to (7) and its consequences short-
ly, but before doing so we briefly examine the cor-
responding steps in the analysis leading to the
Percus- Yevick equation. Let D(r) be the set of
connected diagrams free from bridge points and
lacking direct bonds between the root points. This
set contains the elementary diagrams E(r) and in
addition is related to C(r) by
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pect to density to give the compressibility: with
' the exact C and g the results from the two routes
to the compressibility necessarily agree. If the
theory giving g and C is approximate, the differ-
ence in the two results is a measure of thermody-
namic inconsistency. If, on the other hand the
theory is approximate but embodies a disposable
parameter, thermodynamic consistency can be
required in each state of the system, a constraint
that can be imposed in order to determine the
corresponding values of the parameter. '

Now consider this question of thermodynamic
consistency from the standpoint of the univexsaEity
of the bridge functions. If we accept that this
universality has indeed been established, then we
may choose the family for the hard-sphere sys-
tem as the representatives of all bridge functions.
But a hard-sphere bridge function is specified by
one parameter, the packing fraction, and it now
appears that we have an example of a theory
framed in terms of a single disposable parameter.
However, in this instance it is a necessary conse-
quence of universality that for a chosen state there
is a particular value of this parameter that will
always lead to thermodynamically consistent val-
ues of energy, pressure, or compressibility. If
necessary this value can be established by the pro-
cedure described above; alternatively when simu-
lation data on a given system exist it is equivalent
to demonstrate by direct comparison that for each
state a specific choice of q can be identified that
leads to corresponding and consistent values of
energy, pressure, or compressibility.

There is however a further structural property
that is connected to another thermodynamic func-
tion (though not very directly), namely, '3

H(0) =P[F (O,N) —E (l,N 2)], -
where Es(n, m) is the excess free energy of a sys-
tem with n+ rn particles interacting with the given
potential, of which rn are assigned "charge" of 1
and n "charge" of 2, such that the interaction en-
ergy between particles i and j is

["charge" (i)]["charge" (j)][u(r,.~)] .
The hard-spheres constitute the only system for
which H(0) can be related directly to the equation
of state. Since the "charging" process does not
affect the hard-sphere potential, one has

H(0)herd syherss

(12)

The only other system where a good approximation
for the value of H(0) is given via simulation me-
thods is the OCP. The MC results and the solu-
tions of the HNC equation for the OCP and the two-
component plasma. (ions of two different charges
in a, compensating background), indicate that to
good accuracy'd (especially at high densities), one
can assume that the excess free energy of mixing
vanishes. This enables one to write H(0) in terms
of the equation of state of the OCP that was ob-
tained also to high accuracy by computer simula-
tions. '5

The only way to calculate H(0) directly [or in
fact H(r) in the region of very strong repulsion,
where g(r) =0], is by summing the defining dia-
grams. Computer simulation can only be used to
obtain it indirectly, via (11), which in the two
cases above can be well approximated by means
of the computer-calculated equation of state.

The values of H(r) in the inaccessible region
therefore seem to provide a, rather severe test
for assessing the overall merit of approximate
methods. Note that for the hard spheres both the
PY and HNC equations yield the correct second
and third virial coefficients via the "pressure"
and "compressibility" equations, ' but fail to do so
for the third virial coefficient via the expression
for H(0). Note also that the PY equation for hard
spheres in one dimension (hard rods) yields both
the exact g(x) and C(r), thus producing a, thermo-
dynamically consistent (and exact) equation of state.
It nevertheless fails to give the correct H(r) inside
the core, thus producing an in.correct equation of
state via, H(0)." This merely demonstrates that
the diagrammatic statement of the PY equation is
incorrect, while the resulting equation [actually
the mean-spherical approximation for C(y)] is,
however, exact.

IV. ANALYSIS OF THE ROLE QF THE ELEMENTARY
GRAPHS

The sum of elementary graphs enters the modi-
fied HNC equation [Eq. (7)] as part of an effective
potential. Let us see what is required of an ex-
pression for E(r) (in terms of the correlation
functions) in order that the modified HNC equation
will become identical in terms of the resulting
g(r) to various known integral equations for
fluids. ' In summary these are

(i) HNC:

(14)

(ii) PY:

where p. is the excess chemical potential given
by or

E(r) = -[y(r) —1 —Iny(r)]

E(r) = -[g(r) —1 —Ing(r)]+ [C(r) +Pu(r)];

(15)
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(iii) mean spherical approximation (MSA):

Er = [or undefined if u(r) = ~], r&ro

-[g(r) —1 —lng(r) j, r &r, ,

where g(r&ro) = 0 and g(ro+ 0) = 0 for u(ro —0) W ~
(see Sec. X);
(iv) Rowlinson-Lado (RL)'.

E(r) = -n[y(r) —1 —lny(r)]

with n determined by imposing thermodynamic
consistency;
(v) Mixed integral eguations8: Begin by writing
the interaction as u(r) =u, (r)+u, (r), and solve the
PY equation for u, (r) [usually the repulsive short-
range part]. Then, assume that for u(r),

E(r) = —[y, (r) —1 —lny, (r)] .
More generally, we could suppose the exact E,(r)
for the potential u&(r) is known; in that case we
take E(r) = E,(r).

To proceed with the analysis let us define the
bridge function b(r), as

I (r) = -E(r), (18)

which as we shall see will turn out to be equiva-
lent to a repulsive short ranged potential.

From the definition of the functions involved it
is easy to establish the following asymptotic be-
havior:

a(r) + Pu(r) ,'a'(r—),—

C(r) + Pu(r) ——,'I '(r) + E(r),

a(r) - [N(r) —Pu(r)]+ E(r),

(2o)

(21)

where B(r) is the set of "bundle" diagrams and

N(r) the set of nodal diagrams. '0 If we draw an

analogy from the Coulomb case (OCP) then we can
assume the following hierarchy' for large r:

a(r) - [X(r) —Pu(r) j &E(r) .
This assumed hierachy, however, is not essen-

tial to the subsequent arguments in view of the
role of E(r) as an effective potential. In fact, all
the approximations (i)—(v) take the view that for
values of r beyond the first peak of g(r), E(r} is
of the order of 2h'(r). To have some apprecia-
tion for the effect of the tail of E(r) on the re-
sulting g(r) (via the modified HNC e&juation) con-
sider the structural effect of a LJ (12-6) tail on

a hard-sphere system under conditions where
e/kT &,, , or, say, the difference in structure be-
tween the LJ (12-6) system from that of the r '2

part of it, when g/kT &
—,'0. In both cases the dif-

ference is barely detectable by computer simula-
tions. Thus in the context of solving the modified
HNC equation [e.g. , with (i)-{v)] the tail of E(r)

evidently plays a very minor role.
In the region close to the origin where the po-

tential is very highly repulsive, and where the re-
sulting g(r) takes on very small values (practi-
cally zero in fact), E(r) will be undefined in the
sense that no matter what finite value it assumes,
it will hardly effect g(r). In the extreme case of
hard spheres, g(r) =0 inside the core, irrespec-
tive of E(r). This effect is connected to short-
coming (2) discussed in the introduction. Now ac-
cording to a theorem due to Widom, ' given any
nonsingular potential, we can expand H(r) near the
origin in a power series in z, involving only even

powers, and with the coefficients alternating in

sign:

H(r) =H(0) —a,r'+ a2r —~ ~ ~ (aq &0) ~ (22)

Indeed, the coefficient a, for the OCP was found

by Jancovici'3 to be —,'I", where I =P(Ze)'/(Sp/4v)'~3
is the plasma parameter and x is measured in
units of a= (3p/4v)'~3. For hard spheres this be-
havior breaks down and the function starts lin-
early near the origin, '~ i.e.,

with r in units of d, the hard-sphere diameter.
Now recall the relation [Eqs. (2) and (4)]

n(r} = C(r) + H(r) —E(r) .

Since for a dense fluid h(r) = -1 over some region
near r= 0, it follows that C(r) —E(r) behaves as
H(r) near the origin. It is then plausible that
both C(r) and E(r) behave essentially as H(r) near
the origin. '8

Thus the linear behavior of E(r) for the hard
spheres, near r=o, is a distinct feature. This
however, is in no way an obstacle in searching for
universal characteristics because the region
where this feature is distinct is obviously the re-
gion where for computational purposes E(r) is
undefined. In turn observe that the shape of H(r)
for the QCP is nearly linear'9 over the region
[r:g(r) & 10 3, r: g (r) = max], a feature shared glso
by the system of hard spheres.

W'e therefore arrive at the conclusion that the
important region in which E(r) must be specified,
in any theory, is the region of the first peak of

g(r), defined roughly by [r:g(r) &10 3, r: g(r) takes
its first minimum nonzero value]. The main dis-
agreements between the results of the various
theories, say, (i)—(v), and their mutual disagree-
ment with MC results, is a consequence of the
respective assumptions made on E(r) in this re-
gion.

W'e end this section by noting that the role of
E(r) as an effective potential enables us to de-
rive certain useful inequalities. The Qibbs-Bogo-
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liubov inequality can be written

1,P—p g(r)nq (r) dr )3' PEo
N N

--,'pp J go(r)n(p(r) dr, (24)

[go (r) go (r)][-b&(r) —b;(r)]dr ~ e-0. (25)

. In particular

l (

[g„„c(r)—g,„,(r)]b,„,(r)dr - e-0 (26)

ga x -g,„~, x b,„~, x —b&x dr&q-0

(27)

Thus differences between the results of various
theories among themselves, and between them and
MC results can be analyzed, to some extent, via
these inequalities. Their main power is, however,
in the final stages of a parametrization of b(r),
when they lose their integral nature and become
more local relations.

V. HARD-SPHERE POTENTIAL

As noted, the system of hard spheres is the
most extensively studied system in the literature,
both by simulations and by analytical methods. '

Of the latter, the analytic solution of the PY equa-
tion" (identical to the MSA for hard spheres),
and of the MSA with Yukawa closure, ' has played
a most significant role. The MC results for this
system have been parametrized in a sufficiently
accurate manner, and this fact enables us to in-
fer the corresponding bridge functions. To do
this we need g(x, q), C(x, q), and H(x, q), where x
= r/o (o being the hard sphere diameter) and q
=-,'mpo is the packing fraction. Both g and C have
been accurately parametrized'3 in a manner con-

(which is merely a statement that the function e"
is convex). Here F, g, y and Eo go p ny are
the free energy, the RDF and the pair potential of
one system and another (the "zero") system, res-
pectivelyy.

Next, we note that the solution of the modified
HNC equation for the potential u(r) —(1/P) E,.(r),
gives the exact RDF, g(r), for the potential

y(r) =u(r) + (1/P)[E(r) —E,.(r)],
where E(r) is the exact sum of elementary dia-
grams for u(r), and E,(r) is some. assumed form
[say, one of (i)—(v), or the exact one]. With the
bridge function of Fq. (18), we can immediately
deduce that

sistent with the semiempirical Carnahan-Starling'
equation of state for hard spheres. Both are
formulated as corrected versions of the corres-
ponding Percus-Yevick results, analytic form-
ulas for which are given in the literature. " The
function, H(r), is continuous across r = o (also in
PY theory), and both its value and its first deriva
tive at the origin are known. A convenient ap-
proximation for H(r) inside the core is therefore
given by

H(x) = no + o. ,x+ u, x'+ o,x', x & 1 (28)

where the coefficients n, are straightforwardly
determined from the excess thermodynamic func-
tions for the hard-sphere system. Given this in-
formation, we can now construct b from

b(r) =g(r) —1 C(r) H-(r) .- (29)

For the sake of comparison we also construct the
PY result (15) given by

bp„(r) = —Cpv(r) —1 —ln[ —Cz, v(r)], r &o

=gatv(r) —1 —lngp„(r), r &g. (30)

Note that both (29) and (30) define continuous func-
tions.

The one-parameter (7)) bridge-function family
of curves for the hard spheres, from (29) and (30),
is plotted in Fig. 1. The bridge functions turn out
to be very simple in shape, beginning linearly at
the origin and then becoming convex and acquiring
very small values starting at about x=1.2. There-
after they behave essentially as oh'(r). The va-
lidity of inequality (27) is demonstrated if one ob-
serves that near contact, g~„(r) &gMc(r), while
correspondingly, bpr(r;7)) &b«(r;q), in that re-
gion. For HNC, b(r) =0 and correspondingly,
g„„c(r)&g«(r), near contact. Note the highly
nonlinear behavior of the bridge functions as
functions of the parameter q. Observe that to a
high degree of accuracy, the two families of bridge
functions (29) and (30), a' re identical, except for
the relabeling of the parameter g. These last
two points [given that assumption (v) substantially
improves on the PY results for hard spheres']
strongly suggest that the solution of the modified
HNC equation with the simple PY family of bridge
functions, will yield very accurate results for
hard spheres, provided thermodynamic consis-
tency is imposed. We can expect good results
also for H(r) inside the core. At this stage there
is however, little incentive for actually perform-
ing this calculation. The observation will be of
more value however when considering mixtures for
which no pairametrization has ever been attemp-
ted except for the hard spheres. We shall elabor-
ate on this point later.
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these results is the fact that continuing hvar(r; 'g =

0.343) insi'de the core will yield very reasonable
values for H(0). This observation, in view of the
fact that the Coulomb potential is so much different
from the hard spheres, is very suggestive. The
family of bridge functions for the hard spheres is.
manifested as a set of repulsive potentials that
change monotonically, i.e. , become stronger with
increasing q. Recall that the deviations of the HNC

equation from the MC results [Eqs. (31) and (32)]
are also monotonic with the density, the HNC

equation being exact at low densities. Solving the
modified HNC equation with this family of bridge
functions, we expect that at a given density the
solutions will start to float in the direction of the
MC results. We terminate this by imposing
thermodynamic consistency. 'The procedure j ust
outlined would have given an exact result if our
anzatz in the Introduction was exact. The actual
accuracy of this procedure will be demonstrated
for systems of interest in Secs. VII—X.

Before proceeding with this task, let us note the
following: For a general potential the bridge func-
tions represent a two-parameter (p, T) family of
curves, and only for homogeneous inverse power
potentials (r ") do they depend on one reduced
temperature-density variable (pT '~"). Para-
metrization of the exact results for a given po-
tential via the solution of the modified HNC equa-
tion with the ha, rd-sphere family of bridge func-
tion, defines a mapping 7) (p, T) similar to, say,
the effective hard-sphere diameter in the pertur-
bation calculation with a hard-sphere reference
system. ' Employing the one-parameter family of
bridge functions of the hard spheres in the scheme
outlined above is (in a way) in the spirit of per-
turbation theory, but it does not rely on the given
potential having too much resemblance to the hard-
sphere potential. By the same token, in view of
the anzatz of universality (Sec. I) we could employ
a two-parameter family of bridge functions, or a
one-parameter family of some inverse power
potential. 'The reason for using the hard spheres
is mainly because they represent a rather well-
known, highly parametrized system.

VII. CLASSICAL ONE-COMPONENT PLASMA {OCP)

The OCP is an assembly of point ions immersed
in a uniform background of opposite cha. rge to
make the potential energy extensive. 'This system
with a uniform background of degenerate electrons
actually gives a first-order description of some
situations in astrophysics. Since it is very possi-
bly the simplest system with long-range Coulomb
interactions, it is an important testing ground for

various theoretical methods. 'The OCP has been
extensively studied by the MC and MD methods,
which usually invoke the Ewald image potential"
technique. " An important check of the results
with the Ewald method can be made via perturba-
tion theory using the method of Lado. ' Addi-
tional checks and properties of the OCP are pro-
vided in Appendix A.

The interaction potential, in dimensionless
units (p= 3/4a, P= 1), is Pu(r) =I /v and in terms
of the plasma parameter I' the potential energy of
the system PU/h1 is bounded below" by —0.9I' (the
ion-sphere result, or uniform-sphere approxi-
mation) and also" by -~2V 3 I'~ ' [the Debye-Huckel
(DH) result]. In addition the Debye-Huckel model
gives the exact long-range correlations in the
system for any I'. Furthermore, Stillinger and
Lovett" (SL) have shown that the small-0 limit of
the structure factor is also given by the Debye-
Huckel model which imposes, as a consequence,
two moment conditions (the SL conditions) on g(r).
For the range 1 &1, the MC results for PU/N can
be very accurately represented by the simple
empirical equation of state proposed by de Witt":

PU/N=-0. 894611'+0.81651'~'- 0.5012. (34)

he OCP is also found' to undergo a solid-fluid
transition at I' = 155+ 10.

In attempts to understand the facts just described,
the HNC equation and its consequences has proven,
so far, to be the best semianalytic approach. " It
yields a very good equation of state, but neverthe-
less fails badly in terms of thermodynamic con-
sistency since it gives far too high values for

~

P(SP/ap)r
~

(about 50% too high near crystalli-
zation). The HNC equation yields exactly the DH
limit for I'«1, and its thermodynamic incon-
sistency rises monotonically with increasing I'.
(The low-I' behavior of the HNC solutions is dis-
cussed in Appendix B.) Since the bridge functions
for the OCP fall exponentially" at large r, the
solutions of the pure HNC equation (and of any
modified HNC equation with exponentially decaying
bridge functions) satisfy the SL conditions. " The
wrong HNC "compressibility" equation of state
just reflects the rather poor results for g(r), and
the success of the energy equation is the result
of the insensitivity of the corresponding integral
to these discrepancies arising from the long range
nature of the Coulomb potential. (For that matter
even the hard sphere HDF will do.") We shall
discuss the MSA results (in a broader context) in
Sec. X.

We have solved the modified HNC equation [Eq.
("I)] for the OCP, for a large set of I"s ranging

~ between 1 and 170. For each I' we solved the
equation for a set of hard-sphere bridge functions
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by varying the parameter g. We used the method
of Ng" and imposed similar criteria of accuracy.
Our results for b(r) = 0 (i.e. , the pure HNC) are
in complete agreement with Ng's results, thus
providing a mutual numerical check. Most of our
calculations were performed using both (29) and

(30) with practically indistinguishable results4'
except for the relabeling. of the parameter g. For
heuristic purposes we prefer the simpler PY
family of bridge functions and all the results pre-
sented in this paper are obtained with this choice.

Before presenting our results, it is worth noting
that the MC g(x) data of Hansen were joined with a
DH C(r) tail for r &-,'L, and the solution of the re-
sulting MBA type of equation provides, via Fourier
transformation, quite accurate curves for C(y) and
g (y)

42

From the bulk of our own numerical work we
choose a representative set of cases to be pre-
sented here, and it should be emphasized that they
are truly typical in the sense that all trends ob-
served, in the figures and table presented here,
apply with equal validity to all values of I'(160.

The results are presented in Figs. 2-10 and
'Table I, and can be summarized by the following
statement: For each value of I' we can identify
a single hard-sphere bridge function, characteriz-
ed by some q, such that the solution of the modified
HNC equation will yield PU/N, P(SP/Bp)r, g(r),
C(x), S(k) in excellent agreement with the corres-
ponding MC (or MC-derived) results. Taking into
account the MC noise, and the N dependence of the

MC results (with indeed a higher peak for the
larger system! ), the agreement above is within
the uncertainty of the MC results [about 1% for
g(r) and about 0.1% for PU/N].

'Two points deserve specific comment:
(a) The MC-derived results give us the values

of C(r), and the values of H(r ) can be calculated
directly from the MC g(r)'s via H(r) = lng(r)+ I'/r
When g(x) is too small (it is practically zero near
the origin), 1ng(r) is then ill defined and we have
used instead"

H(r) = I'(1.25 —0.39r) . (35)

which, as noted earlier is an excellent representa-
tion of the potential of mean force. In this region
our results are perfectly compatible with the
MC-derived results. For small values of r we use
a linear bridge function, a form that is incorrect
for the OCP [see (11),(22), (23), and the discussion
thereafter). Assuming that the excess free energy
of mixing is negligible for a takeo- component
plasma with z, =1, z, =2, one can derive" the rela-
tion

p~(~ ~) ~~ (N+RM)'~' . (%+ 2M)
'~'

(36)
where E(M, N) is the excess free energy of a sys-
tem with M charges z, = 2, and N charges z, = 1, in
a compensating background, and f,(I') is the re-
duced (= PEs/N) excess free energy of the OCP,
given, for example, by (34). Thus we can write
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FIG. 3. OCPg(r) at I'

= 80. The Monte Carlo
g(r) has been provided by
DeWitt (Ref. 42) and is
based upon inversion of
Hansen's (Ref. 3) C(r) data.
The modified HNC equa-
tions incorporate the PY
bridge function. Note that
with increasing g the points
move monotonically in the
same direction. Here U de-
notes the potential energy
per particle in units of kT,
U= PE t/¹

H„, „„„,(0) = (2'~' —2)0.91"= 1.05731". (38)

The interest in H(0) for the OCP stems from its
role in the calculation of the enhancement & of the
rate of nuclear reactions in dense ionized media

H(O) =2f,(r) -f, (2' I') =1.05099I'+ 2. 1724I' '

-0.50121n I' -2.237 (1"& 1) .
(37)

At large I' this is in good agreement with the ion-
sphere result"

via4" 4'

et.&(o) ) (39)

As seen in Fig. 10 our results for H(0) are in
good agreement with (37), indicating that the as-
sumed linear (instead of quadratic) behavior of the
bridge functions near the origin, is not as inap-
propriate as might be imagined. As a matter of
fact, taken as a whole, our results for the OCP
represent the only case where an integral equation
has been solved for a dense fluid to yield not only
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FIG. 4. OCP g(r) at I'
=100. The Monte Carlo
g(r) has been provided by
DeWitt (see caption to Fig.
3).



20 THEORY OF SIMPLE CLASSICAL FLUIDS: UNIVERSALITY. . . 1219
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FIG. 5. OCPg(r) at I'
=120. The Monte Carlo
g(r) is from Hansen (Ref.
31) (see caption to Fig. 3).

I

1,0 1.5 2.0
rla

2.5

excellent agreement with machine calculations (or
.exact results) but also thermodynamic consistency
with respect to H(0).

(b) In the limit of small I' pure HNC is exact.
At large values of I', H»c (0) &H«(0), and this
situation seems to agree with (37) (or a more ac-
curate expression appropriate for I'&40) down to
1"-5. A similar situation exists for the hard
spheres, but there one has a strong indication of
the validity of the inequality, H„„c(0) ~ H,, ~(0),

given that the third virial coefficient derived from
the HNC H(0) is twice as large as the exact one. '
Inspecting the trends for the OCP from our results,
we anticipate that the inequality H„„c(0)~H,„„,(0)
is generally correct for the OCP. (see Appendix
3). It is, however, in slight disagreement with
current predictions in the intermediate-coupling
region 1&1 &5, based on the assumption that the
excess free energy of mixing is negligible. The
validity of the proposed inequality can be cheeked

ocp I"=ieo
4 MC, U&-140.89

MODIFIED HNC, q=0.46, U=-140.96
x MODIFIED HNC, q=0.4&, U*- 140 78

HNC, g~Q, U=-140.256

4
Pe) Sg

8
P

P Sg
-a~

FIG. 6. OCPg(r) at I'
= 160 (near crystallization).
The Monte Carlo g(r) is
from Hansen (Ref. 31) (see
caption to Fig. 3).
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ocp I' = ioo
o, ~ MONTE CARLO

HNC--- MODIFIED HNC, q „=0.42

s(k)

FIG. 7. OCP structure
factor S(k) for I'=100. The
black dots represent the di-
rect MC data of Hansen
(Ref. 31). The squares rep-
resent the "smoothed" data,
obtained by inversion of
C(r) (Ref. 3). The modi-
fied HNC results follow
the "smooth" data.

0
I ~ ~ 0

IO

by evaluating the small-r behavior of the bridge
diagrams, or by solving the eigenvalue problem
for the matrix that relates the "response" of C(r)
to small changes in the effective potential u(r)—
1/P E(r), via the linearized operator of the modi-
fied HNC equation. This procedure is similar to
the one used by Ballantine and Jones" for analyzing
pair potentials in liquid metals from the experi-
mental S(k) data.

VIII. YUKAWA POTENTIAL

Consideration of the Yukawa potential arises
for example in connection with electron screening

corrections to the thermodynamic properties of
the OCP, in the 'Thomas-Fermi high-density limit
and the Debye-Hiickel low-density limit. In the
reduced units introduced before, the Hamiltonian
for the screening problem can be cast in the form:

where pH'" is the Hamiltonian for the OCP. For
example, in some astro-physical problems I'- 50
and a-1 correspond to the situation in Jupiter,
and I'-6 and n-0. 25 to white dwarf stars.

In the limit n-0, we expect that the structure

2.5-- I

ocp 1 = iso
~ MONTE CARLO

HNC

,MODIFIED QPY
= 0 ~&——,' HNC

PY

s (k)

2-

I.5- -0.5

FIG. 8. OCP structure
factor S(k} for I'=140. The
Monte Carlo dots are from
the, data of Hansen (Ref.
31).

IO
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0
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FIG. 9. OCP direct correlation function for I'= 80, 160.
The Monte Carlo C(r) (see Ref. 42) has been provided by
De%itt.

and the thermodynamics of the system described
by (40) to go over to those for the OCP. Consider,
in turn, the Hamiltonian

~ I' .„+3r
pÃ=Z — e "o-—

«s ro (41)

(42)

(4&)

and

I 1"
p —= 1+—

J re '(1 + I'2r')[g(r ) —1]dr .
p 2 p

(44)

These expressions will yield, for small a, values
close to the corresponding OCP values. If the
dominant structure-independent term is not sub-
tracted every approximate theory for the pure

that approaches the OCP case in the limit n -0,
with the structure-independent term then cancelling
the dominant (infinite in the limit & 0) term in

the structure-dependent part. Then the thermo-
dynamic properties of the system governed by
(41) can be expressed in terms of the correlation
functions, in forms similar to those for the OCP;
l.e. ,

FIG. 10. OCP potential of mean force, H(r) —Pu(~)
= ling(r), at small distances, for I = 80, 160. The Monte
Carlo dots are taken directly from Hansen's g(x) (Ref.
31). The broken line is the fit given by Eq. (35). The
bridge functions used in the modified HNC equation are
the same as in Fig. 9. The symbols and * stand for
H(0) given by Eqs. (38) and (37), respectively.

Yukawa problem will yield excellent (but possibly
meaningless! ) agreement with the MC results via
the "energy" equation.

The results of the modified HNC equation and
their comparison with the MC data, ,

4' are sum-
marized in Table II and Figs. 11 and 12, essentially
confirming our findings for the OCP.

IX. GROUND-STATE ENERGY OF A BOSON SYSTEM

We consider the ground-state energy of a system
of bosons by the variational method using a Jastrow
wave function. Various integral-equation methods
have been used to study the ground-state proper-
ties of boson fluids. ' In these methods the analogy
between the many-particle Jastrow wave function
and the Gibbs statistical probability factor is ex-
ploited to carry over the whole machinery of
classical theories to the quantum case, via a
s tandard variational procedure.

If the variational many-particle wave function
is taken to have the form
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TABLE I. Results for the OCP from the modified HNC equation as function of the parameter SPY and compared with
the MC data. ~

~PY ~PY P U/N

3 0
0.07
0.08
0.09
0.095
0.1
0.1045
0.105

MC

20 0
0.10
0.15
0.20
0.25
0.275
0.30

MC

80 0
0.3
0.4
0.43
0.46

MC

100 0
0.3

—2.1026
-2.1053
—2.1068
-2.1086
-2.1097
-2.1110
-2.1122
-2.1124
-2.111+0.001

—16.5377
—16.5408
-16.5528
-16.5810
-16.6341
-16.6728
-16.7208
—16.667 + 0.01

-69.2639
—69.3956
—69.6908
-69.8334
-70.0048
-69.69 ~0.03

-86.9734
—87.0971

-0.087 58
-0.074 46
-0.065 91
-0.053 93
-0.046 43
-0.037 80
-0.028 96
-0.027 91
-0.029+ 0.002

—8.625 8
-8.6043
-8.491 7
-8.157 0
—7.384 8
-6.730 3
-5.814 9
—6.498 + 0.007

-42.194 9
—39.876 1
—31.943 2
—26.8764
-19.553 4
—30.12 + 0.02

-53.6
—51.4

0.4
0.42
0.43
0.44
0.45

MC

120 0
0.3
0.4
0.43
0.46

MC

140 0
0.3
0.4
0.43
0.46

MC

160 0
0.3
0.4
0.43
0.46
0.48

MC

—87.3865
—87.4790
-87.5303
-87.5852
-87.6438
-87.48 + 0.04

-104.7131
-104.8304
-105.1142
-105.2580
-105.4366
-105.28 + 0.07

—122.4755
-122.5875
-122.8659
-123.0092
-123.1893
-123.1 + 0.1

—140.2556
-140.3631
-140.6364
—140.7789
-140.9597
-151,0
-140.89 + 0.1

-43.6
—40.489 9
—38.6
-36.467 2
—34.052 2
-38.04 +0.02

—65.4
—62.0
-55.4
—50.4
—43.2
-45.95 + 0.04

—77.1
—75.1
-67.3
—62.2
—55.0
-53.9 + 0.05

-89
-87
—79
—74
—67
-62
-61.8 + 0.05

The MC data for the energies is taken from Hansen (Ref. 31) and the error bars are determined from remarks in that
paper. The results for the inverse compressibility are obtained by writing P (BP/Bp)z —-1+T(P U/N)+ 6, where 6, via Eq.
(34), is given by a form a- bI . We compared various proposals for a and b (see Ref. 36) and took the "central" val-
ue. The error in p(BP/Bp)z is smaller than in p U/N in view of the factor —and the fact that the difference between var-
ious predictions for 6 is small.

j(r„i= exp — ri (r „))
i&f i&f

then the ground-state energy per atom is bounded
above by

U 1 I
N 2
—= —p drd(r) ()'v(r) v(r))2m

(45)

where g(r) can be regarded as the classical radial
distribution function for a system of particles in
which P = 1, the number density is p, and the pair
potential is u(r) Here v(.r) is now the assumed
two-body interaction.

For the variational calculation one can para-
metrize either g(r) [or u(r)] and calculate the
corresponding u(r) [or g(r) . Sincethis normally
involves a formidable many-body integral, the
most accurate method that one can usually exploit
is the MC or MD methods of classical statistical
mechanics, i.e. , parametrize u(r) and simulate

the corresponding g(r)'s. The practical methods
for handling this problem make use of the approxi-
mate integral equations for classical fluids (e.g. ,
HNC, PY, etc. ), with the additional freedom to
choose the appropriate kinetic-energy functional
that will be least sensitive to errors in the classi-
cal correspondence (via an approximate integral
equation) between g(r) and u(r) An addit. ional
advantage is provided by the fact that the classical
system, with potential u(r), is usually taken to be
at relatively low densities, i.e. , about 8 of the
expected fluid-solid transition for that system.
This is a region where in the classical problem
the integral equations yield quite accurate RDF's
and equations of state. Despite these advantages,
however, even the best-known method (the HNC)
gives a U/N that deviates (near equilibrium) by
about 20% from the corresponding MC or MD re-
sults in liquid 4He. As an example of the present
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MONTE CARLO
~ MOD I F I ED HNC

HNC
FIG. 11. Radial distribu-

tion function g(x), for the
Yukawa potential, at I'
=25.5885 and n= 0.3908
(see text). The distance x
is measured in units of
a/e, with a being the sig-
ner-Seitz radius. The

,
Monte Carlo data is due to
Gann (Ref. 47). The modi-
fied HNC equation is with
the PY bridge function

(spy = 0 3), From Appendix
B, this ease is also to be
regarded as representative
of the situation for the OCP
at I' 25.

0 0.2 0.4 0.6
I I

0.8 I.O
I I I

I .2 I .4 I .6
I I I I

I8 20 22 24

method consider the calculation of the ground-
state energy of liquid He. 'The interatomic po-
tential is taken to be the LJ (12-6) form:

v(r) = 4m [(o/r)" —(o/r)'],

with & = 10.22 'K, o = 2.556A, and the q uantum

24

22

parameter is thus I'/me(F = 0.1815. The Jastrow
pair function can be inferred, to a certain extent,
from the quantum-mechanical solution of the 'He-
'He problem in, say, the WKB approximation, i.e. ,

u(r) = b'(o/r)', (46)

with b being the variational parameter.
Taking bo as the unit length, and defining a re-

duced density by D = p(bo)' = p*b', the ground-state
energy per particle in 'K that should be minimized
with respect to b at each p, is given by

20

18

16

14

-C(I)
12

8 =V+T,
where the potential energy per particle, is

y 40 88[b-»(z- ») b-6(z-6) ]

and the kinetic energy per particle, is

T = 9.27465b '(g '), ~ .

The averages are defined by

(4 "t)

(48)

(49)

10 x™& l~ g(~. D)~- dx &~- ) (50)

00
I'

FIG. 12. Direct correlation function C(r) for the Yu-

kawa potential at 7=25.5885, e = 0.3908 (see caption to
Fig. 11).

where g(x; D) is the HDF of the classical system
with the pair potential given by (46). The "D"
dependence in (50) implies certain scaling relations
that reduce the amount of computation required
in the search of the. minimum energy, and is a
direct consequence of the homogeneity of the form
(46).

The ~He equilibrium density is po = 0.3648/O' A '.
he MD results of Schiff and Verlet" find the

minimum at p=0.9pp with b=1.16, i.e. , D=0.5125,
and with 8 = -5.96 'K/atom. This may be com-
pared with 8 =-V.14 K/atom, the experimental
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TABLE II. Results for the Yukawa potential, I'
= 25.5885, e = 0.3908. 2.2-

Modified
Monte Carlo HNC (rip& = 0.3) HNC

&x '&

(HEL
LE

DIFIED HNC

PU/N

PP/p

-17.019

-8.037

—17.002

—8.019

—16.828

-7.954
2.0

—10.622 -13.555

Provided by Gann, Bef. 47.
1,9-

result. The HNC results are extensively compared
with the MD data by Miller. ' In the course of
solving the modified HNC equation for the potential
given by (46) we checked the values quoted by
Miller for the various (x ")n averages, and the
agreement serves again as a mutual numerical
corroboration. In Table III we compare the results
of the pure HNC equation with the MC results at
the MD equilibrium density parameters (D =

0.5125, b = 1.16). We can see that in the near
cancellation of the large numbers (V, T) an in-
accuracy of about 20/0 builds up in the remainder.
On the other hand, the same HNC procedure em-
ployed for the thermodynamics of the classical
u(r) system will yield at this density an equation of
state nearly thermodynamically consistent, and an
error of less than 2% in the energy and less than
5/0 in the compressibility. The situation for the
quantum problem can thus be summarized by the
following statement: given u(r), the HNC proce-
dure yields g(r) with satisfactory overall agree-
ment with the corresponding MD g(r), but fails
however in calculating the energy of the quantum
system because of the need for extreme accuracy
in the calculation of high moments (such as x ").
The results of the modified HNC equation for D =

0.5125, b = 1.16 are now presented in Fig. 13 as a
float diagram showing the values of the averages
as functions of the hard- sphere parameter g used
in the Pl' bridge functions. The value q= 0 repre-
sents the results of the pure HNC equation, and
the MC results (with the appropriate error bars)
are also indicated. We find that a single bridge
function of the hard spheres [in this case b'av
(x; p = 0.2)] will accurately yield the MD res~its

&x "& ———
1.7—

1.6—

1.8-
0 0.05 0.10 0. 15 0,20 0.25 0.50

='9

FIG. 13. Moments of the radial distribution function
used in the calculation of the ground state energy of liq-
uid He (see text). The molecular-dynamics data (Ref.
49) is represented by a central line and two additional
lines representing the error bars quoted in Ref. 49. The
HNC results denoted by broken horizontal line corre-
spond to gpg= 0 in the scheme of,the modified HNC equa-
tion.

for various quite high moments of g(r). This
provides a severe test on the anzatz of universality.
We expect that the application of the modified HNC
procedure to the 4He problem should therefore
yield results close to the simulation values. In
fact, taking q= 0.2 the results for the energy is
(in K/atom) -5.94 (vs. -5.96 from MD). The
corresponding results for the equation of state of
the classical system with the u(r) potential are
summarized in 'Table IV. In view of these results

TABLE IV. Thermodynamics of the classical y 5 po-
tential system via the HNC (q = 0) and a modified HNC

(g = 0.2) equations (see text}.
TABLE III. Results of the HNC equation compared

with MD data (Ref. 49) (see text).
P&/p (.),

MD 1.874 1.677 2.002 -17~ 55 11.59 —5.96
HNC 1.926 1.746 2.227 —16.95 12.05 —4.90
Deviation 2.9% 4.3% 11.5% 3.4% 4.3% 17%

0.5
0.525
0.5125

0
0
0
0.2

4.7603
5.0199
4.8895
4.8135

9.1116
9.6668
9.3877
9.8485
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for high moments of g(r) we are sure that both
(x ')D and P(8P/&p)r will be given accurately by
p = 0.2. Further, given that the underlying classi-
cal system is one of relatively low density, there
has been an effort (see Zabolitsky4') to actually
calculate the lowest-order elementary graphs,
with the hope that the HNC procedure will con-
struct from these all parallel connections (as
described by Van Leeuwen et al.') to then yield
improved results. We wish to emphasize that the
relative merit of such a scheme should first be
judged in the context of the classical problem
(e.g. , by thermodynamic consistency). The out-
come of the HNC procedure is demonstrated by
our results above, and the outcome of using the
sum of a limited number of elementary graphs
can be estimated readily by comparing the re-
sulting function with the hard-sphere bridge func-
tions, especially in the region of the first peak of
the g(s) considered.

X. CLASSICAL LENNARD-JONES SYSTEM

'The problem of classical particles interacting
via the pair potential

u(r) = 4e[(v/r)" —(o/r)6]

[the well known Lennard-Jones (LJ) 12-6 potential],
is so ubiquitous that it deserves little commentary.
However to demonstrate the general point made
before, we present our results for the modified

HNC equation for this system near the triple point
(po' = 0.85, kT/e = 0.72), together with the MC and

MD data. ""These are given. in Figs. 14 and 15. For
comparison we also give the results for PY, HNC,
and MSA integral-equations solutions. ' Again we
see that a single hard-sphere bridge function is
able to reproduce all the equation-of-state data
and g(r) data. to an accuracy within the simulation
noise and N dependence.

XI. OSCILLATORY POTENTIALS FOR LIQUID METALS

A rather limited study of a numerically given
pair potential proposed for liquid Ga (Fig. 16)
shows a dramatic (and correct) effect of the inclu-
sion of the bridge functions. In Fig. 17 we present
g(r) from MC" together with the results of the
pure HNC and the modified HNC equations. With
a hard-sphere bridge function the MC g(r) is re-
produced to high accuracy. Note the large effect'
on the first small peak. From a structural point
of view this kind of a potential offers the oppor-
tunity of studying the possibility of the appearance
of a shoulder (or perhaps another small peak) in
the region of the main peak of S(k). It would be
interesting to see whether the inclusion of the
hard-sphere bridge functions will affect the oc-
currence of this phenomena, thus in a way either
confirming or casting doubt (depending on the

case) on the predictions of approximate methods.

LJ T"=0.72, p"=0.85

g{r)

I—

~ M-D
--- HNC

MODIFIED HNC,

gpss
= 0.43

V~/
~ A

FIG. 14. Radial distribu-
tion function for the Len-
nard-Jones system near the
triple point. The mole-
cular dynamics dots are
from Verlet (Ref. 51).
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1000-

/ / /

6.0-
Ne

5.9—

5.8—
r~

25-

800

400-

200—

20

-200—

10-

-400-.

-600-

I I I I

HNC q =0.4 q =0.45 q =0.46 PY MSM
PY PY PY

FIG. 15. Thermodynamic properties of the Lennard-
Jones system near the triple point [corresponding to the

g(x) in Fig. 14]. By Monte Carlo vie mean here both the
Monte Carlo and molecular-dynamics data (Ref. 51),
again giving a central value and the spread in the results
or an error bar quoted. The HNC results g) corre-
spond to gpss

——0 in the modified HNG (o) scheme. Also
given are the Percus- Yevick (p) and the mean spherical
(0) results.

0

MONTE CARLO
HNC
MODIFIED
HNC

FIG. 16. Proposed effective pair potential for liquid
gallium (Ref. 53) at a number density 0.0528/A3.

XII. THE MEAN-SPHERICAI, APPROXIMATION

AND RELATED MODELS

The mean-spherical approximation (MSA), has
been applied' almost exclusively to potentials with
a hard core of diameter o. For such potentials,
the MSA is specified by

g(r) =0, r(o
C(r)+Pu(r) =0, r &o.

(51)

together with the OZ relation. The coefficients in
the MBA density expansion cannot normally be
expressed in terms of integrals involving the
Mayer f function, and the MSA is not generally
exact in the limit of low densities. The exception
to this is the hard-sphere potential (C(r) = 0, r &o)
for which the MSA equation is identical to the PY
equation. Analytic solutions of (51) have been found
for the following C(r) tails: C(r) = 0 (the PY equa-
tion for hard spheres" ), C(r) = -1/r (charged hard
spheres"), and C(r) =Pe "/'r (Yukawa22). From
a structural point of view, any solution of the

I.O 2.0
I

5.0 4.0
r(A)

FIG. 17. Radial distribution function g(r) for the po-
tential in Fig. 16, at a temperature 7=373'K. The
Monte Carlo data is due to Mon (Ref. 53). The modified
HNC equation is with the PY hard-sphere bridge function

/pe 0+3 ~
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MSA can be viewed also as a particular para-
metrization of the structure of some given related
system, and if there are free parameters they
can be used in demanding 'thermodynamic con-
sistency. Thus, the solution of the MSA with
Yukawa closure serves in the parametrization of
the hard-sphere potential. Considered in this way,
the success or failure of the MSA to reproduce the
' exact" results is an immediate outcome of the
suitability (or unsuitability) of the chosen form for
C(r) in representing the actual situation. For po-
tentials lacking a hard core one can still solve
(51) and, provided it is remains structurally valid
[i.e. , g(r) does not become negative], one can
treat o simply as a parameter to be determined by
letting g(r) go smoothly to zero. " However, given
parametrized computer- simulation results, it is
possible to apply a direct quantitative test to the
MSA, via the following relation.

Start first with the QZ equation

h(r„) = C(r„)+p f h(r„)C(r, )dr, ,

—= —C (0)+P +—p J [C(r)+Pu(r)]g(r)dr
PU 1 8P 1

2g ~p gi 2
(53)

which is' exact.
Now define a generalized MSA (GMSA) [compare

with (51)] by the requirement

(54)

i.e.,

.C„,.( )=0(h„)P(;p) . —(55)

The ordinary MSA (i.e. , PY for hard spheres), the
results for charged hard spheres, together with
results' of Gillan" for point charges, are all
special cases of (54). The results for hard-
spheres, point-charges, square well and LJ sys-
tems, when compared with the corresponding re-
sults for HNC and PY, seem to indicate that the
MSA evidently combines the virtues of both PY and
HNC theories. ' In view of the rather accurate
parametrization of the simulation data achieved

and take the limit x»-0 to obtain

h(0)=C(0)+p f h(r)C(r)dr.
1

With h(0) = -1 this takes the form

C(0)+ (( —p fC(r)dr) = —p fC(r)d(r)dr. (00)

Using the standard relations for internal energy
and compressibility, we obtain

TABLE V. C(0) for the OCP from the HNC equation,
and the modified HNC equatiori.

Modified HNC

Eq. (53) Eq. (55)
HNC

Eq- (») Eq- (»)

2 -3.14
100 —133.4

—3.04 0.10
-134.47

-3.10
—122

—2.96
—120

XIII. CONCLUSION

We have demonstrated that a large body of com-
puter-simulation data compiled for a variety of
quite disparate interparticle potentials can be
fitted rather accurately by a single one-parameter
family of bridge functions. To within the accuracy
of present-day simulation methods [currently
about 2/o for g(r) and less than 1/o for thermody-
namics] we are led to the conclusion that the
bridge-function families of all potentials can be
well represented by the family appropriate to
any one such potential. It is an interesting hap-
penstance that the exact analytic solution of the
PY equation for hard spheres provides the bridge
function family that supplements, with such strik-
ingly accurate results, the HNC equation to yield
the most useful modified form. Though it will
ultimately be rewarding to understand why this is
so for pure systems, it is clear that from the
practical standpoint the same approach can be
used for. mixtures by using the PY bridge func-
tions for multicomponent hard-sphere system"

with the inclusion of the hard-sphere bridge func-
tions, we can check the validity of (55) by com-
paring it with (53). For the OCP, where HNC

gives similar results to MSA we find that indeed
both methods conform to (55) with high accuracy,
comparable in fact to the parametrized results.
In Table V we give the values of C(0) as given
from (53) and (55) for the "exact" and HNC results
while the MSA results of Gillan obey (54) exactly.
For the LJ system near the triple point (Sec. X),
the HNC gives C(0) = -28 while (54) yields -23.3.
The modified HNC yields C(0) = -37 and (54) gives
-. 36. Thus imposing (54) in a judicious form
significantly improves upon the HNC results for
the LJ system. We expect (54) to be a rather good
approximation for any potential. In view of the
discussion presented in Sec. IV, the most import-
ant improvement of the usual MSA is effected on

C(r) for r in the region of the main peak of g(r).
Thus, it is not the PY approximation that under-
lines its success for the hard spheres, but rather
the mean spherical assumption itself that embodies
a rather accurate statement that is apparently
valid for any potential.
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in a correspondingly modified HNC equation.
It is important to emphasize once again that the

bridge function enters the HNC schemes as an
effective potential and this fact has a consequence
which is not shared by other standard approxima-
tions. This is that any solution of the HNC equa-
tion for a given potential P p, o(x) must yield the
exact structure for the potential P p, ,(v) = P p, (x)
—b, (r), albeit that the potential u, (r) might re-
main formally unknown. It follows that in terms of
the iterative procedure normally performed on the
class of integro-differential equations (of which
hypernetted chain is an example), the HNC scheme
possesses an inherent stability property which is
not guaranteed, for instance, in PY since the latter
by its very form does not admit of an identification
of effective potentials. Experience with the HNC
equation has indeed shown it to be numerically
very stable. Accordingly, if one is in possession
of a "pure" HNC solution for some physical po-
tential, there is no subsequent difficulty in intro-
ducing the bridge function. For this reason we
may conclude that the scheme introduced above
provides a sound basis for the fitting of simulation
data if for no other reason than the later determi-
nation of structure factors. "

By extending the analysis presented above we
believe that it may be possible to place the simple
parameterization scheme offered here on a rigo-
rous footing to the extent that if applied on a rou-
tine basis in conjunction with every MC or MD
simulation, correspondingly 'Vigorous" error
statements can be made about the statement of
universality. One might then hope that at least in
a restricted sense the notion of universality will
be useful in summarizing both the structure and
the thermodynamics of classical fluids. Pending
this analysis however, we may nevertheless con-
clude from the results given above that the modi-
fied HNC equation gives a new and rather power-
ful approach in the theory of fluids. Even in its
simplest form (with the PY bridge functions and
constrained by the requirement of thermodynamic
consistency}, it is apparently applicable to all
physically interesting potentials.
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APPENDIX A-

(On using the Ewald method to check the Monte
Carlo calculation for the Coulomb potential. }

The Hamiltonian for the one-component plasma
1s

pH"'= g —--,' ppu(O),
f&g rt j

where

Pu"'(r) =f'/r and Ppu"'(k) =S&/k'.

(Al)

Pff &a& g Pu(n)(& ) (A2)

where n is an inverse length parameter so chosen
that

lim Pu'- '(r, ,)= Pu"'(r, ,}= 1'/~;; ~ (AS)

For specific examples we may take
(a) Yukawa:

Pu' '(r)= —e " Ppu" '(k)=
r 3r

y2+ ~2 (A4)

where

lim (1'/r)(e '- 1)= rn . -
0

(b} The complementary error function (erfc) po-
tential:

Pu' '(r) = (&Ir) erfc(nr),

p pu' '(k) = (Sl /k )(1 —e ~" ),
where

lim —(1'/r) [1 —erfc(nr)] = 2I'n/Wjr . -
0

(A5)

We recall that

2
erf(g) = 1 —erfc(g) = I— e ~ df

~p

(z- —,z'+ ~ ~ ~ ), (z«1).2
r

Now the free energies of the systems described
by interactions (A1) and (A2) are related by the
following exact relation":

Consider the Hamiltonian II~' for a system with
a potential that has the same short-range behavior
as the Coulomb potential, but differs at longer
range in the sense that the energy is demonstrably
extensive. Thus
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py &n) pF(0) pl
= —', Ppu&0&(0)+0 p i dA. Jt [Pu' '(r)- Pu"'(r)]g„(r)d'r

0

= 0 Ppu' '(0)+o p t dX [Pu' '(r) —Pu«'(r)][g, (r) —1]d'r
p

1
= —,

' Ppu' '(0)+
2 2, dX[Pu' '(k) —Pu"'(k)][S,(k) —1]d'k.

In other words

pF(0) pF (n)
0

N N „0
—-' Ppii k(0)+-', iim[du' '(x) —SM.

' '(x)j—,f dk f [pp'"'(k) —SM' '(k)]S {k)d'k,
2(2v)'

where gk(r) and Sk(k) are, respectively, the RDF
and structure factor for the system described by
the potential

u' '(r) + &&[u' '(r) —u' '(r) ].
For the two specific cases considered above,

PU&o& PU'n& 3I' I' I'ro
(A11)

in the Bebye-Hiickel limit,

to give (via PU/N = I'(8/SI')(PE/N)) the relations

PF (o) PF (n) 31 I'
PV&'& PV & & 31' r 0.326

2 ——n+ ' I' n'
N N 2n 2

(A12)

r A
+ — d X Sk(k}» dk (Yukawa),

p
a'+ k'

in the static-lattice limit, and an interpolation
formula for the a' term based on the OCP results
for S(k) has also been derived" via

pF (0& pF (n) 3I' I'
N N 2(2n) 2W)(

(A7) r I2,—1,(1')+ —I,'(I') n'

where

(Als)

2 2
+ — dA S„(k)e '~ ' ' dk (erfc).

7T 0

(A8)

As an example of the use of these results consider
the static-lattice limit, at which

S,(lT) = pl k(k —()), iim —p =
S f dk,

;~0 v- ~ .„
where g is a reciprocal-lattice vector. Then the
two expressions take very familiar forms, namely,

pv«& pv«& sr I
N N 20.' 2

and

~2
+

2 Z „») (Yukawa}
ggo g (Q +g

p U {0) p U(n) 3F
N N 2(2n)' 2 ~ir

(2n)

3Z ~ e- (g/2n)
+ ~, (erfc),

geo

(A 9)

(A 10)

where g is given in units (y6v')' ' (y= v 2 for a fcc
reciprocal lattice). The first order in n value of
the integral in (A7) was calculated by Hansen"

f,(I') = I' ')"[0.326 0702(4.592 037+ I')'~'

+ 2.413 892(134.471 01+I') ' '] .

In the particular case considered in Sec. VIII
(I" = 25.5885, n = 0.3908), we get via the very
accurate deWitt formula for the OCP, PU'"/N
= -21.55V which is a result that should be very
close to the MC data. From (A7) and (A13) we

get the following expansion (PU' '/N is from MC

calculations for the Yukawa, "):

P U & &/N = 234.308 —251.3100 —5.0000+ 0.47

= -21.53.

We see that for this small value of n, the series
is rapidly convergent. Note however that the
term quadratic in n is by no means small (2.5%%up

of Pv"'/N).
In the "erfc" case the n' behavior is replaced

by a fast exponential decay, and in view of the
success of the Ewald summation method for lat-
tice sums (A10) we can anticipate similar be-
havior for the dense fluid. The integral in (A8)
will yield a negligible contribution to the poten-
tial energy when its I' dependence is very weak.
For small k and small n,
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and

S,(k) =

3I'+k [1—(3/4)/) f [C(r)+ I"/r]dr]

S,(k) = (2n)'

3I" + (2n)'(I —(3/4)/) f [C(r)+ (I'/r) erfc(dr)]Cr]

(A 14)

(A 15)

and we can expect that the integrals will take simi-
lar values, i.e. ,

1 — [C(r)+ pu (r)]dr = p
3

4m Bp ~ 10

for the dense fluid (I'» 1).

Thus the integral

S (k)e-&)/2a) dk

will have negligible I' dependence when

or n «v 2. In the dense fluid region the first
S(k) peak is around k -5. We can now calculate
the I" dependence by expanding (see A14)

(k)e (k/ 20. )~ dk

r u= —2Q erfc ' + u'e "'"~dur 2Q 37t' 0

P ~ ~ PI ~4e-0/'~~)' d~
( p)p t 1

The first term, for n =-, is negligible (well within
the MC noise for the energy for instance), the
second is I" independent, and the third has a slight
I' dependence arising from P(BP' )/Bp) r. Gather-
ing the terms together, we obtain (for the I'-de-
pendent term)

(k)& (2/'~' dk

k, p(ap'")
7 2n 3)) I' d'[1/(2n)']

x erf — ' 2Q, k, =3.k,
2Q

Thus it can be easily established that in the dense
fluid region, roughly defined by

( PU /N)/(P U /N) ) t) ) t) ~ 1

or, say, I")10, the following is an overestimate
(much closer than a factor of 2) for the integral:

S,(k)e ' /' ' dk = —(2n) erfc ', k, ) 3
2Q

I'
(2 n)~e - &))| / ~&)

v~w 7

(A16)

To state it simply, the dominant I' dependence
comes from the asymptotic behavior of the inte-
gral in (A8) (say, k) k, =3-4). In that region an
estimate of the result to within a factor of 2 is
given by S(k)=1. We emphasize that with k, =3,
(A16) represents a substantial overestimation of
the true result as can be seenfrorn a close inspec-
tion of the possible values that S(k) can obtain in

the small-0 region. Even then, with the feasible
choice n of 1/1.7, the value of the remainder (in-
tegral term) is quite negligible, i.e., much small-
er than the inherent MC noise for the energy. This
can be demonstrated via the results for n = 1/1.5
(which were obtained by Ceperley and Chester for
checking the MC results for the OCP via a different
approach") that are presented in Table VI. We
see that even for this case the deviations are within
the combined statistical error.

In view of the analysis above we expect that for
n = 1/1.7 (for which with N = 256 one can still treat
the tail by conventional methods) both g(r) and the
energy via [(A8) without the integral term] con-
stitute an excellent estimate of the situation for the
OCP, thus providing a direct and rather severe
test of the Ewald method employed for the latter.

TABLE VI. Direct check of the Monte Carlo results for the OCP (see text).

PU (n)

N

Ref. 32
PU() 3r r

N 2(2n)2 2v &

PU (0)

N

Ref. 31 Deviation

50
75

120

17.853
26.17
41.01

-43.141
-65.320

—105.385

-43.093
-65.255

-105.284

0.048
0.0,65
0.1'01
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APPENDIX B

[Diagrammatic analysis of the HNC equation
for the OCP; we consider the low-density, high-
temperature (X«1) limit. ]

Because of the long-range nature of the Coulomb
potential

Pu(r) = X/r

[where X=BI'~' is the ratio of the Landau length
e'/k~T and the Debye length (47ine'/k T) '~', and

r in units of the Debye length] the expansion pre-
sented in Sec. II is not adequate. Many of the
cluster integrals actually diverge at large y. The
escape from this difficulty is to expand the Mayer

f function in a power series in Pu(r), performing
the summation over chains of "u" bonds first.
This results in the following expansion for the
potential of mean force":

H(r) —Pu(r) = Pu—(r)

+ (the sum of all simple irreducible 1-2 graphs with

k field points in which (a) there can be k,.& lines between
the points (ij ) represented by the bond [-Pu~(r, ,)]'ij /k, , ,
and (b) every field point is of degree greater than 2}.

Note that Pu~(r) = (X/r)e ", and the "degree of a point" is equal to the number of lines terminating at this

point.
Now, the sum of all graphs that are identical (except that k, , ~ 2} is equivalent to a single "prototype"

graph having k,, =2. This two-line bond is equal to

"';] ' = exp[ Pu,',] -1+ Pu~-,
ii. .=2 if't J

and the procedure eliminates the remaining short-range divergences in the graphs in (B1). This resum-
mation leads to the following expansion in "Meeron" graphs

H(r) —Pu(r) = —Pu ~(r)
+ [the sum of all simple irreducible 1-2 graphs, in which the

bonds (lines) between the points are of two types: (a) a Debye
bond (line) representing the factor —Pu~i, and (b) a Meeron
bond (line) representing the factor exp(-Pu~) —1+ Pu f, , such

that only one line may connect any two points, and there may be
no points where only two Debye lines join]. (B2)

All the terms in this "prototype" cluster expansion are well behaved. This expansion is not ordered in

powers of X. The loseest order in X to which a given graph contributes is given, however, by twice the

number of Meeron lines, plus the number of Debye lines, minus the number of field points. In the Debye-
Huckel limit, i.e., fixed r and vanishing A., the —Pu (r) is the leading term in (82). Observe that the

graphical expansion of the Debye line in terms of the Pu line is just a special case of the Ornstein-Zernike
relation, i.e. ,

A(k) = „~[A(r) is the sum of all possible nodal diagramsp(B(k))'

obtained from diagrams in B(r) by connecting in series].

The diagrammatic expansion of the HNC

approximation for H(r) will contain all those
Meeron graphs that do not contain anyzvhe~e the
elementary graph topology, i.e., every graph will
be a nodal graph built by connecting in series sub-
graphs that are themselves built by parallel con-
nections of nodal graphs. No subgraph can then be
an elementary graph. Clearly, all these diagrams
can be built by an iterative procedure.

Let us now write the HNC equation for the Cou-
lomb potential in the following form:

(() C (r)-=oC(r)+ Pu(r)
e-( H(~& su (r) i [H(r) P-u(r} ]

This can be shown to be equal to'"
[all possible parallel connections of graphs

in H(r) Pu(r) = H—,(r)]- (B3a)

(ii) H(k) = p[C(k)]'/[1 —pC(k)].

Here H(r) is
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[the sum of all possible nodal diagrams obtained
from diagrams in C(r) by series connection].

(B3b)

It is not difficult to see how the iterative procedure.
implied by (B3) actually starts with a Coulomb
line, builds both the Debye and Meeron lines in the
first iteration, and then continues to construct all
eligible (nonelementary) "prototype" graphs in the
expansion (B2), and no other graphs whatsoever.
Thus, if the diagrammatic expansion converges,
this procedure actually proves that the HNC equa-
tion contains the Debye-Huckel limit (i.e. , HNC

obeys the Stillinger-Lovett conditions and C(r)
Pu—(r) as r ~) W.ith this rigorous result we

can repeat the analysis of Ng ' and prove that
Co(r), Ho(r), and h(r) fall of exponentially as
y-~, and their Fourier transforms can there-
fore be expanded in terms of even powers of k at
a=0.

Let us actually follow the first few iterations:

H"'(r) = X/x H"'(r) = 0.
C&'&(r) = ~/x, -C&'&(r) =0;
H"'(r) = (X/x) —(~/x) e ", H,"&(r) = -(X/x) e *;

C(')"(r) =exp[-(X/x)e "]+(X/x)e "—1;
and so on. We then find

H' "(k)

been established"'" that in the X«1 limit

H, (r) = -C,A., - C,x/x,

where

and

C( —1+ (—ln3+-)X+ ~ ~ ~

8 6

C, = 1+ (8 In3) X + ~ ~ ~ .
In particular, there has been an effort"" to de-
termine the value X, (or I",) for which the real
part of k, the lowest hiero of the denominator in
(B4), just takes on a nonzero value, thus marking
the onset of oscillations in the asymptotic re-
gime (i.e., k, is the value of k, at the onset of os-
cillation). It has been found'"" that k, =—1.5i and
A.,=4.25 (I",=1.8). For these values g(r) takes
its maximum value of about 1.04 at r-1, clearly
in disagreement with the Monte-Carlo results.
Recall, however, that the approximations (B5a) is
a very good approximation for the MC g(r) up to
A. -1, better, in fact, than the exact diagrammatic
expansion to order X ink in H(r) Thi.s demon-
strates both the validity of the HNC approximation
at low A. and the importance of summation of dia-
grams to infinity.

We have used out low-A. solutions of the HNC
equation to investigate the coefficients of the mo-
ment expansion of the denominator of S(k),

k P BP p 4 g

Sk) sp
=31"+ P k +a&k +a&k + ~ ~ ~, (B5)

with

(B4)
a, =-,' r4C, ~ dr,

0

Recall the low-A. expansion of the internal energy
as given by Abe" and extended by Cohen and Mur-
phy":

U/NkT=-~X —4X Ink —X {~y+41n —3) —-X In&

+(0.2528 + 0.0004)X + ~ ~

where y=0.57722. . . is the Euler constant.
Recall" also that the first "non-HNC" graphs

contribute only to the X3 term, but constitute only
a small part of it. Moreover, the contribution of
the lowest-order elementary graphs to H(0) is
negative, thus implying in a sense, similar be-
havior to the hard-sphere case where the HNC
values of H(0) bound from above the exact values.

The expression (B4) and in particular C"'(k)
has seen the object of extensive studies"' " in the
effort to establish the asymptotic behavior of
Ho(r), via the behavior of the zero, k„closest to
the real k axis of the denominator in (B4). It has

etc. Now given the approximation (B4), i.e., with
S"'(k), one has

P =1 —XA A.

a, = XH(~)/3r,

where we use the notations of Ref. 17. Both &(X)
and H(A) are given in terms of an infinite power
series involving powers of X and ink. For the
solutions of the HNC equation we found that the
series in (B5) is very rapidly convergent, even for
relatively large k. For example, at I'= 1 (A. = V3,
kD,~„,=v3), the expansion up to k gives k /S(k) to
within 1% even for k = 2.5 (i.e., twice the expected
~k, ~). Keeping terms up to k' we obtain ~k,

~
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TABLE VII. Moments of Co(jp) in the HNC approximation for the OCP, compared with the
predictions of its second iteration, Eq. (B7) (see teyt).

Monte Carlo

('-') (),
HNC

'( ),
Eq. (86)

ai

0.2
1
2

3

—0.580 0.726
—1.318 0.384
—2.11.1 —0.029

—0.0685
-0.5705
-1.3153
—2.1026

0.9665
0.7176
0.3332

—0.088

0 5712 x10
0.017 83
0.035 32
0.055

0.968
0.7428
0.670
0.5799

0.527 x10
0.015 925
0.0116
0.012 03

t

=1.25680, Rek, =0, while with the addition of the
k' term the result is ~k,

~

=1.28517, Rek, =0. At
I' = l.2 we get, respectively, tk,

~

= 1.4282, Rek,
=0, and ~k,

~

=1.62727, Rek, =0.1853. The HNC

equation predicts the onset of oscillations in g(r)
to take place at I;-1, in accordance with the re-
sult of Choquard and Sari and probably a very
good estimate (in view of the rather high accuracy
of the HNC equation) of the true situation. " On

the other hand, the Monte Carlo data shows oscil-
lations in g(y) when I"=8 (see Fig. 2) but does not
show oscillations in g(r) when I =2. It predicts
the onset of oscillations for 2 & I' & 3, in contradic-
tion with HNC. This, however, is not a real con-
tradiction if one observes the values of g ~(r) as

predicted by HNC, i.e. (to seven figures), 1.000000
for I'=1.3, 1.000004 for I'=1.4, 1.000019 for
I'=1.5, 1.000709 for I'=2. In view of the agree-
ment of HNC and MC g(r) (e.g. , Fig. 2) it is con-
ceivable that the peak for I'= 2 is just too small
to be detected to the accuracy of the published
MC calculations. The crudeness of the approxi-
mation (B4) in detecting the onset of oscillations
needs no further comments other than those im-
plied in Table VII (especially in view of our re-
marks abov'e). Equation (B4) being just the se-
cond iteration in the HNC procedure is adequate
at low I' (say, I' = 0.2) but fails badly for I' a 1

and thus is completely unsuitable for examining
the onset of the long-range oscillations.

*On leave of absence from the Nuclear Research Cen-
ter —Negev, P. O. Box 9001, Beer-Sheva, Israel.
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