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Time-dependent harmonic oscillators

L. F. Landovitz
Graduate Center of the City University of New York, ¹wYork, New York 10036

A. M. Levine and %. M. Schreiber
The College of Staten Island of the City University of¹wFork, New York, ¹wYork 10301

(Received 25 January 1979)

A formalism for a time-dependent harmonic oscillator is presented. The quantum-mechanical solution is

developed and the Green's function is derived. Particular examples of runaway and dissipative behavior are

considered.

I. INTRODUCTION

The usual treatment of quantum-mechanical os-
cillators assumes that the Hamiltonian is time in-
dependent. It is unlikely that all physical oscil-
lators are of this form. Camiz et gl. i have con-
sidered a special case of the time-dependent os-
cillator where only the frequency is allowed to
change with time. Kanai, Kerner, and Stevens
have considered another special case leading to a
damped oscillator. In this paper, we consider the
most general form of time-dependent linear os-
cillator subject to the normal commutation rela-
tions. The technique yields both the Green's func-
tion and a prescription for the explicit calculation
of the important expectation values.

To illustrate, the technique, we consider four in-
teresting cases. The first is the damped oscillator
originally proposed by Kanai. The second is the
corresponding runaway oscillator. The third is a
new model where the frequency of the damped os-
cillator is also damped. The final case is the cor-
responding runaway solution to case three.

applied t:o the Hamiltonian (2.1) yield

x =f(t)p/m,

p =-g(t)m(u02x.

The equation of motion obtained is

(2.6)

(2.7)

X ——[1 fn(t) ]x +f(t)g(t )ur Ox = 0 . (2.8)

The Lagrangian is expressed by

L =Px-II.
From Eq. (2.6),

p=f(t) 'mx.

Hence the corresponding Lagrangian is

L =f(t) ' ,'mx -g(t) 'm—&uox . -

(2.9)

(2.10)

(2.11)

d2x
2 + Q(6)(vox = 0 (2.12)

by a transformation

The equation of motion (2.8) can be rewritten in
the form

II. FORMALISM

We represent the general time-dependent har-
monic-oscillator Hamiltonian as

e = 8(t) .
Equation (2.8) may be expressed as

(2.13)

H =f(t)p /2m +g(t) —,meox (2 1)
(2.14)

Ho =P /2m + 2m(dpx ~
2 & 2 2

The condition that II equal IIO at t =0 implies

(2.2)

where the time-independent harmonic-oscillator
Hamiltonian is expressed by

Since

d dd8
dt dedt '

one obtains

(2.15)

f(o) =g(o) =1.
The Hamiltonian equations

(2.3) f(t) 'x=-
d6)

(2.16)

aII" ap'

aII
P ax

(2.4)

(2.5)

for

—=f(t)d8
dt

(2.17)

Substituting Eqs. (2.15)-(2.17) into Eq. (2.14), one
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obtains Eq. (2.12) with Q(8) expressed by

Q(e) =G(9)/F(8)

where

(2.18)

d xp l dx+ ~ dx+
dt zS dt

Also, Eqs. (3.1) and (3.5) imply

(3.10)

F(e) =f(t),
G(9) =g'(t)

(2.19)

(2.20)

8(t) = ))f(t) d. t + C . (2.21)

Equation (2.17) defines the transformation (2.13).
Integration of this equation yields

[x.,p,] =ih. (3.11)

Application of Eqs. (3.8}-(3.11) to the Hamiltonian
H in Eq. (2.1) yields respective equations identical
to Eqs. (2.6)-(2.8) with x replaced by the operator
x, and p replaced by the operator P, .

Since the Hamilton equations (2.6) and (2.7) are
linear in x and P, the operators x, and P, can be
represented respectively by

One can choose tl.ie constant C such that

8(0) =0.

Eq. (2.12) becomes

d2x
-2+(a)DX =0.

III. QUANTUM-MECHANICAL SOLUTION

(2.22}

(2.23)

(2.24)

x, =a(t)x + b(t)P,

P, =c(t)x+d(t)P,

where

a(0) =d(0) = 1,
b(0) =c(0)=0.

Equations (2.6) and (2.7) imply

Rl dg
dt '

(3.12)

(3.13)

(3.14)

(3.15)

(3.16}
For H expressed by Eq. (2.1), x and p are taken

as operators satisfying the commutation relation md&
dt

[x,p] = ih. (3.1} The condition

The corresponding SchrMinger equation for the
wave function P(x, t) is

(x.,P.] = [x,P]

requires

(3.18)

a
ih =He . —

at (3 2) ad -bc = l. (3.19)

Setting

g(x, t) = Ug(x, 0)',

Eq. (3.2) implies

iS =BU,. aU
Bt

(3.3)

(3.4)

Assuming the oscillator to be in a state In) at
t=0, we compute the expectation values of x', and

x, at a later time t. These are denoted by (xg„
and (xg„, respectively. The harmonic-oscillator
operators A. and A. ~ are employed which have the
following properties:

where U must be unitary to preserve norms.
For an operator 0, the operators 0, are defined

by'

x=(h/2m')0)it (A +Ai),

P =(1/i)( 2mh(u, )'t-'(A -A'),
A in) =Wnln-l),

(3.20)

(3.21)

(3.22)

0,= U'OU,

0 =UOU .
From Eq. (3.4),

„[o,H ]+ „). —.

Specifically,

(3.5)

(3.6)

(3.7)

A I n) =(n + 1)' I n+ 1),
[A,A ]=1.

From Eqs. (3.20)-(3.24),

(n lx In) =(n+ i)h/m+0,

(n I p'
I n) = (n + —,')mh(u, ,

(3.23)

(3.24)

(3.25)

(3.26)

dx+ 1
dt =ih['
dp+ .

(3.8}

(3.9)

(nl xP +Px ln) =0. (3.27)

(x'„)„=(n I x', I n), (3.28)

The quantities (xi/„and (x,)„are defined in the fol-
lowing manner:
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(x2$ „=(n I x', I n) . (3.29) From Eq. (4.1),

The expressions for x, and p, are given in Eq.
(3.12) and (3.13), respectively. The operator x, is
related to P, through Eq. (2.6), i.e.,

x, =fP,/m . (3.30)

Substitution in Eqs. (3.28) and (3.29), respective-
ly, and using the relationships (3.25)-(3.27) yields

(xlxUlx') =xG(x, x';t) .

Also,

(xl xUI x') =(x I Ux, Ix') .

(4.14)

(4.15)

B
(x I UP Ix') =ih, G(x, x';t) . (4.16)

The expression for x, is given in Eq. (3.12) and

(x2$„=(a +m'(opb )(n+ —,')h/mu)p,

(xP„=f'[(1/m'&u'p)c' +d ](n+ —,')@&up/m .
(3.31)

(3.32)
Substitution for x, into Eq. (4.15) and then equating
to Eq. (4.14), one obtains

IV. GREEN'S FUNCTION

The Green's function G(x, x';t) is defined by

(xI Ulx') =G(x, x';t) . (4.1)

RG

8x , = (i/hb)(ax' —x)G .

Hence

(4.17)

The wave function g(x, t) is obtainable from g(x, 0)
by the formula

G =g(x, t) exp[(i/kb)(a-, 'x" —xx')] . (4.18)

Substitution of Eq. (4.13) for x into the equation

g(x, t) = ~t G(x, x",t)g(x', 0)dx'.
~ OO

The condition

implies

(4.2)

(4.3)

(x I Ux I
x') = (x I x Ul x')

and noting that

(xI Ux I x') = x'G(x, x'; t),
yields the expression

BQ——=—(dx —x')G .
8x Sb

(4.19)

(4.20)

(4.21)

(4 4)

The boundary condition

fOO

G'(x, x";t)G(x, x'; t) dx= 5(x" x') . -
From Eq. (4.18), one obtains

~g kE
xgax kb

Thus

(4.22)

limp(x, t) = g(x, 0)
0

implies

(4 5)

(4 6}

x, =U xU,

x =UxU .
The expression for x, is given in Eq. (3.12).
Since

(4.7)

(4.8)

limG(x, x'; t) = 5(x' —x) .
~-0

Equations (3.5) and (3.6) applied to the operator
x yield

g =E(t) exp[(id/2hb)x'] . (4.23)

Substituting this expression for g into Eq. (4.18)
yields

G =F(t) exp[(i/2hb)(dx +ax' —2xx')] . (4.24)

The expression for F(t) can be obtained from the
requirements (4.4) and (4.6). The result is

Z(t) =1/(2~ihb)"'. (4.25)

Hence

G(x, x'; t)

Ux, U'=x,

UP, U =p,
(4 9)

(4.10)
=(P/im) 'exp[iP(dx +ax' —2xx')], (4.26)

one obtains from the respective Eqs. (3.12}and
(3.13): P= 1/Mb . (4.27)

x=ax +bP

P =cx +dP -.

Thus

(4.11)

(4.12)

An alternative method of deriving the Green's
function is through the path integral formalism. '
The Green's function is expressible through the
relationship

x =dx —bP. (4.13) G(x, x '; t) =E(t) exp[(i/h)S(x, x'; t)), (4.28)
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where For an operator 0, the expression for the Green's
function can be used to determine (0)„where

S= I dt. (4.29)

The expression for F(t) is obtained from Eqs.
(4.4} and (4.6) ~

(0), f 0(xt)00, (xt)dx, .
Thus

(4.30)

(0), fdx=dx'f dx" 0 (x",0)G (x, x";t) OG(, x';t) 0v(', 0).
OQ IQ CO

(4.31)

(0), is also expressible as Z(f) =e"", (5.2)

(O), =f dt(«, 0)O0(«, 0)d«, (4.32)
where a& and n, are constants, Eqs. (2.6)-(2.8)
and (2.11), respectively, yield

(i)(x, 0) = (c(/)T)' ' exp[--,'n(x —x())'] .
This function has the property

g'(x, 0)xP(x, 0)dx =x, .
QQ

(4.33)

(4.34)

where O. is defined in Eq. (3.5).
Consider, for instance, the Gaussian distribution

x=e" ~p/m,

p =-8 tll 40 Ox )
t/e2 2

X ——x+ exp[( 1/n
&

+ 1/c(2)t](dox =0,1 2

Q(

L =8 i gSZX —8 2pfPl400X

(5.3)

(5.4)

(5.5)

(5.6)

Also, since from Eqs. (2.3) and (2.6),

x(o) =p(o)/m,

this implies that

g~(x, 0)xg(x, 0)d x
~ OQ

g (x, o)—$(x, o)dx=o.e ", a

in' - ' ax

(4.35)

(4.36}

H =e "'p'/2m+e"-'m(d', x',
H, =e' 'p /2m +e ' '~m(t) x

H3 —e p /2m +e gm(dox

H4 ——e' 'P'/2m+e' '2md)ox .
Thus, in the notation of Eq. (2 ~ 1),

(5.V)

(5.8)

(5.9)

(F 10)

We consider the following particular Hamiltoni-
ans H& -I14 of the above type:

We evaluate (x}, for the Gaussian expression
given in Eq. (4.33). Utilizing either the Green s
function (4.26) or Eq. (3.12) for x., one obtains

et/v

f2=e' '=g2t/~ "1

fa=e ' '=@~-t/t

(F 11)

(5 ~ 12)

(5 ~ 13}
(x), =a(t)x, , (4.37)

f4 e' '=g4. -t/v
(5 ~ 14)

)i)(x, t) = (P/i )'/'(c(/v 8)'/'e "e ' ",
where

(4.38)

which is the same as the classical solution for x
with the initial conditions x =xo and x =0 ~

The wave function (i'(x, f) for the Gaussian (i'(x, 0)
defined in Eq. (4.33) is obtainable from Eq. (4.2)
using the expression (4.26} for the Green's func-
tion. The result is

x, =e "p,/m,
t/~ 2

P& ———e m(dox& )

-(+(1/~)x, + ', , =0;

x, =e p, /m,t/~

(5 ~ 15)

(5 ~ 16)

(5.1V)

(5 ~ 18)

Equation (5.3)-(5.5) yield the following equations
for the Hamiltonians II& -II4, respectively:

B=—'n +P g2 2

y =- (c(/2A )p'(x -axo)',

y =-, arctan(2pa/n) + p[d —(1/B)p2a]x2

(c( /2B)Pxox+ -(c( /4B)Pax', .

(4.39)

(4.40)

(4.41)

-t/w 2P 2
=-8 tlat(OOX2 )

x, -(1/~)x, +(uox2 ——0;
-t /~x, =e p, /m,

~ -t/~ 2
p3 =-e m~oxe,

(5~ 19)

(5.20)

(5.21)

(5.22)

V. EXPONENTIALLY TIME-DEPENDENT OSCILLATORS

xa+(1/&)x3+e '
'(doxm ——0;

x4 ——e"'p, /m,

(5.23)

(5.24)

For a Hamiltonian of the form (2 ~ 1) with

f(f) =e"', (5.1)

t/~ 2P 4
= 8 mal)px4 )

x4 -(1/v)x4+e" /'(uox4 =0.
(5.25)

(5.26)
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X, + (1/r)x, + 4d,'(t)x, =0,
'ds(t) =8 h&p~

-t /7'

x4 —(1/~)x4+ &u4(t)x4 ——0,
(d4(t) =8 (do .t /7.

(5.27)

(5.28)

(5.29)

(5.30)

Thus Eq. (5.23) corresponds to a system whose &d

is decaying with time and Eq. (5.26) to a system
whose ~ is growing with time.

The Hamiltonians H3 and H4 satisfy the condition
(2.23). Hence these Hamiltonians satisfy the equa-
tion of motion (2.24), which is the equation of mo-
tion for Hp with t replaced by G. The respective
expressions 6)3 and 64 for the Hamiltonians H3 and

H, are obtainable from Eqs. (2.21)-(2.22). Thus

83 ——7'(1 —e 'i')

84 = 7(e' i' —1) .
(5.31)

(5.32)

As noted in Sec. III, the corresponding quantum-
mechanical expressions are identical to Eqs.
(5.15)-(5.26) with x replaced by x, and p replaced
by P,.

For the Hamiltonian H&, the solution obtained is

x, =e ' '(0, cosset+0, sinu&t),

v =(+0 —1/4r )'t',
(5.33)

(5.34)

where 0& and 0& are operators to be determined.
The corresponding expression for p, is obtained
from the relationship

Equation (5.17) is the equation of motion for a
dissipative harmonic oscillator, and Eq. (5.20) is
the corresponding equation of motion for a runaway
harmonic oscillator, Equations (5.23) and (5.26)
can, respectively, be written as

The corresponding expressions for H~ are ob-
tained by the substitution 7--7 in the above ex-
pressions.

The solution to the Hamiltonian H3 may be ob-
tained from the above-mentioned property that the
equation of motion for x, is of the time-indepen-
dent harmonic-oscillator type in the coordinate
8(t). Thus

x = Og cosh' p8 + 02 sin+pe ~ (5.42)

where the expression for 8 is given in Eq. (5.31).
The operator P, is given by

dx+
P, =e m (5.43)

The t =0 conditions (5.36} and (5.37) imply

0) ——x,
Ol

=P/mcus

p . (5.45)

Hence

x, =x cos[dor(1 —e ' ~')]

+ (p/m(uo) sin[(sod(1 —8 ' ~')],

p, =p cos[~,~(1 -e "')]
- xm ~ 0 sin[~, r(1 -e ")].

(5.46)

(5.47)

The substitution 7--7 in the above expressions
yields the corresponding expressions for the
Hamiltonian H4.

Note that the expressions (5.40) and (5.41), (5.46)
and (5.47), and the corresponding expressions for
H, and H4 are of the general forms (3.12) and (3.13).
They satisfy the conditions (3.16), (3.17), and
(3.19). Thus for the Hamiltonian H„

t /7- dX+
.p =e m

d

At t=0,

dx+ P
dt m

(5.35)

(5.36)

(5.37}

a =e '~"[cos&dt+(1/2&r) sinwtI,

b =e ' '(1/m4d) sinat,

8 =-e' ~ "m[(u +

(1/4(uzi�)]

sinu)t,

d =e' '[cosa)t —(1/2(ur) sin(ot] .

For the Hamiltonian H3,

(5.48)

(5.49)

(5.50)

(5.51)

Thus

O, =x,
0, =(1/(d)[p/m + (1/2r)x];

(5.38)

(5.39)

Substituting Eqs. (5.38)-(5.39) into Eqs. (5.33)-
(5.35), one obtains

a = cos[4d, 7(1 —e '~')],

b =(1/m~, ) sin[&, r(1 -e ")],
8 =—m(dp Sln[(dor(1 —8 )] ~

d =cos[cuoT(1 —e ' ')] .

(5.52)

(5.53)

(5.54)

(5.55)

x, =e 't 'jx[cos&dt+(1/2cur) sinet]

+ (p/me@) sinvt),

p, =8'"'+[cosmist —(1/2cur) sin(ut]

—xm((d + 1/44d& ) sin(dt) .

(5.40)

(5.41)

The corresponding expressions for the Hamiltoni-
ans H2 and H4 are obtainable by the substitution
v'--7' in Eqs. (5.48)-(5.51) and (5.52)-(5.55), re-
spectively.

For the Hamiltonian H&, Eqs. (3.31) and (3.32)
yield, respectively,
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(xg„=e ' '([cosa&t+(1/2&or) sin&et] +(mo/&u ) sin &utgn+2)@/m&@0,
I

(PP„=e ' 'gcosst —(1/2&v)sinwt] +(u/~&0+1/4+0&uv ) sin &ut)(n+&)

(5.56)

(5.57)

The energy operator F., is defined by

(5.58)

(xg „=(n + —,')@/mu), ,

(2g„=e "'(n +')k(u /0m .
I

The energy operator E, is given by

F = 2tPLX + goal(d X ~
1 '2 i 2 2

From Eq. (5.28},
-t /7

COp ~

Substitution of Eqs. (5.60) and (5.61) yields

(E.)„=e "~'(n+ ~}h'(oo.

(5.60)

(5.61)

(5.62)

(5.63)

(5.64}

The substitution 7--7 in the above equations
yields the corresponding expressions for the
Hamiltonian H4.

Equations (5.57) and (5.61) imply that both the
Hamiltonians H& and HB yield (x2)„-0 for f -~.
Equation (5.56) implies that the Hamiltonian H,
yields (x,)„-0for f -~. Equation (5.60) for the

corresponding expression for the Hamiltonian H3
implies that (x,)„is time independent and equal to
its value at t =0. This is because the value of (d

is decaying with time in accordance with Eq.
(5.63). Equations (5.59) and (5.64) imply that for
both H& and H3, (R,)„-0for t-~.

For t =0, let the system have the wave function

$(x, 0) =Q a„(„(x), (5.65}

where („(x)are eigenfunctions of the Hamiltonian
Ho. The expressions for ((x, t) for the Hamiltoni-
ans H3 and H4 will be of the corresponding form
for Hp with t replaced by the respective 6. Spe-

cificallyy,

g(x, t) =Q a„g„(x}

exp[+i(n+-,')(so&(1 -e" '}], (5.66)

where the upper signs refer to H3 and the lower
signs refer to H4.

The respective Green's functions are obtainable

From Eqs. (5.56} and (5.57}, one obtains

(Eg„=e '~'[1+(1/2u 7 ) sin &ut](n+ 2)h&uo. (5.59)

The corresponding expressions for the Hamiltoni-
an H, are obtained by the substitution 7-- 7.

For the Hamiltonian H3, Eqs. (3.31}and (3.32)
yield, respectively,

l

by the substitution of the appropriate expressions
for a, 5, and d in Eq. (4.26). Similarly, one can
obtain the Gaussian expressions for (x), and g(x, f)
by substitution in Eqs. (4.37) and (4.38), respec-
tively.

VI. DISCUSSION

This paper has presented a method for obtaining
the expression values for all observables of a
time-dependent harmonic oscillator. Physically,
such oscillators can occur in at least two differ-
ent ways. In each case, the quantum-mechanical
system under consideration must contain smaller
subsystems. For example, a diatomic molecule
is a quantum-mechanical system with smaller sys-
tems within both the electron cloud and the nuclei.

The first class of time-dependent oscillators
occurs when oscillatory behavior of the subsys-
tem produces a periodic variation in either the ef-
fective mass or the effective spring constant of
the larger system. This will be examined in de-
tail in a future paper.

In the second class of problems, the subsystem
possesses a large number of degrees of freedom
with a quasicontinuous spectrum of energy eigen-
values. The subsystem acts to dissipate the ener-
gy of the large scale mode. One way of describing
this case is to use the time-dependent Hamiltonian
denoted by H, in Sec. V. This approach, originally
suggested by Kanai, ' corresponds to the classical
damped harmonic oscillator as described by Eq.
(5.17).

The above technique for treating dissipative sys-
tems has been questioned by Senitzky, ' who sug-
gested using a Hamiltonian describing the coupling
between a lossless oscillator and the loss mechan-
ism. %ith approximations, he obtained an equation
of motion that included both a damping term and a
fluctuating driving term. Senitzky claimed that
this driving term is needed to obtain both the cor-
rect commutation relation and the correct thermal
fluctuation level. %e disagree with the first point,
since, as explained in Sec. III, it is the commuta-
tion relation for the generalized position and mo-
mentum that must be, and, in our treatment, is
conserved. %e agree with the second point. The
correct classical equation of motion should have a,

Langevinlike fluctuating driving term. This term
may be neglected whenever the oscillator's energy
is much greater than the thermal fluctuation level.
%ithin this approximation, the energy of the oscil-
lator goes to zero [see Eq. (5.59)]. The treatment
by Kanai, and our treatment of H„corresponds
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to the classical limit with the fluctuating driving
term neglected. A better treatment, and one that
will be published in a future paper, is to add terms

to the Hamiltonian that will produce the classical
equation of motion with the fluctuating driving
term.
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