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Diffraction and angular momentum effects in semiclassical atomic scattering theory
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The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to
multichannel scattering as occurs'at a crossing or pseudocrossing of the transient molecule formed by the
colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the
emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not
narrower, as the collision energy increases: Ab57. & fiIE;„,/(2m)]'" relates the uncertainties in impact
parameter b and reduced scattering angle 7. = E;„,0, and determines the range in b required to resolve a
structure in the deflection function of height 57. In the kilovolt range of collision energies, the effects of
local maxima and minima in the deflection function are washed out, and the Airy-function approximation of
Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that.
at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the
semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed
which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation.
Several illustrative examples are considered, A separate development treats the effect on the differential
scattering cross section of a change in electronic angular momentum when electronic excitation occurs.

. I. INTRODUCTION

Atom-atom scattering in the low-kilovolt energy
range can generally be described in terms of
classical deflection under the influence of forces
produced by the adiabatic or diabatic interaction
potential, somewhat modified by quantum effects.
This work deals with two essentially independent
classes of effects caused by crossings of mole-
cular energy levels on atomic collisions in this
energy range. One topic is diffraction and inter-
ference effects in single- and multiple-channel
scattering. The other is the effect of changes in
the electronic angular momentum on the collision
trajectory, and hence on the differential scattering
cross section. These two independent topics are
incorporated in a single work primarily for eco-
nomy of presentation.

Where electronic excitation at level crossings
is a factor (thus giving rise to multichannel scat-
tering}, quantum-mechanicai effects due to inter-
ference (Stueckelberg oscillations' ') and diffrac-
tion (rainbow effects' and absorbing disk effects")
are observable superimposed on the classical
differential cross sections. By now, interference
effects in atomic collisions in the keV range are
well understood. On the other hand, diffraction
effects in such collisions are not even qualitatively
understood. Even the rainbow maximum in the
differential scattering cross section, so elegantly
treated in Ford and Wheeler, ' must be reexamined
for atomic collisions in the keV energy range. The
K' on A example of rainbow scattering considered
by Ford and Wheeler' was for collision energy 0.1

eV. Surprisingly, diffraction effects in atomic
collisions become broader, rather than narrower,
as the collision energy increases, and the Airy-
function approximation by Ford and Wheeler be-
comes inapplicable for collisions in the keV range.
This can be seen from the Heisenberg uncer-
tainty relation ~1~8 ~ I, where l is the relative
angular momentum of trajectory motion, 8 the
deflection angle in the center-of-mass frame, and
&l and &8 the respective uncertainties. For scat-
tering experiments, the relative momentum p is
precisely known so that the uncertainty in angular
momentum is due solely to the uncertainty in the
impact parameter b: &l =p&b. Moreover, for
small-angle scattering, the quantity that varies as
~unction of impact parameter only is not 8 it-
self, but &=EH, where E=p'/2m is the collision
energy, which is also known precisely. Thus, in
the case of small-angle atomic scattering, the
uncertainty relation yields

pub(ar/E) o h,
or, finally,

Ebs.~ o S [E/(2m) ]'"
Thus, in order to resolve a given structure in the
deflection function of size 4r (such as a local
minimum}, it must not be confined to a range of
impact parameter smaller than S' [E/(2m)]'~'/Ar.
Clearly, the higher the collision energy, the larger
the range of impact parameter needed to resolve
that structure. For clasgic Ford and Wheeler
rainbow scattering in a collision at 1 keV, the
range of b in which the deflection function must
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be essentially quadratic is 100 times larger than
for a collision at 0.1 eV. The actual situation is
quite the reverse; the relevant minima in atomic
collisions at keV energies are due to level cross-
ings and are of the order of a few tenths of an
atomic unit in extent, while the minimum in the
K'-A collision considered by Ford and Wheeler
was a Van der Waals minimum, which extends
for several atomic units. The use of the Airy
function, as described by Ford and Wheeler, for
atomic collisions in the keV range is not only sus-
pect; it will be shown to be invalid.

A second, independent topic studied in this work
is the effect that angular momentum excitation of
the electronic state may have on the deflection
angle. When electronic excitation occurs, it is
possible that the internal angular momentum may
change in the excitation process. This, of course,
must be reflected in an equal and opposite change
in the angular momentum of translational motion
and, therefore, on the collision trajectory.

Clearly, the most lucid treatment of these quan-
tum effects superimposed on classical scattering
theory can be achieved with a quantum-mechanical
formulation in which the classical limit of the
quantum description is simply and intuitively
accessible at each step along the way. Such a
description is the semiclassical approximation
applied to the Rayleigh-Faxen-Holtzmark partial-
wave analysis. First elucidated by Mott and
Massey, ' this approach was expanded and illu-
minated with several important examples by
Ford and Wheeler. In particular, they discussed
rainbow scattering, the glory effect, and inter-
ference effects. Their formulation was limited,
however, to single-channel elastic scattering.
In a series of papers, Coffey et al. ,

' Smith et al. ,
'

and Olsen and Smith' studied in detail interference
effects in multichannel scattering produced by
level crossings in atomic collisions, using the
He'-Ne and He'=Ar systems as examples. Their
formulation, based on action integrals rather than
a partial-wave analysis, was limited; it could not
encompass rainbow scattering and could handle
diff raction effects (Smith et al. ' and Baudon et al. ')
only in a qualitative fashion in terms of diffraction
by an absorbing disk. Marchi' and Kotova" de-
veloped the semiclassical limit of the partial-wave
analysis to include multichannel effects due to
level crossings. Marchi's treatment was limited
to elastic channels exclusively; Kotova formu-
lated the theory for both elastic and excited chan-
nels in the two-states approximation. Ovchinni-
kova" and Kotova and Ovchinnikova" applied Ko-
tova's formulation to the threshold behavior of the
Stueckelberg interference oscillations, which is
a diffraction effect. More recently, Delos and

Thorson" and Delos" developed a semiclassical
partial-wave analysis for the two-state system
with a level crossing. Although these works did
not use the simplifications developed by Mott and
Massey' and Ford and Wheeler, ' diffraction effects
were included. With this formulation, Delos" and
Saxon and Olson" described rainbow effects in
model curve crossing system's resembling the
He "+Ne and He'+ Ne systems, respectively. In
addition, Saxon and Olson incorporated the Airy
function of Ford and Wheeler, which would be valid
at low collision energies, but not in the kilovolt
collision-energy regime.

One of the two principal objectives of the present
work is the full generalization of the Ford and
Wheeler treatment of the partial-wave analysis in
the semiclassical approximation to encompass all
multichannel effects which occur at level cross-
ings. There will be nothing new insofar as inter-
ference effects are concerned; the main advance
will be the systematic inclusion of diffraction ef-
fects. This development is presented in See. III.
For heuristic purposes, a thumbnail summary of
the single-channel theory will first be presented
in Sec. II, following the notation of Ford and
Wheeler' insofar as is possible. For convenience,
final results will also be expressed in terms of the
reduced variables p=&sin8dc/dv and &=EH, which
have now become standard. Section II also includes
an extension of the single-channel theory of Ford
and Wheeler to accommodate maxima and minima
in the deflection function as they occam in atomic
colBsion systems. These are really pseudorain-
bow effects, and the Airy-function approximation
of Ford and Wheeler is inappropriate to describe
the coQision. For completeness, the true rainbow
effect is also discussed as a special case of the
general theory.

Section III A presents the multichannel generali-
zation of the semiclassical scattering theory from
an intuitive approach, deferring the rigorous de-
rivation to Sec. III B. Although such a presentation
may be backward from a logical point of view, it
is preferable from a heuristic point of view. In-
deed, once one comes to grips with the reality that
the Rayleigh-Faxen-Holtsmark theory must be
generalized in order to cover multichannel pro-
cesses, there is hardly any other generalization
which can be imagined. In point of fact, the re-
sults of Sec. III A were actually written down
first, and the formal derivation achieved later,
with Sec. III A as a guide. The formal derivation
is based on Stueckelberg's partial-wave analysis
of collisional excitation of a two-level system in
the semiclassical limit, "a summary of which can
be found in Mott and Massey. " A more up-to-date
treatment is given by Delos. '4 A brief review of
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Stueckelberg's formulation is presented in Secs.
IIIB 1-IIIB 3. Following, that, Sec. III B 4 de-
scribes the further approximation, beyond the
semiclassical approximation, required to obtain
the standard two-level theory of Landau" and
Zener. " These latter approximations are much
less reliable than the approximations inherent in
the semiclassical approximation by itself."
Stueckelberg's attempt at deriving a connection
formula for the more rigorous treatment was in-
correct"; hence the semiclassical treatment of
Sec. III B is presented in terms of the components
of a connection matrix T which is best obtained
from a numerical solution of the coupled equations
across the transition region.

Finally, Sec. IV treats the effects of changes in
the angular momentum of the electronic degrees
of freedom on the differential scattering cross
section. These effects, although not yet observed,
may possibly be seen in coinc'evidence experiments
as differences between the differential scattering
cross sections of atoms which emit left-handed cir-
cularly polarized photons and those which emit
right-handed photons in a direction perpendicular
to the plane of scattering.

II. SINGLEXHANNEL THEORY
t

A. Brief review of the semiclassical approximation

i=ah. (8)

Even for hydrogen on hydrogen at 1 keV incident
energy, l is of the order of hundreds of atomic
units. Therefore, the sum in (2) can be replaced
by an integral and the Legendre polynomial can be
replaced by the asymptotic expression

P,(cos8) = [-,' (I+-,') wsin8] '~'

x sin[(l+-,')8+ -', w],

valid for angles such that sin8 & 1//. Expressing
the sine in Eq. (7) in terms of complex exponen-
tials, substituting into the expression (2) for f(8),
and making use of the relation' that Z (2l+ 1)P,(cos8)
=0 if 8w 0 [2l+1 is exactly the coefficient of the
Legendre-polynomial expansion of 25(cos8 —I)], (2)
becomes

cal deflection function e(I) is given by

e(I) = 2 —q(I) .d
dl

The deflection function e(l) gives the scattering
angle 9 obtained in a classical Newtonian orbital
calculation when the incident center-of-mass en-
ergy is k'/2m and the orbital angular momentum
is l. In terms of the impact parameter b, which
is usually used in classical collision calculations,

For scattering by a single central potential V(R),
the differential scattering cross section is given
by the square of the scattering amplitude:

f(8) = -(2mk'sin8)-"'

x (I+ -', )'~' [exp(i(p) —,exp(iy )]dl,
0

(8)

where

f(8) = (2ki)"' Q (2l+ 1)(e""'"-1)
g=0

x P, (cos8) . (2)

In atomic units, k is the asymptotic relative mo-
mentum mv(~), with m the reduced mass, 8 the
scattering angle in the center-of-mass frame,
and q(l) the phase shift for the lth partial wave. In

the JWKB (i.e. , semiclassical) approximation,

rI(l)= —,
' w+ —', lw-kRo+ ) [K(R) —k]dR, (3)

~z,

where K(R) is the radial component of the relative
momentum at radius R and k is the value of K at
infinity:

K(R) = [2m(E- V) —(I+-,')'/R']'",
k=@( ) =(2m@)"',

(4a)

(4b)

and RO is the classical turning point. An important
property of the JWKB phase shift is that the classi-

where

y, = 2q a (I+ —,')8 a —,
'

m.

The completion of the semiclassical approximation
relies on the method of stationary phases; the only
significant contribution to integral (8) comes from
a small range of l for which either dy, /dl =0 or
dy /dl = 0. The other phase, which does not ex-
hibit a stationary point, makes a negligible con-
tribution to the integral and can be ignored. An
immediate consequence of this fact, taken together
with Eq. (5), is that the only significant contribu-
tion to f(8) (and, therefore, to the differential
cross section) at a given angle 8 arises from a
small range of l {or b) about the value determined
by the classical deflection function. Hence the
classical limit of the fully quantum-mechanical
formulations Eqs. (1) and (2) is established. How-
ever, since a finite range of impact parameter,
albeit small, does contribute to scattering at a
given angle 8, diffraction effects will be observable
under appropriate conditions.
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B. Generalization of the stationary-phase method

Up to this point, the presentation has been just
a review of Refs. 5 and 9. The point of departure
is the evaluation of integral (8) to determine the
value of the scattering amplitude. The previous
treatments expanded whichever phase, p, or p,
had the stationary value in a power series about
the stationary point. Retaining up to and including
quadratic terms for an ordinary point yields the
classical scattering cross section formula. When
the quadratic term vanishes, the quantun rainbow
maximum of Ford and Wheeler is obtained by re-
taining the cubic term. The classical cross sec-
tion formula will be valid if the deflection function
is essentially linear over the entire range of im-
pact parameters which contribute; the Ford and
Wheeler result will be valid if the deflection func-
tion is essentially quadratic over the entire range
of impact parameters which contribute.

It can be seen from Fig. 1, however, that these
criteria are not fulfilled, even in modest energy
atomic collisions, when level crossings are in-

volved. The particular case illustrated is the
(Na-Ne)' collision system at 2-keV incident energy
in the labo ra'tory frame (34.2 a.u. in the center-of-
mass frame). To make visualization easier, the
abscissa is given in units of impact parameter
rather than /. Furthermore, for purpose of illu-
stration, it has been assumed that the adiabatic
energy curve is followed with unit probability.
This would give rise to fully elastic scattering
for which the single-channel theory is adequate.
Figure 1 first of all shows the classical deflec-
tion function &=E„,8 in keVdeg, plotted as a func-
tion of impact parameter. The range of b which
contributes to the scattering at 7' = 8.75 keVdeg
(8 = 9.4 in the center-of-mass frame) lies between
b, and b, as shown, allowing for oscillations in the
integral. This is the range of b for which the phase

differs from the maximum value by less than
Note that there are two maxima and one mini-

mum in this overlapping case. The quantity
I(b )' is equal to (2nlk) sin8[do/d~], , where 8 is
9.4', k is the relative momentum, and where the
brackets with subscript b indicate that this is the

—.l4

$7l
Ol

I

0
—.l2

I8

—.IO

l4

IO
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b
m /,

—.04

—.02

I.2 l.4 1.8
IMPACT PARAMETER b ( O. u, )

IRI S RAD I U S b~ (a.u. )

I

2.0

FIG. 1. Classical deflection function T, the phase y, and the partial cross section for the adiabatic elastic channel in
Na'-Ne collisions at 2-keV incident energy. All three quantities are plotted as functions of the impact parameter. The
phase and partial cross section shown here are for 7'= 8.75 keV deg, corresponding to a scattering angle of 9.4' in the .

laboratory; I (bg' gives the value of (Zm/k) sin8 (do/da) which would be obtained if an absorbing iris were placed in the
plane of the target to intercept~ incident projectiles with impact parameters greater than & . Here, b2 and b& define
the range of b within which the phase difference between any two points is less than 4 &, while b„gives the impact pa-
rameter for which the minimum internuclear separation is just equal to the crossing radius.
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differential cross section that mould be obtained
if an absorbing iris with opening of radius b mere
placed in the plane of the target. Thus, as b in-
creases (the iris opened), I(b )' shows where the
main contribution to the differential cross section
comes from. In this figure, b„ is not the level
crossing radius itself, but the impact parameter
required, at this incident energy, .for the classical
minimum internuclear separation to be exactly
equal to the crossing radius.

Clearly, in such cases the evaluation of integral
(8) must not rely on the properties of (L) at the
stationary point'l, only; p is not an analytic func-
tion and cannot be described in terms of p and its
derivitives evaluated at lp. Instead, the following
approximate theorem is here proposed:

the phases are unknown. Writing

w(()- ((.)=f —; «,
lp

it follows from (9) that

()(() —y((,) = 2 —+ 8) «.dn

lp

However, from (5): 2(de/dl) = 6(l). Moreover,
8 =+ 6(lo); in fact, this equation determines l, for
given 8. The upper sign should be used for attrac-
tive potentials; the lower for repulsive. This
phase difference can therefore be mritten entirely
in terms of the deflection function. For either at-
tractive or repulsive scattering,

(L)(L) - (L)(L ) = [6(l) —6(l )]dl .
e'""~dl —l —l

J 2
0

or, more generally,
OO l2

f(l)e'"'"dl = f(l) dl,
0 lg

(10)
The classical limit is easily obtained when the

deflection function varies linearly with l. Thus,
Lf

6(l) —6(l,) = (l l,)e'(l,),

where l, and l, are the extreme values on either
side of the stationary-phase point within which the
phase does not vary by more than —4n.

I~(L) - «L') I&-'.

for all l, l' such that l, ~ l &l'= l, .
It must be stressed that this is not a rigorous and
exact theorem and, as such, cannot be proven. It
was inferred from many cases and is a good ap-
proximation in the particular case illustrated in
Fig. 1. The ratio of the approximate cross section
obtained from (11) to the exact cross section ob-
tained by full numerical integration of (8) is 1.08.
This result is typical; the illustration was selected
because it clearly shows the invalidity of a power-
series expansion at the stationary-phase point.
The theorem reduces exactly to the stationary-
phase result in those cases for which l, is well
within a regular region, so that y can be well ap-
proximated by a quadratic function: (L)(L) = (L)(L,)
+ a(l —l,)'. It should be pointed out that the essen-
tial concept of this theorem was well understood
by Ford and Wheeler. However, in their work they
did not quantify the concept, as is done in Eqs.
(1o)-(12).

Although the semiclassical phase (3) can be used
in calculating y, the differential cross section in
the classical region can be expressed entirely in
terms of the classical deflection function. This
makes it easier to visualize hom diffraction effects
are superimposed on the classical scattering pro-
cess. Moreover, in many cases the deflection
function is inferred directly from experiment, and

where 6'(l, ) denotes the derivative of the deflec-
tion function evaluated at l„ then from (14),

V (L) —V (Lo) = 2 6 '(Lo)(L —lo)' .
Finding the two values of l for mhich the phase
difference is —,'m is an easy matter:

l, —l, =l, —l, = [))/26'(l, )]'t',
or

l, = [2v/6 (L,)]'t'.
Finally, using (17) in (9)

x [2v/6'(L )]"'f'
= (l, + —,')/h' sine e'(l, ) .

Neglecting the —,
' relative to l„setting 6= 8 and

l, = hb, so that d8/dl = (1/h)(d8/db), the classical
expression for the cross section is obtained:

do b

de sin8 (d8/db)
' (19)

do' b7

d&u dr/db
(19')

It must be st~essed that the classical cmss sec-
tion (19) or (19') is valid only u)hen the classical
deflection function varies very nearly Linearly
with l (or b) over the full contributing range. The
deflection shown in Fig. 1 is far from linear and

In terms of the reduced variables t) and r, (19) can
be rewritten
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the classical cross section (19) completely in-
valid.

Finally, with the help of (16) it can be shown that
the theorem, Eqs. (10) and (12), essentially con-
tains the physical content of the uncertainty rela-
tions. Setting the phase difference in (16) to —,1/

(or h1///4 in arbitrary units) and recognizing that Ai(x) = (21/)-' exp[i(xy+ ,' y') j dy—.

for the differential cross section

h2
= —,(l„+-,') . q '/'Ai'(x),

d~ p' " szn8

where

(26)

(26)

(l —l,)e'= e(l) e(l,) = a8,
(l l,) =~1,

Equation (16) can be rewritten

(20)

again providing that 8' is for all practical purposes
constant over an interval &l on either side of l,.

In terms of the scaled variables,

p (l) —q1 (l„)= xy+ -', y' . (2'7)

Equation (12) states that the range of y must be
—,'1/. In this case q1 is monotonic; thus qr(l, ) is 81/

above q1(l„) and 91(l,) is 8 w below, making the total
range 4p.

C. Quadratic minimum in the deflection function
X/2+ 3 $2=+ S ~ P

1 3 (28a}

Ford and Wheeler treat the special case of a de-
flection function which is exactly quadratic over
the entire contributing range of l. Despite the evi-
dence just presented that this condition does not
apply in most atomic collisions at keV energies,
it is nevertheless instructive to apply theorem
(10)-(12}to this special case. It is important to
determine the applicability of the theorem to
classically forbidden deflection angles, as occurs
when there is an absolute minimum in the deflec-
tion function (a lowest value of scattering angle for
any impact parameter). Such a case arises in
multichannel scattering, although the deflection
function cannot be characterized as quadratic over
a sufficient range of l.

I et l„, q„, and e„denote the values of the re-
spective quantities at the rainbow minimum. To
produce a quadratic deflection function, the phase
shift must be of the form

3=Xgg+ 3 P ~
= -s 7t'» (28b)

From Figs. 1 and 2 it is seen that there is a fun-
damental difference between the behavior of p in
true rainbow scattering and in the quasirainbow
scattering of Sec. II B.

Figure 3 shows a plot of the exact values of the
Airy integral from Miller" (also tabulated in Ford
and Wheeler') compared with the approximate
values obtained from Eqs. (10) and (12). The ap-
proximation is seen to be good up to about x=1.5.
For x&2, the approximation breaks down com-
pletely, even having the wrong asymptotic be-
havior for large values of x. The theorem ap-
pears reliable to within an amount 0.03 of the true
value; where the Airy integral has values that
small, the theorem is invalid. For g ~ -0.7, both
the theorem and expression (25) become somewhat
ambiguous as the cross section evolves into two
separate branches.

e(l) = . = 8„+q(l —l„)',

y (l) =2@„-8„(l,+-', )+(l+-,')(8„-8)

+ -,' q(l —l,)' ——,
'

1/.

Thus, q, 8„, and l„are seen to be parameters
which specify the deflection function. Ford and
Wheeler define the scaled variables

x=q '/'(8„- 8),

q 1/3(1 l )

(24a)

(24b)

In terms of these scaled variables, they obtain

when q and 8„are positive, as is the case for
repulsive scattering. It follows from (5) and (9),
which determine e and p, respectively, that

III. MULTICHANNEL THEORY

In this section the semiquantal theory of scatter-
ing is generalized to cover multichannel scatter-
ing. To keep this notation as simple as possible,
only the two-channel case with positive scattering
angle (i.e., repulsive scattering) is considered.
The initial molecular state (before the collision}
is always taken to be the ground molecular state

After the collision, the molecular state will
be a linear combination of P, and the excited state

This gives rise to four possible scattering
channels, which are illustrated in Fig. 4. The two
channels which lead to Q, after the collision are
called the elastic channels and are designated by I
and II. The remaining two channels, which lead
to P, after the collision, are called the excitation
channels and are designated by III and IV. Be-
cause the overall scattering is repulsive, only the
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FIG. 2. Deflection func-
tion and quantum phases.
The drawing on the left de-
picts a quadratic deflection
function in terms of the
dimensionless variables
x and y of Ford and Wheel-
er. Four hor izontal lines
indicate scattering angles
labeled, a, j5, c, and d. To
the right, the quantum
phases y —p„are plotted
in radians for each of
these scattering angles.
The + Sz limits defining
the range of 4z are indica-
ted. The intersections of
each curve p —p„with
these limits define the lim-
iting values l& and E2 for
the theorem Eq. (11). It
can be seen that for case
a, the scattering angle is
sufficiently far from the
rainbow angle that the
cross section decomposes
into two separate terms.

phase y„need be considered. This is true even
if there is a small attractive region in one or more
of the scattering channels. For notational simpli-
city, the minus sign will be suppressed, and the
phase simply denoted by y. In Sec. III A the multi-
channel theory will be developed in a heuristic,
intuitive approach. The rigorous justification will
follow in Sec. III B.

0.6—

0.5—

0.4—

A. Heuristic approach

The salient equations of the single-channel case
are Eqs. (8) and (9), along with (3) and (5). From
(3), (4a}, and (5}, note that q and, therefore, e
are dependent upon the potential. As a conse-
quence, each of these quantities is channel de-
pendent; the distinction between the four channels
is precisely the potential curves followed on the
trajectory. Moreover, for each of channels III
and IV, the potential curve followed during the
outgoing portion of the trajectory is different from
that followed on the incoming portion. Indeed, the
factor 2 which multiplies q in (9) takes into account
a contribution from both incoming and outgoing
portions of the trajectory, which are identical in
the single-channel case. Thus Eq. (9) must be
replaced by

y„—f„+(l+ —,') 8 —4w, (29)

0.2—

O.l—

0
-I

I

0

where N denotes the channel and g~ is the channel.
phase dev elopment:

R~

f~ =(l+2)m —2koR„+2 KodR
R0

FIG. 3. Airy integral and the approximation from Eq.
(10). The exact values of the Airy integral, Eq. (26),

. taken from Millers' are compared here with the values
which follow from the approximate theorem, Eqs. (10)
and (12). The abscissa is the scaled scattering angle
variable x defined by Ford and Wheeler, Eq. (24a).

+2 K0 —k0 dR,
R~

R

giz = (I+ 2) w —2ko R„+2 K, dR
Rg

+2 K0 —k0 dR,
R»

(30a)

(3Ob)
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COLLISION CHANNELS

V

I

Rp
I

Rx

R

Vl

= Vp

V

I

Rl

I

Rx

VI

= Vp

FIG. 4. Four collision
channels considered in
this work. Channels I and
II describe elastic scat-
tering, while III and IV de-
scribe inelastic scatter ing.

V
Vl

Vp

V
Yl

Vp

I

Rp

I

Rx

I

Rl

I

Rx

R

g„,=(I+ ,')~ (k, +k-, )R-„+2
R~

Ko dR

+ Eo —k'0 + Ei —kx dR
Rx

R»

giv = (I + —,') )) —(k, + k, )R„+2 Ã, dR
Ry

(30c)

(30d)+ K —k +K —0 dR
R~

In Eqs. (30) the potentials used to calculate the
radial components of momentum Ko and K, are
V,(R) and V, (R); these are the potentials which
follow from (t, and P„respectively. Because

these two potentials are different, the minimum
internuclear separations are also different and
are denoted by R, and R,. The limits of integra-
tion in Eqs. (30}are easily established from the
channel diagrams shown in Fig. 4. As with the
single-channel theory, it is easily verified that

d~N
ON dl . (31)

The factor of 2 is not needed here; it is already
built into the f„.

With two possible final states, there are two
independent scattering amplitudes, f, and f~,
each of which is a sum of contributions from two
channels:

fo = (2vk,'sine) '~' (&+—')'~' [&~ exp(f y, )+&» exp(~y&&)] d~
0

f, =(2spde, s(ep) '~' f (le —,')'~'(A„, exp((P„,)+A, exp(1P; )]d( .
0

(32a)

(32b)

Each of the complex exponentials in Eqs. (32} is
multiplied by its own channel scattering amplitude
A~ such that

(33)

Thus, ~A„~ gives the probability that the collision
evolved along the Nth channeL Equations (29)-
(33) reduce to the single-channel adiabatic elastic
scattering results if all A„vanish except for A,
(the molecular state remains in (t)0 throughout the

collision); they reduce to the single-channel dia-
batic elastic results if all A„vanish except for A«
(the molecular state crosses over to ())), at the
pseudocrossing and then returns to Q, on the out-
ward passage through the pseudocrossing region}.
There is hardly any other sensible generalization
of single-channel theory that could be imagined.
All that is needed to complete the scattering cal-
culation are the channel amplitudes A„. These
remain constant, except in the pseudocrossing
region, where they can be obtained from Landau-
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V, (I)-e (I.)= I.e (I)-e (I,)]«. (14')

Zener theory.
As in single-channel theory, the phases for each

channel can be obtained directly from the corre-
sponding channel deflection function using Eq.
(14):

Ol IO—
I

4P

CLASSICAL
DEFLECTION

FUNCTION

This permits diffraction effects to be treated even
when the deflection functions are inferred from
experiment.

Figure 5 illustrates the diffraction effects asso-
ciated with a threshold for excitation due to a level
crossing in the (Na-Ne)' system at 2 keV. A shal-
low minimum in the deflection function occurs very
close to the threshold. At smaller impact parame-
ters, the deflection function exhibits nearly linear
behavior, as the screened Coulomb repulsion over-
whelms the weak attaction of the attractive molecu-
lar energy level (see channel III of Fig. 4). These
characteristics are typical. (It should be noted
that the particular electronic levels which give
rise to this deflection function were at one time
considered, but later abandoned in favor of poten-
tials with smaller slopes which yield a deflection
function with an even shallower minimum located
closer to the threshold. The earlier potential set
was chosen for presentation because it illustrates
the diffraction effects more clearly. )

Figure 5(a) depicts the classical deflection func-
tion. The horizontal bars indicate the range of b

about the minimum slope point within which the
phage difference between any two points does not
exceed —,'m. The dashed horizontal extensions indi-
cate the additional range of b which would have
contributed were there not a cutoff at the thres-
hold 5=1.4 a.u. Figure 5(b) shows the reduced
differential cross section, p vs 7, which follows
from this deflection function. The solid curve
gives the exact differential cross section which
follows from channel III, using Eq. (32a). The
dashed curve gives the approximate cross section
using the theorem of Eqs. (11) and (12). The
limiting values of 5 are those shown in Fig. 5(a).

The theorem does not give the diffraction oscil-
lations produced by the sharp cutoff, but follows
the average behavior. The diffraction oscillations
will reduce toward this average value if the onset
for excitation is spread over a finite range of b.
Finally, the dot-dash curve gives the Ford and
Wheeler result. The peak is much. too high. It
occurs at 10 keVdeg and arises from the construc-
tive interference of two branches of a parabola,
one of which (see Fig. 5a) is not present in this
case. In the classically forbidden region (& & 9.3),
both the theorem of this work and the Ford-Wheeler
result are in reasonable agreement with each other,

I

I.2
I

I.3
b (O.u. )

I

I.4

60—

CV

40—

— Exact--- Present( Eqs. II, Ip )
F«d —+ heeler

20—

0
5 8

T( keV —deg )

FIG. 5. Classical deflection and differential cross
section for inelastic scattering. The upper drawing
shows the classical deflection function for channel III
for one of the inelastic processes in Na'-Ne collisions
at 2 keV. The solid horizontal bars show the range in
impact parameter which contributes to the differential
cross section at each angle. The lower drawing shows
the differential cross section corresponding to this de-
flection function plotted in terms of the reduced vari-
ables p and 7'. The solid curve is the exact value from
Eq. (32b). The dashed curve gives the approximate
cross section using the approximate theorem, Eqs. (11)
and (12). The limiting values of b are those shown by
the vertical bars above. The dot-dash curve gives the
Ford and Wheeler approximation in terms of the Airy
integral.

B. Rigorous formulation

In the two-state approximation the wave function
+ for the entire collision system is a sum of two

as was established in Sec. II C. They arebothcon-
siderably below the exact value for a rather subtle
reason. The small values which follow from the
Ford and Wheeler approximation arise from a
near cancellation in the complex integral from the
contributions below and above the rainbow value.
When one of these contributions is removed, the
value of the integral therefore goes up rather than
down.
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terms, one for each molecular state:

(34)

~ OO

f.= —g (1 —.')[1".(1)]P,(l )
&p )=p

Following Stueckelbe'rg's partial- wave analysis,
that part of P, or g, which describes relative nu-

clear motion is expanded in terms of Legendre
polynomials":

P,(~)e„(-',R) .
)=0

Here, &t&„describes the adiabatic electronic state
and the subscript n stands for 0 or 1; 0„ is the
relative momentum (in atomic units) at infinite
internuclear separation when the electronic state
is P„with energy 8„. The variables R (R, p= cosa}
are the relative internuclear coordinates in the
center-of-mass frame, while all electronic coor-
dinates are collectively designated by f. The
partial-wave index l denoting the relative angular
momentum, is expressed as a parameter in E„.
This will prove convenient when the sum over par-
tial waves is replaced by an integral.

l. Asymptotic conditions

For large values of R, go and &&&, asymp«tic»ly
approach ~ ~ the following:

[ ikoz+ f (e)(eikoB/R)] y

iI, -f,(e)(e'~s/R) y, .
(36a)

(36b)

lim Eo- l~ '(l + —,')i[ao(l)e' 0"+ (—1)'e 'kos],
R~~

lim E, - li, '(l +-,')ia, (l) e "ks,
R~co

(37a)

(3Vb)

with ao(l) and a, (l} to be determined from the so-
lutions to the Schrodinger equation. Substituting
these asymptotic forms for E„ into (35), sub-
stituting these in turn into Eqs. (36) [along with
the expansion for the plane wave in (36a)], and
equating respective coefficients of e'+R and e '&R

yields for the scattering amplitudes:

The incident beam is taken to be in the electronic
ground state. Thus, for the incident-plane-wave
part, the electronic state is exclusively P,. The
scattered wave can be in either electronic state,
requiring two independent scattering amplitudes
to describe the collision. These do not interfere,
since the two electronic states are distinguishable.
With boundary conditions (36), &1&o has both incom-
ing and outgoing radial waves, whereas &l&, has
only outgoing. The asymptotic forms for E„(R,l)
are

Q (l+ —,')ao(l)P, (p),
l=p

(38a)

~ ao

fl = —P (~+ 2)&k(1)P/(&ti) ~

ky ~ p

The term Z(1+ 2)P,(li) is equal to zero for all
values of p, except at p, =1 and has therefore been
dropped from the final expression in (38a). The
scattering amplitudes are undefined at li = 1 (zero
scattering angle), so that the sum which has been
dropped rigorously does not contribute to fo
wherever it is defined.

(38b)

(a E)e= 0. (41)

Substituting the partial-wave expansion (35) for 4
into (41), multiplying by the electronic state p„,
and integrating over electronic coordinates only
yields

2. Radial functions

Let
R= -(3m}-'V'+ V(R)+X,

where m is the reduced mass of the collision
system, K the electronic Hamiltonian, and 'U(R)
the core-core potential, including the nuclear
Coulomb repulsion plus the adiabatic potential
contribution due to those electrons which are not
excited in the collision.

Adiabatic states are employed in (35) to describe
the electronic motion of the active electrons. They
satisfy the eigenvalue relationship

X y„(f-, R) = S„(R)y„(r;H) . (40)

If necessary, diabatic states can be employed by
introducing a unitary transformation C(R) within
the two-dimensional space spanned by P, and
This has been fully discussed by Smith" and will
not be repeated here. In this connection, it may
be noted that Delos'4 found to his surprise that the
adiabatic representation yielded more smoothly
varying results than did the diabatic representa-
tion at 10-eV incident energy. However, since
the behavior is energy dependent, it should not be
assumed that the adiabatic representation will also
be superior in the keV range. In any event, the
adiabatic states are used exclusively in the present
work because they are unambiguously defined and
sir@pier to work with.

The scattering event is described by the Schro-
dinger equation for the entire collision system,

g ~[-(2m) 'v'„+(v+h„—&)]E„(R ~)P&(v)-g ~ ' 0 I sR I& „dR+ R2 (&
r n r

+ —,'(i „~v„*
&i „&„-z„{a,&&I',(q&}

= o. (42)
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The matrix element (ll); denotes an inner product
over electronic coordinates only. In (42), the
gradient-gradient coupling term has been rewrit-
ten using the theorem

which are real,

M„„+M„„=—, (y„~y„)-,=o. (50)

vU vV= + —,(LV) ~ (LV),8R BR R (43)

(44)

The rotational-coupling term is not considered
here because it is inconsisent with an expansion
solely in terms of Legendre polynomials. A full
expansion in terms of all spherical harmonics
would be required if the rotational-coupling term
were retained. In physical terms, a 0 - m transi-
tion produces an azimuthal thrust, perpendicular
to the plane of motion. This aspect will be dis-
cussed further in Sec. IV.

The adiabatic potentials V„(R) used in Eqs. (30)
are the sum of the core-core potential plus the en-
ergy S„of the active electrons in state {t{„:

V„(R)= ~(R)+ S„(R). (45)

In this section the radial component of the relative
momentum at internuclear separation R is denoted
by K„and is a function of E as well as R.

K„(R,t) =(2~[E V„(R)] t(t+ I)/R'] " ', (48)

where L is the angular momentum operator which
acts on the relative internuclear coordinates R.
Equation (42} becomes, after (i) neglecting the
term (&f&, ~'{d'z g„);, (ii) restricting consideration
to the radial coupling term only, and (iii) multiply-
ing (42) by P~({{{)and integrating over p,

,+, +{'u+5„—R)) R„{R,5}
2

~ ~

R2 2 R2 v
~

~ ~ t
~(~+ I)

2m dR 2mR2

Equation (50) is also valid if the &t&„are complex,
provided that the complex parts are independent
of R [e.g. , exp(iA{t{)]. With this generalization,
Eq. (50) is valid for all useful states. From (50)
it follows that

Mpp =M~~ = 0,
Mp~ = -M~p.

(5la)

3. Semiclussicul upproximution

The semiclassical approximation, otherwise
called the JWKB approximation, is obtained by
expressing the radial functions F„ for each elec-
tronic state and partial wave as a sum of an in-
ward and outward propagating wave with hopefully
slowly varying amplitudes:

R„~)F„=K„-'"c„exp -i-i(2 t

Rn

R
+ d„exp +i E„dR

Rn J
(52)

It is understood that E„, K„, c„, and d„are all
functions of R and /. By carrying out the differen-
tiations, it can be verified that

Equations (48) differ from those of Marchi4 and
Olson arid Smith' in that derivative coupling terms
(i.e. , involving dF„/dR) are obtained here, where-
as Refs. 3 and 4 consider only nonderivative coup-
ling terms. It will be seen that derivative coupling
terms lead to Landau-Zener (LZ) equations with a
different velocity dependence than is ordinarily
assumed. The .LZ transitions obtained here are in-
dependent of the relative velocity.

with

a.=K„(R= ). (4 t)

d
cn xp

In the two-state approximation, Eqs. (44) can be
rewritten

= {c„'—iR„c„)exp .(-i X„dx) (53a)

d'
2„,+K', F,(R, t) 2tlf„' =0,(

de

d
R +K, Fi(R, I) —2MiR =0,dE

(48a}

(48b)

where M denotes the coupling matrix element

(49)

The diagonal matrix elements Mpp and M» are both
equal to zero. Because ({l{&„l{t{„);=5„„, independent
of R, it is seen that for electronic functions. {t{„

, +K„" c„exp -i R„dR)

R
={c„"—xix„c„'-iR'c)exe(-i ti„dii), {555)'

Rn

where the prime denotes differentiation with re-
spect to R. Analogous expressions can be de-
rived for the outgoing wave. The important
simplifying assumption in the semiclassical ap-
proximation is the neglect of all terms of order
K'/K. The derivatives of K„' ' are of order K'/K
and are neglected. In the semiclassical approxi-
mation Eq. (48) becomes
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K,'l'(c,"—2ilC, c,')exp(-' f K dR„—DM„K, '~'(c,' —.ill, c,)exp -if li, dR) =2,
p Rj

R R
lC, 'l'(c,"—2iK c')exp(-C K, dA --2M„K„'C'(c' —iK c )exp -i f lC dA) =2,

Rg Rp

K,'l'(d,"+2ilCd", exp(+i li, dR —2 M lf, ' 'C(d,' e(Kd)exp +i f K, dR) =D,
Rp Rg

R R
K,' '(d, +2ilC"d )exp(+i'K, dR —2M„li ' '(d'+ilCd)exp +i Kdx) =D.

R~ Rp

(54a)

(54b)

(55a)

(55b)

In obtaining Eqs. (54) and (55), the terms with
negative exponentials, which describe the incom-
ing waves, are separately set equal to zero as
were the outgoing wave terms, with the positive
complex exponentials. Actually, substitution of
(52) into (48) yields only two equations. The sum
of the left-hand sides of (54a) and (55a) combined
is equal to zero, as is the sum of the left-hand
sides of (54b) and (55b). Setting incoming-wave
and outgoing-wave terms separately equal to
zero is consistent with the semiclassical approxi-
mation; there is no. appreciable interaction be-
tween incoming and outgoing waves except at the
classical turning points R, andR, . Mathematically,
a transition from one term to another occurs only

.when the integrands in the exponents are equal or
nearly equal, as is wellknown from Landau-Zener-

Stueckelberg theory: K„-K„«1in atomic units.
This cannot happen when the signs of the exponents
are opposite. In fact, K„+K„is of the order of
1000. Thus, incoming and outgoing waves decouple.
It must, however, be stressed that although the
decoupling of incoming and outgoing waves is based
on the same mathematical effect that is used in
LZ theory, it is really part of the semiclassical
approximation and remains valid even when the
further approximations made in the Landau-Zener
theory fail. An important exception occurs when
the level crossing occurs very near the classical
turning point. In that case, Eqs. (48) should be
solved directly in the critical region.

In the neighborhood of a classical turning point
R„ the behavior of I'„ is given by'

) ( ..
(K (AA) icc R .cR. ,E„=0.5A„K„'~' exp—

Z„=A„K„-"'sin K„dR+-
Rff

l R
=0.5A„K„' ' exp i K„dR +i p -i

e R
K„dB exp(--,' in) for fI &8„ (56a)

(56b)

where A„ is a constant.

K' 'c,'= —MK' 'c, exp(in), (5'Ia)

4. Reduction to ihe Landau-Zener theory
r

The semiclassical approximation was achieved
by neglecting terms of the order K„'/If'„. The re-
duction to the LZ theory is achieved by further
neglecting terms of order c„'/K„, c„"/If„, d„'/K„,
and d„"/If„. This latter approximation is not al-
ways valid, since the coefficients c„and d„change
very rapidly in a very small radial interval (the
level-crossing region). Indeed it is well known
that LZ theory often yields poor results in atomic
collisions at keV energies and should be used with
caution. %hen these terms are neglected, Eqs.
(54) and (55) reduce to

K,'~'c,' =Mff', ~'c, exp( in), -
Z', ~'d,'= MZ,'"d, ex-p(-in),

If", 'd,'=ilSIf', 'd, exp(io(),

where

(57b)

(58a)

(58b)

Kp dR—
R

K~ dR (59)

and

M =Mp~ = -M~p. (60)

The coefficients c„and d„change appreciably only
in the level-crossing region R„-—,'5 &R &R„+—,'5;
outside this region the coefficients remain essen-
tially constant. Inside the crossing region,
K, =Kp=mvR, where vR is the approximate radial
velocity. Therefore the LZ equations can, without
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loss of accuracy, be replaced by

v pc@= cp = vsM cy exP(in)

vsc,' = c, = -vzMC, exp(-in),

v„d,'=d, = v„Md, exp(-in),

v„d,'=d, =-vsMdpexp(in) .

(61a)

(61b)

(62a)

(62b)

These clearly yield velocity-independent transition
probabilities. To complete the reduction to the
textbook version of the LZ equations, it is nec-
essary to make a Taylor'expansion of E„as
given by (4a), considering 2mE —(l+ p)2/R to be
the dominant term, which is valid away from the
classical turning point. Making the approxima-
tion

[2mE —(l+ —') /R j tP dR—V R (63)

it follows that

R Rp
n = (V( —Vp) dt — K( dR.

Rp R(
(64)

The second term on the right-hand side of (64) is
a constant term, which is generally neglected
in the straight-line approximation. Approxima-
tion (63) is also consistent with the straight-line
approximation.

Smith' reports both a velocity-dependent de-
rivative coupling term for the Landau-Zener
equations, as obtained above, plus a velocity-
independent, anti-Hermitian coupling term which
he claims to be important only at very low velo-
cities. This latter coupling term can be seen as
the c„' term on the right-hand sides of Eqs. (54)
and (55), consistent with Smith. However, these
terms must be neglected along with the c"terms
on the left-hand sides for consistent reduction
to the Landau-Zener equations. Smith assigns
a wider meaning to "Landau-Zener model" than
the strict textbook definition used in this work
[closer to Eqs. (54) and (55)j, so the difference
is purely semantic.

5. Channel amplitudes

Let the transition region be the interval
R„——,'5 &R &R„+—,'5 and let the coupling between
the amplitudes on the outgoing trajectory be
denoted by the matrix equation

)dp(R + 25)) (Upp Up&i (dp(R„—25)
(65)

Ed((R„+ 25)) EU)p Uqqi (dq(R„—25))

The transition matrix U can be obtained by solving
the full semiclassical equations (55) or the LZ
approximations to these equations, Eqs. (62). In
either case, the coupling matrix for the passage

through the coupling region on the incoming por-
tion of the trajectory is given by

fcp(R, + 25)) (U pp Up,) fcp(R„—25))

(c,(R„+—,'5)) (U*„U*„)(c,(R„-—,'5))

This can be seen by taking the complex conjugates
of Eqs. (54a) and (54b). The resulting equations
for cf and c,* are identical to (55a) and (55b) and

are therefore. solved by the same coupling matrix
U. Taking the complex conjugate (not the adjoint)
of the linear connecting equations yields Eqs.
(66). This result also holds for the LZ approxi-
mation to the full semiclassical equations. It
may be parenthetically noted that the reason for
the complex conjugate in (66), rather than the
full adjoint, stems from the fact that the coupling
matrices are defined in an unorthodox manner.
The coupling matrices for both incoming and out-
going cases give the values of the coefficients
at R„+—,'5 in terms of their values at R„-—,'5,
which is not in sequential order along the tra-
jectory.

In the region R &R, —~5, the coefficients g„and
d„ for all practical purposes remain constant.
Moreover, cp and dp are connected by Eq. (56a),
which gives the behavior of Ep at the classical
turning point Rp Similarly, c& and d, are con-
nected by (56a) at the turning point R, .

(66)

Fp(R„—25) =0.5ApKp t (R„—25)

x[i exp(-ipp) + exp(+ipp) j
x exp(--,'iw),

Fi(R„——,'5) = 0.5Ai K, 't 2(R, —25)

x [iexp( —ip, ) + exp(+ip, )j
xexp(-iw/4),

where

R„-6/2
Pp

—— Kp dR,
Rp

R„-6/2
Pq —— K|dR .

Rg

From (67a) and (68a) it is seen that

(67a)

(68b)

cp(R +25) =(UppAp + UpgA, ) exP(+-,'iw)

f ( p5) = (U fpAp U$fA$) exp(+ ,'iw)—
(70a)

(70b)

-icp(R„——,'5) = dp(R, ——,'5) =0.5A, exp(- —,'iw), (69a)

ic,(R„—p5) =—d&(R„——,'5) = 0.5A, exp(-~iw), (69b)

where the constants Ap and A, have yet to be de-
termined by the asymptotic conditions (37a) and
(37b) as R-~. Inserting (69a) and (69b) into
(65) and (66) yields



126 ARNO LD RUSSKK 20

dp(R + p6): (UppAp + UpfAf) exp( ——,'iv)

d~(R + p6) = (UgoAp + U~~A&) exp(-piv)

(70c)

(70d)

tively:

ao = —exp(2iro) {UsiUoo Uo&U&o)/ I
U*

I
(75a)

The coefficients c„and d„remain constant from
R, + ~5 to B=~. Comparing, at some large value
of R, the exact semiclassical expressions (52) for
I'0 and E„using the coefficient given by Eqs.
(70), with the asymptotic forms {37), it follows
that

ko'(l + —,') i(-1)' exp(-ik, R)

—
p exp(4zw)kp (UppAp + Up|Ai)

a& = -(k, /kp)
' exp(irp + ir, )

/

(U« ip- iiUio)/IU'I ~ (75b)

It can be established that Eqs. (54) and (55) each
preserve probability, as is to be expected. Con-
sequently, the transition matrix U is unitary;
i.e., (U') '= U which yields the following rela-
tions between the components:

R

xexp ~-i KedA),

ko'(l + p)iao exp(ikoR)

= —,
' exp(- —,'iw)kp' '(UppAp+ Up, Af)

( R
xexe~i IC, dB),

0= —,'exp(4ip)ki' '(UioAo+ UiiAi)

(V la.)

(71b)

t
U ff U le /Upo Upi)

U01 Upo/ (Ugp

With the help of (76), the complex-conjugated
matrix elements in {75) can be eliminated and
Eqs. (75) more compactly written in the form

ap(l) = -exp(»ro) (U'o+ Uo' ),
a, (l) = —(k, /ko)' '

xexp(iyo+iy&)(UppUio+ Uo&Ui&) .

(76)

(77a)

(77b)

x exp -i K& dB
R(

(71c)

k, '(l + —,')ia, exp(ik, R)

= —,
' exp(- —,'iv)k, ' '(UgpAp+ U~~Ag)

xexp i K, dB
Rg

(Vld)

The four equations (71) can be solved for ao, a„
40, and 4, in terms of the matrix elements U, &.

It follows from (Vlc) that

Ai ——Ap Ugo/U|g .
Substituting this result into (V la) yields

Ap
——(U,*q/I U*I)(2l+1)ko'~Pi'exp(iyo),

where

(72)

(73)

&n +n ~n dR —k n+2 l+~
Rn

(74)

and
I

U~
I

is the determinant of the matrix U,*.
&.

In (74), kQ has been rewritten as kQ„+ f"„k„dR.
With this substitution, the upper limit 8 in the
integral can be permitted to go to infinity, since
K„(R)=k„ for large values of R and the integrand
becomes zero. Furthermore, y„ includes a
term p(l+ —,')v, so that exp(iy„) absorbs part of
the f actor i(—1)' on the left-hand side of Eq. (71a).
As written in this way, 2yp

—g, of Eq. (30a).
With Ao and A, given by (73) and (72), Eqs. (71b)
and (71d) can be solved for ao and a„respec-

The matrix elements U«and U~o which couple
the coefficients do and d, across the transition
region are, in general, complex. This fact
arises from the mismatch between the phases
of the radial wave functions associated with the
two states in the crossing region. Each ma-
trix element can be approximately factored
into a real amplitude and a unitary complex fac-
tor by defining a transition matrix which couples
d„exp(i J~ K„dR) across the transition region.

Rn
Defining a new set of amplitudes

D„(R) =d„(R) exp i J K„dR
Rn

(78)

(79)

Do = MD) exp(-ia),

D,' = MD, exp(+is),-
wehere

(80a)

(80b)

(K, -Ko) dR. (81)

which djffer from the original amplitudes by con-
stant unitary factors and defining the transition
matrix T which couples these amplitudes across
the transition region:

f Do(R„+—'6)) (Too Toi) (Do(R„——'6))

(D,(R„+—,'5)) {r„r„~P,(R„-—.'5))
it is found that for all practical purposes, T is
real in the Landau- Zener approximation. This
can be seen by substituting (78) into the Landau-
Zener approximations, Eqs. (62), which then be-
come:
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By comparing (65) with (78), it is seen that

f R» R»

I/ot = To t exp iI It't dR — Ifo dR
I

Bt RoR„R.
U =d&o»eda»~ f »odR»&d»

s,

(83a)

(83b)

Uoo = &oo

U() ——T() .
(83c)

(83d)

Substituting these results into Eqs. (77) yields

-a, (I) =T»e xp(i i)t+ T'„e xp(iL tt)

-(ko/k, )'~'a, (l) = T»T oextp(ift»)

+ Tot„Te px(if vt),

(84a)

(84b)

where the phase developments f„have been de-
fined in Eqs. (30).

Defining

T~o =A~,

ox
—

IL ~

(kt/ko)' T»Tio -—At

(85a)

(85b)

(85c)

(85d)

substituting (84) and (85) into expressions (38a)
and (38b) for the scattering amplitudes, using
the asymptotic form (7) for the Legendre poly-
nomials, and replacing the sum over E by an in-
tegral yields Eqs. (32a) and (32b'), which are pre-
cisely the equations heuristically obtained in A.
In Eqs. (32), only p, given by Eq. (29), has been
retained, so that the results are valid for the
repulsive scattering ease.

IV. ANGULAR MOMENTUM CONSIDERATIONS

It was established in Sec. II that under condi-
tions appropriate for semiclassical scattering,
the contribution to the differential scattering
cross section at angle 6) arises from a small
range of partial waves {or impact parameters).
It was further shown in Sec. III that the contribu-
tion due to the Nth channel comes from the range
centered about the value of / determined by 8

In the vicinity of the crossing, K& —Ko is small
and moreover, the crossing region itself is
small. Consequently, over the entire range of
interest a is small and exp(iz) can be approxi-
mated by unity. The resulting equations are then
real and yield real solutions

Do = cos(M [R —(R, ——,'5] + (phase constant)), (82a)

D, = -sinfM [R —(R„—o5)]+ (phase constant)) .
(82b)

=df„/dl .This value was claimed to be the one
predicted by classical scattering theory for the
set of incoming and outgoing potentials which de-
fine the Nth channel. That assertion is the topic
of this section, and it will be shown to be almost,
but not exactly, true. In order to be rigorously
valid, it is necessary that the internuclear forces
are exactly radial; in that case, / is a constant
of the motion and there is no coupling between
channels. This cannotbe correct; it would, for
example, exclude excitation of one of the collid-
ing atoms from an initial s to a final p state. Any
change of angular momentum of the internal de-
grees of freedom (i.e., the electrons) must, of
course, be balanced by an equal and opposite
change in the angular momentum l of translation
motion of the collision trajectory. 'The source of
the problem is not hard to find. 'The electronic
angular momentum is not a constant of the mo-
tion in the two-center problem, so that electronic
angular momentum can change during the collision.
However, the recoil of the internuclear axis is
neglected in adiabatic molecular theory. This
neglect is equivalent to taking the center of mass
for the entire system to be the same as the center
of mass of the nuclei. At low collision energies,
this approximation will be seen to cause no diffi-
culties; it becomes important only at higher
collision energies.

When the trajectory cannot be described in
terms of a potential, it is necessary to revert to
Nemton's second law: F = ma. A force can always
be defined so long as (i) a classical trajectory is
applicable and (ii) the electronic state changes
adiabatically, with excitation occurring only at
level crossings (or pseudocrossings), where dis-
continuities or uncertainties in energy are incon-
sequential. Both the radial component of the
scattering force and the torque must be taken into
consideration, since changes in angular momen-
tum imply the existence of a torque. It must be
noted that angular momentum excitation" as here
used, is different from rotational excitation. "
Rotational excitation refers to a change in the
component of angular momentum along the inter-
nuclear axis. Such a change (e.g. , o -tt) produces
a thrust in the azimuthal direction and mill not be
measurable in scattering experiments, which
average over the azimuthal direction. To affect
the scattering angle requires a change in the com-
ponent of angular momentum perpendicular to the
plane of scattering. This component is not a
constant of motion in adiabatic theory.

In what follows, the classical orbits will be cal-
culated in the center-of-mass frame. With m
denoting the reduced mass of the system, the
angular momentum of relative motion is
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l =mR'5 . (86) n = -(u„'/2m)(l' —l,') . (93)

Let V(R} be the potential energy due to the nuclear
Coulomb force plus the screening force produced
by those electrons not excited in the collision
(i.e. , behave completely adiabatically), and let
F(R, v, t}=RFs+ &F~ be the force exerted by those
electrons which are excited in the collision. From
the Newtonian equations of motion,

A first integral is obtained by integrating Eq. (91)
over ~. The constant of integration, determined
from the initial conditions, is l,'/5'= k,'= 2mE„
provided that the datum, or zero of energy, is
chosen such that V+U, =0 atu=0(R=~). Solving
this result for du/de yields a separable equation
which is solved by quadratures:

(87a)

dl ~ 0 ~ ~

T = AI" ~
=—= mR'~ + 2mRR8 .

dt
(87b) + [A(&, —W,„,—0,„,) -u'] '~ '] du,

Since only the trajectory is desired, that is, A as
a function of &, Eqs. (87) are transformed so that
e is the independent variable rather than t. Kith
this transformation,

8P
~A A d6) mA4 R d6) d~'

m V u + IVY + Qf
0

+[5'-u'-A(W, „,+ 0,„,)] '~'] du, (S4)

where the 5', are the overall molecular potentials
for the two states:

F = (2mR') ' —P.de

(88a)

(88b)
W, (u) = V(u)+ U, (u) (95)

The standard procedure, at this point, is to make
the transformation of the dependent variable"

u = 1/R. (89)

%ith this transformation, the orbital equations
become:

d2u 1dl du m dV Ez
+———+u= ———+-

d~' l d~ d6) l' du u' (90a)

u' dl'
2m de

(90b)

dO u' dP
d~ 2md~ ' (92)

Clearly, 0 cannot be obtained from (92) unless u
is known as a function of ~. Thus 0 is path de-
pendent. However, if the change of l occurs in a
narrow region about some value u„, 0 is an ap-
proximate perfect differential:

After multiplying (SOa) by l'du/dH, it can be put
in the form

d, du'
P —

e
+u' +2m V(u)+U, (u)+0, =0,

(91)

where t stands for the incoming or outgoing por-
tions of the trajectory and U, is the internal (i.e. ,
electronic) energy. This is different, in general,
for incoming and outgoing portions of the tra-
jectory. Finally, 0, which is also path dependent,
is defined so that

A = 2m/P = 2m/l, '. (96)

For the small changes in angular momentum of
relative motion caused by electronic excitation
(one or two units in several hundred or even
thousands), the difference between l' and P, can be
neglected insofar as the constant A. is concerned.
The major effect of these changes is incorporated
in O.

The torque produces a negligible deflection. In
the region of minimum internuclear separation
where most of the deflection takes place, I"& is
longitudinal and causes no deflection. Neverthe-
less, it can have an important effect on the de-
flection, since it accounts for some fraction of
the change in internal energy required by the po-
tentials W, via the 0 terms in Eq. (94). In es-
sence, that work which is done by the torque is
not done by the radial force, implying a smaller
radial force and, therefore, a smaller deflection.
By conservation of total angular momentum of the
entire collision system, the change &l in the an-
gular momentum of translational motion must be
equal to -&l, the negative of the change in
angular momentum of electronic motion. Taking
&l, to be small compared with l, it follows that

&0=u„'l &i,/m = bu„'&l, (2E,/m) '~ ' (97)

producing a shift in the p vs. & reduced differential
scattering cross section proportional to @p
Remember that &l, is the change of the component
of electronic angular momentum perpendicular to
the plane of the trajectory.
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In the special case in which the angular momen-
tum is constant, 0, which is zero initially, re-
mains zero throughout the collision. 'Thus, from
(94),

)
i-

du ~ (98) Finally,

(l+-', ) du

[2m(E —i4') —(I + -', )'u']'i '.

Apart from the small difference between l' and
(l+ —,)', these results are the same as those which
follow from Eq. (31):

df„

with the f„give nby Eqs. (30). The essence of the
proof is given below:

E dR — I -u du. 99
a b

The limits in (99) have been interchanged with an
accompanying change in sign. If the appropriate
potentials required by Eqs. (30) (ii', for Ko and W,
for K, ) are used in the two regions 0&u&u„and
u„&u&u, the results are those summarized in

(98), provided that f+-,' is approximated by /.
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