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Collective ordering phenomena and instabilities of the ~A1 nuclear spin system in ruby
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The dynamic properties of the ruby NMR laser are discussed from the point of view of synergetics. The
authors present a theoretical approach together with the experimental verification. The cooperative features
of the instabilities and the disorder-order transitions far from thermal equilibrium of the ruby NMR laser are
described by means of order parameters and their dynamic equations, which are generalized Bloch equations.
The heat-reservoir description of the conventional spin dynamics in ruby is thereby taken into account. The
theory is applied to the free-running NMR laser with its threshold, the critical narrowing of cw NMR lines
below threshold, and the steady-state output above threshold. The theory is then extended to the driven
NMR laser where an external resonant rf field is applied to form, together with the self-induced radiation
field, a competitive- or cooperative-field configuration. The authors present data concerning bistability and
hysteresis of the driven NMR laser; in particular, its first-order-type phase transitions from a competitive- to
a cooperative-field configuration are discussed. Finally, a novel pulsation mode of the ruby NMR laser is
described.

I. INTRODUCTION

In systems composed of a great number of dis-
tinct entities (electrons, atoms, molecules, nu-
clear and electronic spins, living cells, persons,
etc.) which are put under defined physical con-
straints, there may exist an interaction of cooper-
ative nature which, on a macroscopic scale, can
lead to a collective behavior of the individuals such
that the whole is more than the mere addition of
its parts. In particular, highly organized spatial
and/or temporal structures may develop out of
chaotic states; the system thus is undergoing a
disorder-order transition. Such phenomena are
found in a great variety of disciplines ranging
from pure and applied physics over chemistry and
biology to sociology, and are subject of the rapidly
growing interdisciplinary field "Synergetics, " as
it is called by its founder H. Haken. ' The most
fascinating aspect of these phenomena is the ap-
parent similarity and correspondence of the var-
ious disorder-order transitions even though the
specific systems differ widely in composition and
character of their constituents as well as on the
macroscopic boundary conditions (open, closed,
equilibrium, nonequilibrium, etc.). For example,
prototypes of open systems far from thermal
equilibrium are the laser-type devices. After the
technical realization of the spin-flip ruby NMR
laser2 as a coherent source of radio frequency
waves, we investigated in particular the coopera-
tive features of the disorder-order transition to
a superradiant state of this open system. Hence,
we searched for a description of the macroscopic
behavior by means of order parameters with their

abrupt or continuous changes when certain physical
variables (constraints) are varied. In a recent
publication' we discussed a Bloch-type approach
to the problem of nuclear superradiance which
has its roots in the effects of radiation damping
on spin dynamics. 4 ' In particular, we described
the nonequilibrium second-order type phase tran-
sition from an incoherently to a coherently radiat-
ing spin state using a Landau-type dynamic order
parameter equation for the rotating transverse
nuclear magnetization M~. It became evident that
such a nuclear spin system has specific properties
making it suitable as an instructive example of
synergetics. First, the time of evolution from
one significant macroscopic state to another lies
within an experimentally convenient time scale
(microseconds to seconds). Second, a simple and
reasonable theoretical approach to the different
questions is available. Third, all the decisive
physical quantities, which determine the macro-
scopic dynamics, can be measured or estimated
with a high degree of accuracy. The purpose of
this pape r, which is an extension of the earlier
work, ' is to report in detail on the ruby NMR
laser from the view point of synergetics. How-
ever, it is not our intention to augment the many
examples of synergetic behavior by just another
one. What we wish to present is a model system
for which a quantitative analysis is possible. We
include in our discussion not only the free-running
single-mode NMR laser but also the novel rf-driv-
en NMR laser' which has features in common
with a nonlinear system showing optical bistability
and hysteresis '0 '3 In principle, we have the
NMR analogue of optically bistable devices, which
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have caused much excitement lately in quantum
optics. Here we treat the case where an external
rf field interacts with a nuclear spin system which
is in or close to a superradiant state.

In Sec. II we give a summary of the experimental
aspects of the ruby NMR laser and present ex-
perimental results concerning the NMR laser fre-
quency, its stability, and pulling, on which the
theoretical model is based.

In Sec. III we describe the spontaneous second-
order type phase transition from a disordered to
an ordered superradiant single-mode spin state
near threshold. We then compare theory and ex-
periment which concern the NMR laser output and
the critical narrowing of steady state NMR lines
near the bifurcation point. For this free-running
NMR laser the rotatingfield B„which slaves the
nuclear spins, consists of the self-induced field
B,"~ and a fluctuating field Fe(t). B,'"~ is the re-
sult of the phase-locked precession of the spins
in a static magnetic field; Fe(t) is due to the
thermal noise current in the NMR coil. In Sec.
IV we extend our considerations to the driven
single mode NMR laser, where an external rf
field B;*is superimposed on B,"~ and Fe(t).
Drastic reaction effects occur when the frequency
of 8," is close to the laser frequency. Sin~e the
response is exceedingly complicated in general,
we restrict ourself to a situation where this field
is in exact resonance such that B," and B," are
either parallel (B;*ttB„'"~)or antiparallel
(Bf"ttB,'"'). In the former case we speak of a
cooperative configuration, in the latter of a com-
petitive one. Under the joint action of B;", B,'",
and F~(t) the nuclear spin order shows instabilities
which lead to first-order-type phase transitions
with their well-known bistability and hysteresis
effects.

II. RUBY NMR LASER: EXPERIMENTAL ASPECTS

At liquid He temperature and in a strong magnet-
ic field, self-induced collective rf oscillations of
the "Al nuclear spins in Al, O, :Cr" can be observed
when the spin population is inverted and the sample
is placed in a laser-type feedback system, here
an LC circuit, to produce stimulated spin flips.
The laser action can easily be detected by an os-
cilloscope directly connected to the resonant cir-
cuit which is tuned to one of the quadrupolar split
"Al NMR lines, while powerful microwave radia-
tion is supplied to the sample in the vicinity of a
selected Cr" ESR line. The microwave source
(-100 mW) acts as a pump causing the population
inversion over the nuclear Zeeman states by dyna-
mic nuclear polarization (DNP). The nuclear spin
system is thus brought to a negative spin tempera-
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FIG. 1. NMH laser frequency as a function of the
pumping power. The frequency is independent of the
pumping power as predicted by the theory, if the tuning
frequency of the LC circuit is equal to the Larmor fre-
quency of the nuclear spins.

ture 0„,(-mK) and an enhanced negative, longitu-
dinal nuclear magnetization M, is formed. In
terms of synergetics, DNP produces an enhanced
longitudinal Zeeman order with M, as the order
parameter. The coil of the LC circuit provides
the rotating radiation field B, which causes the
phase-locked spin precession. Due to the coherent
slaving of the individual "Al spins, a rotating
component M„ofthe nuclear magnetization is in-
duced. Again in the language of synergetics, we
speak of a superradiant or transverse spin order
with M„asthe order parameter. Thus when super-
radiance occurs, longitudinal Zeeman order is
continually transformed into transverse order.

Single-mode laser action can be obtained with a
low-Q LC circuit. For example, if a circuit with

Q =60 and a filling factor of rl =0.6 is tuned to the
center of the (-,', --,') NMR transition, the NMR
laser frequency w is, within our present accuracy
of 1 part in 10', equal to the NMR frequen-
cy co, of the conventional central line, independent
of pumping power or NMR laser output as indi-
cated in Fig. 1. Since the result reflects the mod-
est stability of our magnet, a much better agree-
ment can be anticipated for highly stabilized mag-
netic fields. The NMR laser frequency can be
pulled by detuning the LC circuit to a frequency
~, as it is shown in Fig. 2. The pulling can be
calculated from the formula &u =(&u,/T, + &u, /T, )/
(1/T, +1/T, )' '" with T, the transverse nuclear
relaxation time and 7', the ringing time of the
circuit.

For what follows, we always assume perfect
tuning of the I.C circuit (and of a driving field,
if present) to a. selected NMR line. Such a system
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M„=-& p, ,rI QyM~„—M„/T, ,

M, =2 p, oq QyAP„—(M, —M, )!T, .
(3a)

(3b)

(-240 s), but long compared to T, (-3x10 ' s).
With Q =60 and ~, -=2m x 12 MHz, the LC circuit
has an unloaded ringing time T, = 10-' s, which is
by far the shortest time constant in the system.
thus B,'"" responds promptly to M„such that

(2)

Discarding the fluctuations for the time being, we
can eliminate B, in (la) and (Ib) and obtain

FIG. 2. NMR laser frequency pulling by detuning the
LC circuit. The theoretical dependence (solid line) is
determined by ~ = 4'c/T2+ ~T/, )/( T2+ Tc)' The
dashed lines indicate perfect tuning ~ = coo

——cu .

Possible steady-state solutions are M', =M, and
M', =0, of which M', is stable. To study the stabili-
ty of M'„, we define as threshold pumping magnet-
ization the negative quantity

M,'" = —2/9 p,,qQyT, . (4)

then reacts purely absorptive. Hence, in a frame
of reference rotating at the NMR frequency, the
system can be described by the three macroscopic
variables M„M„,and 8, where the subscript
v stems from the well-known v or absorption mode. "
Under such circumstances, Bloch-type equa-
tions are expected to describe the dynamics of
the solid state NMR laser with reasonable accur-
acy. This has been experimentally proved in our
previous work. ' However, if the NMR laser is
pulled out of resonance, dispersive effects are
expected to show up which, presumably, will need
a more refined treatment. It is well known that
the saturation of the dispersive u mode in solids
cannot be handled by simple Bloch equations as
has been shown by Redfield" and this will possibly
be true also for the highly nonlinear NMR laser.

III. FREE-RUNNING NMR LASER

If the ruby crystal is oriented such that a fully
resolved quadrupole structure of its five ~~n =+1
NMR transitions can be observed, and the LC
circuit is tuned to the central (-,', --,') line, then
the superradiant 27AI spins (I = —,) form a fictitious
spin- —,

' two-state system. The NMR laser vari-
ables fulfill the equations

M„=ByM,B~ —M„/T2,

M, = —yMQ~ —(M, —M, )/T, ,

B, = ,'"B' +F(ts) .

(la)

(lb)

(1c)

Here, y is the gyromagnetic ratio, T, the de-
phasing or transverse relaxation time, T, the
effective pumping time, and M, the pumping mag-
netization. T, and M, are parameters which can
be derived from the extended heat reservoir model
of DNP in ruby. 3 Note. that T, (-0.15 s) is much
shorter than the spin-lattice relaxation time T,

For M, &M,'", M'„=0is stable. If the NMR laser
is pumped below the threshold value, a transition
to a new stable state M'„c0may be induced by the
fluctuations F~(t). If M, is close to M„wecan
neglect M, in (3b). Thus M, can be eliminated,
and we end up with the single Landau-type order-
parameter equation

M„=—aM„—eM„+F~(t), (5a)

with

~=1/T, +& p, ,qQyM, ,

e = (9/4) p,,'q'Q'y'T, .
(5b)

(5c)

3T,p, ggy T, M,'"
(7)

The output voltage V of the NMR laser, which is
proportional to M„,fulfills, therefore, a power
law with the critical exponent p = —,'. In Fig. 4 we

With increasing pumping power, ~ passes from
positive to negative values. At z =0, the system
reaches a critical point.

In weakly pumped states z) 0 can be interpreted
as an inverse effective dephasing time

1/T„„=l/T,+~ p,pic . (6)

Hence, 1/T„f,determines the cw linewidth of con-
ventional NMR if saturation is avoided. With
growing pumping power but keeping z &0, the sys-
tem remains in a noncoherent radiation state but
becomes more and more undamped. Under these
circumstances the NMR lines of ruby narrow and

grow critically. Since the five quadrupolar split
NMR lines have different critical values for ~,
they differ in their enhancements as demonstrated
in Fig. 3.

In the superradiant state (n &0) we find the sta-
tionary rotating nuclear magnetization
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FIG. 4. NMH laser output voltage vs the threshold
magnetization M~" with the three fits for the critical
Landau exponent p = 0.53, 0.56, 0.59. The best fit is ob-
tained with P = 0.56.

have plotted experimental values V' vs M,'" to-
gethe~ with various fits in accord with (7). For
experimental reasons M, was kept constant, while

M,'" was varied by imposing a small field gradient
to the static field, thus changing T, . The pumping
magnetization M, was determined by measuring
the spin temperature of the 'Pl spin system in
the pumped state. The best fit is reached with

p,„,=0.56. The discrepancy between theory and
experiment is not yet understood but could be found
either in the inhomogeneous broadening caused
by the field gradient, or in the fact that M, is a
weak function of the power output rather than a
constant as assumed.

To demonstrate the close correspondence be-
tween this disorder- order transition far from
thermal equilibrium with Landau-type second-
order phase transitions at thermal equilibrium,
we introduce in analogy to the free energy a NMH

laser potential'

such that (5a) can be written as

We follow Haken' further and define the NMR laser
entropy or NMR laser action 8 together with the
specific NMR laser action C such that

(10)

824
C= —M~8M

For a & 0 we find 9= (M, —Mt")/2T, if we set 8 = 0
for 0.&0.

Numerical values of M„(M,), C(M, ), S(M, ), and

C(M, ) for our system are depicted in Fig. 5 to-
gether with the steady-state solution (7) for the
order parameter M„.
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IV. rf-DRIVEN NMR LASER

Consider the same NMR laser system as in Sec.
III but place the sample in an external rf field
which has the properly rotating component By"
such that sign (B,'"d) =-sign (B;")or sign
(B,'"d) =+sign(B;*). The plus sign indicates the
cooperative field configuration B,"4kB,'", the min-
us sign the competitive one B,"44B~" . Equation
(lc) reads now

with

B tnd+Bex+F (t) (12)

B'"d=- —'
IJ, gQM

whereas elimination of B, in (la) and (lb) leads
to the new dynamic equations

M„=(- ~9 p,,@@M„+9yB;*)M,—M„/T, ,

M, =-,' p, ,q@M2 yB;*M-„—(M, —M, )/T, , (14b)

if the fluctuations are neglected.
In order to treat the NMR laser dynamics near

the steady states, we introduce again the NMR
laser potential

4 = pM„+—'(yM„+—'5M„+—'qM„,
with

p =-9yB~*M, ,

ct= T9 pdq QyM, + 9y2(B;")2T,+ 1/T2,

9p qgy2BexT

9 ~2~2q2y2T

(15a)

(15b)

(15c)

(15d)

(15e)

from which we obtain the dynamic-order-param-
eter equation

M„=-, +F,(t) .
V

Figure 6 shows the potential of our system for
different values of the pumping magnetization M,
and the external field By Each curve has a coop-
erative and a competitive branch. Neglecting the

fluctuations, the stable steady-state solutions are
functions of M, and B,". They correspond to the
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minima of 4(M„). If both branches have a minimum
then the one for B;*t0B}}"~is lower (more stable)
than the one for B,"0kB,'" . With increasing abso-
lute magnitude of B," the former solution remains
stable; the latter one runs into an instability as
soon as the external field reaches a critical value

B,," in the competitive mode. When this occurs,
the system must perform a transition to a stable
mode. Making use of the bistability of this de-
vice, hysteresis loops, as depicted in Fig. 7, can
be traced out which are typical for systems with
a first-order phase transition. A similar behavior
can be expected when M, is changed while keeping
B) constant . Starting from a stable state on the
competitive branch and lowering the pumping
power (thus increasing M, ), the system again
reaches an instability as it is shown in Fig. 8.
'There the order parameter jumps irreversibly
to a stable state on the cooperative branch. Addi-
tional insight into the nature of the instabilities
can be gained by looking at the NMR laser action
8 and the specific NMR laser action C defined by
Eqs. (10) and (11). The derivatives have to be
taken at constant 8," under steady-state condi-
tions. Numerical values S(M, ) and C(M, ) together
with C (M, ) are plotted in Fig. 9. Obviously, S
and C are different for the two branches. In par-
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ticular, S becomes discontinuous at the instability
point on the competitive branch. The subsequent
transition for a stable state is, as indicated be-
fore, a first-order-type phase transition.

In order to observe these first-order transitions
directly, we investigated, both experimentally and
theoretically, the transient response of the initial-
ly free-running NMR laser when an external rf
field is abruptly turned on. The dynamic equation
(16)is not adequate to handle such a situation. In

this case the full dynamics of the reservoir model'
has to be put into Eqs. (12) and (14) to calculate
the nonlinear response of the system. Here we

describe three special cases.
In all three experiments, the NMR laser is

brought initially to a free-running steady-state
mode. First, we switch on a competitive field
such that By is smaller than the critical value

B,,". The output shows a transient signal in the
form of a damped relaxation oscillation. The NMR
laser reaches a new stable state on the competitive
branch within a fraction of a second. This is dem-
onstrated experimentally and theoretically in Fig.
10. Next, we switch on a competitive field such
that B," is larger than the critical field B,,". The
NMR laser output shows, in a first phase, an ex-
ponentially growing amplitude-modulated transient
until B,'" and B" cancel. At this moment the NMR

laser action is small. Due to the lack of a strong
slaving field, the nuclear spins have a chance to
lose their phase memory with respect to the initial
state. From there on they begin to precess coop-
eratively with 8,". Hence, a field B,'"~ is induced
with B,x4$B,'" . Thus, in the second phase of the
transient, an amplitude-modulated relaxation os-
cillation is observed which, finally, evolves into
a new stable state on the cooperative branch. The
system has thus performed a first-order-type
phase transition. The experimental and calculated
response is shown in Fig. 11. Note that B,x is
some orders of magnitude smaller than B,""in
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In a third experiment, we switch on a competitive
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control, is always kept in the competitive config-
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with an exponentially growing amplitude-modulated

D
Q.
I

0
LLJ
lA

~ ~
~a 1'

Kz

FIG. 10. Response of the
fr ee-running NMB laser
after turning on an external,
competitive rf fieM
Bex (Bexfc'

2.2 24 2.6
TIME I~&

Bi ~ 30pG

2.8 3.0 3.2 3.4 3.6
TIME Is)

FIG. 12. Response of the free-running NMB laser
after turning on an external, competitive rf field
B&"&B«. By electronic means, the competitive field
configuration is maintained in the subsequent unsteady
NMB laser action.
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oscillation until the NMR laser action ceases.
From there on, as a consequence of the interplay
between pumping, cooperative self-ordering, and
external field in a competitive state, the NMR
laser emits a regular train of superradiant bursts
such that one is tempted to call this system a NMR
pulsar. Figure 12 shows experimental and theo-
retical response curves for different values of
+ex

1

V. CONCLUDING REMARKS

The dynamical aspect of the ruby NMR laser
have been discussed from the point of view of
syne rgetics. The instabilities and spontaneous
transitions from nonradiating to radiating states
or from one particular radiating to another radiat-
ing state of a negatively polarized nuclear-spin
system have their analogue in systems with con-
ventional second- or first-order phase. transitions.
The good agreement between the theoretical

Bloch-equation approach and the experiments
stems from the fact that we have considered only
the purely absorptive response under exact reson-
ance conditions. Dispersion, however, becomes
of importance in detuned systems. In particular,
when the NMR laser is driven with a nonresonant
rf field, beat patterns appear which are rich in
their forms. However, a systematic investigation
of the dispersive features, both theoretically and
experimentally, remains to be done.
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