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Approach to electron capture into arbitrary principal shells of energetic projectiles
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An approach for treating electron capture into arbitrary principal shells or into continuum states of
energetic projectiles is developed. The approach is based on the momentum-density matrix of the captured
electron summed over all substates I, m or integrated over all emission angles, respectively. In conjunction
with the kinematics of energetic capture reactions it leads to drastic simplifications in capture theories.
Within the eikonal approximation, the present approach yields an exact result for the cross section describing
capture of hydrogenic 1s electrons into hydrogenic bound or continuum states of the projectile. The final
result is a simple analytical expression factorizing into the Oppenheimer-Brinkman-Kramers cross section
times a scaling factor between 0, 1 and 0.4. The theoretical scaling factor for the total cross section turns out
to be a function of u/vK {the ratio of projectile velocity to target K-shell velocity) which is approximately
independent of the target and projectile charges. For hydrogen and helium targets surprisingly good
agreement is obtained with a large body of experimental data.

I. INTRODUCTION

The capture of 1s electrons in collisions of en-
ergetic multiply charged ions with light target
atoms is of considerable interest both in terms of
basic theory and in various practical applications.
In particular, electron capture from hydrogen
(and deuterium) is relevant for astrophysical
plasmas and for magnetically confined fusion plas-
mas heated by a neutral hydrogen beam. .

The theoretical investigations' ' have been
mostly confined to capture from hydrogen atoms
into 1s states of H' projectiles. Very few studies
have been made of capture into multiply charged
heavier ions. This is so because with increasing
projectile charge the electrons are captured into
increasingly higher principal shells m of the pro-
jectile. Such high quantum states present formid-
able difficulties to a quantum treatment. A strik-
ing exception in simplicity is provided by the Qp-
penheimer-Brinkman-Kramere (OBK) approxima-
tion.""In this particular case, a sum rule
first given by Fock' allows one to carry out the
subshell summations and to derive a closed-form
expression. 4 It is well known' that the QBK ap-
proximation considerably overestimates the ex-
perimental total cross section but otherwise re-
flects the correct behavior. It therefore has be-
come a common practice" to seal.e the QBK cross
section down by an empirical factor n(v) =0.1-0.4
independent of the projectile charge Z~. So far it
is not fully understood why this scaling procedure
works so well.

As an alternative approach to charge capture
(and ionization), the classical-trajectory Monte
Carlo method has been applied by Qlson and Salop'
and by Qlson et al. to a large variety of heavy

highly charged ions colliding with hydrogen atoms.
The method has proven to be surprisingly suc-
cessful' in reproducing the experimental electron-
loss data in the energy range 50-5000 keV/amu.

The common source of the successes of the clas-
sical calculations and (to a limited extent) of the
QBK approximation probably lies in the fact that
charge capture at. high projectile energies is
largely governed by the initial and final momen-
tum distribution of the electrons. In fact, the
classical momentum distribution of a microcanon-
ical ensemble of electrons" with energies E„

2Z'/rP is id-e—ntical to the quantal momentum
distribution. ' This is well known" for n=1,
but —owing to the O(4) symmetry of the hydrogen
problem' —also holds" for arbitrary principal
shells n after summation over the n' substates'
(see Sec. II). It is just this sum rule on which
the QBK approximation for higher n is based. 4

In general, it is to be expected that any theoretical
treatment paying sufficient attention to the mo-
mentum distribution will meet a certain amount of
success in predicting total capture cross sections.

In a previous paper" we have exploited this idea.
In the present work we extend the treatment and
give a more detailed derivation. We also discov-
ered that our previous result is exact within the
eikonal approximation.

II. THEORETICAL BACKGROUND FOR ELECTRON
CAPTURE INTO PRINCIPAL SHELL n

A. Density matrix in momentum space

As early as 1935, Fock published a fundamental
paper' proving that for the hydrogen atom the so-
lutions of the Schrodinger equation in momentum
space are proportional to four-dimensional spher-
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ical harmonics. Defining these solutions as the
Pourier transforms

d„(j)={2r)' ' f d' r(„r,„(r)exp( q(. r)

of the normalized hydrogenic wave functions
q)„,„(r) and introducing the momentum-density
matrix of the nth principal shell as

n-1

p„(q, q') = P P q.*,.(q)q ...(q'),
l=o m=-l

Pock's result immediately implies the existence
of an addition theorem' which allows one to re-
write Eq. (2) in the form

(2)

v'(q'+ q'„)'(q" + q'„)' n sinx
'

Here q„=Z/n and x denotes a distance on a four-
dimensional unit spere which, via the familiar
rel'ation

cosx = cos8 cos8'+ sin8 sin8' cosy

is expressed by the angle y between the vectors q
and q' and by their "polar angles" 8 and 8' with
respect to the fourth axis (in addition to the three
axes in momentum space). The angles are defined
by

cos8= ,"„sin8=—, (6)

and analogous relations for 8'.
Equation (3) has been used by Omidvar" in his

Born treatment of electron capture into states
with asymptotically high n but otherwise has not
received much attention, possibly owing to the
difficulty to visualize four-dimensional space.
However, it may be cast into a form" more read-
ily applicable to physical problems by inserting
Eqs. (5) and the definition of y so that

B. Approximation scheme for electron capture

In principle, any reaction involving the nth prin-
cipal shell could be treated in momentum space
using expression (3) to evaluate the double-mo-
mentum integrals fd'q J d'q' determining the
cross section. In general, the momenta q and q'
are coupled by the function d„(x)= sinnx/(n sinx)
and hence the evaluation is complicated. In the
particular case of electron capture by energetic
projectiles, however, one has an enormously
simplifying feature: The momentum distribution
of the captured electron is almost exclusively
determined by the prescribed relative velocity v
of the colliding nuclei. " That is, one will only
have contributions to the cross section from the
domain in double momentum space defined by q =q'.

It is instructive to estimate. the argument x of
d„(x) for a given projectile charge Z and impact
parameter b. The transverse momentum trans-
fer is classically given by q„=2Z/(vb). Taking
q„=v & q„,

~
q —q'

~

= q„and q' =q", we estimate
from Eq. (6)

I

sin'x
I

2Z'/(nv'b) =2Z'/(n'v'),
where, in the last equality, we have assumed that
the typical impact parameter equals the Bohr ra-
dius of the orbit into which the electron is cap-
tured. If the parameters in this estimate are
such that x is much smaller than the width 1/n of
d„(x) it is a good approximation to put d„(x)= 1.
Because of the v ' dependence this may already be
fulfilled at moderate collision velocities.

Given the specific kinematic conditions of elec-
tron capture it will have no effect on the calcu-
lated cross section if density matrix (3) or (8) is
arbitrarily altered in the whole q, q' space except
in the domain q =q'. We may therefore substitute
an effective density matrix

»nlx=+q. fq —q'//[(q'+q'„)(q" + q'„)I"' (6)
2»~nq5~' 23~2n~5~2

n

v(q'+ q'„)' m(q" + q'„)'

directly exhibits its dependence on the "momentum
spread"

~
q —q'

~

. Using Eq. (6) it is easily seen
that the function d„(x)= sinnx/(n sinx) reaches the
peak value d„(0)= 1 for q =q' and a backward peak
d„(v) =(-1)""at q=-q'. The width of the peak
is proportional to 1/n.

An expression similar to Eq. (3) may be ob-
tained4 for the function

3r
g„,„(q)= (27)) '~' q)„,„(r)exp(iq r)

by inserting y„, into the Schrodinger equation.
This leads to the sum rule

gg.*,.(q)g. ..(q')

2Q'„sinnx
v'(q'+ q„')(q" + q'„) n sinx

'

and a similar relation corresponding to Eq. (8).
Obviously, p„'"' factorizes into two 1s wave func-
tions in momentum space

9)„'"'(Z)=nq)„(Z/n) .

We may, therefore, formulate an approximation
scheme" which drastically simplifies. the compu-
tation of electron capture into arbitrary principal
shells: The total cross section for electron cap-
ture into the nth principal shell (summed over all
l, m substates) of a projectile with charge Z can
be calculated as the capture into the 1s state of a
substitute projectile with charge Z/n by using Eq.
(10) in momentum or in coordinate space.

The arguments given above. are independent of
the specific approach taken to calculate capture
cross sections. We discovered, however, that in



106 JORG EICHI ER AND F. T. CHAN

the eikonal approach described in Sec. III the
prescription to take q =q' or x = 0 is not an ap-
proximation but holds exactly.

the eikonal approximation in its prior form. The
transition amplitude is then given by

A„„, (b, v)= i- «(+ ~(-Z /2')~+, ). (12)
HI. ELECTRON CAPTURE IN THE

EIKONAL APPROXIMATION

Here we want to apply the general ideas out-
lined in Sec. II to the eikonal (or Glauber) approx-
imation. " This approximation requires" that the
collision time 2„»=2a~/v (where az is the Bohr
radius of the initially bound electron) be small
compared to the typical transition time 2.,„,=22/z
(where e is the transition frequency or energy dif-
ference in atomic units between initial and final
electronic states). Introducing the target charge
number Z, and 2) = 1/v we therefore require

&&exp( in-v r --,'in'v't) (Is)

4'z ——p„, (r2) exp(-ie2t)

&& exp[i(1 —n)v ' r ——,'i(1 —n)'v't]

00

Introducing the energies z, =-—,'Z', and e2= ——', Z'/2t',
and using the conventional translation factors' we
can specify the time-dependent wave functions as

y„=y„(r,}exp(-ie,t)

~„„/r„=(I/2)(e/Z, )21 (( 1 . x exp -i (14)

This condition may be fulfilled even at compara-
tively low velocities if the "resonant" capture with
e =0 dominates the cross section. In the following,
we first consider capture into bound states and
then show that the same methods may be applied
to capture into the continuum of the projectile.

A. Cross section for capture into bound states

We now proceed to calculate in some detail the
capture of an electron initially bound in the 1s
shell of a hydrogenic target with charge Z, into the
nth principal shell of a bare projectile ion with
charge Z~.

The eikonal approximation has been first ap-
plied by Tsuji and Narumi" and by Dewangan" to
electron capture from hydrogen atoms into 1s
states of hydrogen ions. We generalize the treat-
ment to arbitrary principal shells n which for
high-Z projectiles dominate the total capture
cross section. It should be mentioned, at this
point, that with increasing n the initial and final
bound states become more and more orthogonal
and hence the problem of whether or not to include
the internuclear interaction in the transition am-
plitudedoesnotarise. Let r, rt=r+nB, and r~
= r —(1 —n}R denote the position of the electron
with respect to the center of mass, the target,
and the projectile nucleus, respectively, with n

MJ(M2+M, ). The projectile is assumed to
follow a straight-line trajectory B=b+ z~ with
respect to the target nucleus. In order to take
advantage of sum rule (8) it is convenient to adopt

The last factor in +& represents the eikonal
phase factor in the Prior form. ' For the appli-
cation to multielectron targets we allow here the
effective charge Z,' in the final state to be differ-
ent from the charge Z, in the initial staQ. Using
the integral representation given by Gau and
Macek'" we can rewrite the phase factor as

exp i
oo Zt~df. ' =exp iqZt'ln xt —zt

t

1
r(-i2lz;)

iqZ' 1t

& exp[-X(2, —z,)]dh . (15)

()t +Z t )Tt +A. Z t

82(X+ Z, )
(p 2i~p. +2~z, + z, )

Xe "'td'P (i6)

Introducing the Fourier transform (16) and
the inverse transform of Eq. (7) into space
integral (12), and writing t = zs/v and e =e2 —e„
we obtain for the transition amplitude

After inserting Eqs. (13) and (14) into Eq. (12) we
may express the functions y„, (r2)/22 by their
Fourier transforms defined in Eq. (7). Further-
more, the exponentials occuring in y„(r,)
=2 't2Z2t2exp(-Z, 2', ) and in representation (15) of
the eikonal phase may be combined to give

3/2
lz

~&r(-2qz, ) (»)"'v
82(a+z )x '"'~ '

nlm( }
(p2 2@p + 2yZ + Z2)2

&&expji&gz„—iv. r+i ', (1 —2n)vz„—ip (r-+ nR) + iq [r —(1 —n)R]]d22. dz„d2q d'p dX.
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(18)

The r integration can now be done yielding a factor (2v) 6(q —v —p). Rewriting R = (b, z~), p= (p„p,),
and v= (0, v) in cylindrical coordinates allows us to single out the z„ integration which gives a factor
2m'(P, —P„) with P„=——,'v+ et) W. ith these steps, eight integrations have been performed in Eq. (17) so
that we are left with a three-dimensional integral for the transition amplitude

25/2Z Z3/ (~+ Z )X '"'i 'e 'b'~
1smlm( 9 } +I ( f Zt) +num(P I (P2+P2 2i~P + 2~Z +Z2)2 Pb

Os

This expression cannot be easily reduced further.
However, the ultimate goal is not A.„„, but the
total cross section

o'„-„= A„-„,~ b, v d b (19)

for electron capture into a given principal shell n.
When taking ~A» „,„~' the number of integrations
doubles to d'P~ d'P~ dX dX.'. By inserting into
Eq. (19), the b integration can immediately be
performed yielding the factor (2m)'5(p~ —p~').
Thus, while in Eq. (18) only the longitudinal parts

Pp + v of q and q' are fixed we now see
that also their transverse parts q, = q,'=p, are the
same in both g functions occurring in Eq. (19).
The g functions can, therefore, be combined with
the subshell summation to give the left-hand side
of Eq. (8}with vanishing momentum spread, i.e. ,
q=q'=p„+v+p, . This implies x=0 on the

2Z p

2g3(p2 ~ p2 ~ Z2)2 '

Since the X, X' integrations from Eq. (18) stiG
factorize in Eq. (19) they can be carried out"
individually yielding

(2o)

I

right-hand side of Eq. (8) and sinnx/(nsinx) = 1.
Remembering the general arguments of Sec. IIB
which suggested that swithin a certain aPProxima-
tion only the diagonal part of the density matrix (3)
or (8) should contribute to the cross section (while .

the behavior in the remaining domain is irrelevant)
we now find that within the eikonal approximation
this statement holds vigorously. By eliminating
q„=ZJn with the aid of e =—,'(Z', —Zgn') we can
write the right-hand side of Eq. (8) more conven-
iently as

2Z'
v'n'[p', + (—,'v+ eq)'+ Z2gn']'

(Z.Z (}'" 8(2Z, —»P.,)'"'& ~Z~'&l I &(I + &&Zl}
'

d 2 (21)
n'~ vsinh(vqZ, ')I"(-iqZ,'} 2Z, —2iPO, (P~+Po, +Z, )' (Pb+Pog+Z, )'

Owing to the azimuthal symmetry the remaining integrations reduce to a single integral via d P~- mdP~

and can be easily performed. Reinserting po Qp+ fg we arrive at the final result

o„„(Z„Z~,u)= (oZ„Z~, e) „„"(„~, ),

where the OBK cross section has the usual form"'

(22a)

1s-n L tt Pt I 8 3 2[Z2+ P }2P ~

t 2

and the scaling factor is

&,(~q~Zq, U)= . ', exp -2&Z,'tan 'OZ&, , z'v-eg 5 Z,' 5 Z,'~
sinh(mqZ, ') ' Z, 8 Z 48 Z2

5Z 5Z,", 5 Z,', ,—

6 ' 4Z, 12Z, 12Z,

(22b)

(22c)

with q = I/v and e = ——', (Z2~/rP —Z', ). Result (22) is
exact within the prior form of the eikonal approxi-
mation stated in Eqs. (12)-(14). For a hydrogen
target, Z, =Z,'=1, we get our previous result, "
for Z~=Z, =Z,'=n=1 we recover the result of
Dewangan, "and for Z,'=0 the OBK approximation.
Equation (22) is subject to several limitations: As
is well known, ' for e- , the second Born term
becomes dominant and hence Eq. (22) does not

I

apply. On the low-energy side, limitations
caused by the atomic representation and by Eq.
(11}are discussed in Sec. IV.

B. Cross section for capture into continuum states

The methods developed in the preceding sec-
tions can be easily applied to describe electron
capture into projectile-centered continuum states.
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N(ZJk) =exp(--,'vZ, /k)I'(1+iZ~/k) . (24)

Since we are interested in the total cross section
for a given momentum ~k~ we need the momentum
density matrix p-„(q, q ) integrated over all direc-
tions k of electron emission in the projectile sys-
tem. Following the discussion of Sec. . IIA we
anticipate that q»k and only the domain q = q'
contributes to the cross section. The density
matrix derived from Eq. {23) then takes a very
simple form

p.(q, q) = qI*, (q)q -„(q) dk

4Z~IN{Z~/k) i'
v'(q' —k')4 (25)

A similar density matrix is obtained for the func-
tions g-„(q) defined, in analogy to Eq. {7), as the
Fourier transform of y-„(r~)/x~. By inserting g,
into the Schrodinger equation one derives

g- (q)g-(q) dk =, ,' .. . q v k .I N(Z~/k) i'
(26)

It is obvious that an "effective wave function"
analogous to Eq. (10) may be readily defined by
taking the square roots of the right-hand sides of
Eqs. (25) and (26). By construction, the wave
functions exhibit spherical symmetry and, of
course, may. be transformed back into coordinate
space.

The calculation of the transition amplitude fol-
lows step by step the corresponding calculation

In collisions of energetic highly stripped ions one
finds, both experimentally" and theoretically, "a
group of electrons ejected into a narrow forward
cone. In the laboratory system, these electrons
have a velocity v, close to the projectile velocity
v and corr'espondingly, in the projectile frame
their momentum ~k~ (in a.u. ) is small compared
to v. The situation is hence analogous to capture
into a high principal shell n.

In the eikonal approximation, the transition
amplitude is again given by Eq. (12) with q„,„(r~)
in.Eq. (14) replaced by the Coulomb continuum
function y„-(r~) (with a 5-function normalization on
the momentum scale) for outgoing electrons and
with e~= —,'O'. Bather than using a partial wave
expansion it is convenient to introduce a compact
representation" of the momentum wave function
defined in analogy to Eq. (1),

v;(e= —
~,.&( „)

[q —(k + KE)2]-a z&~ 0

, o de [(q-k)'+e'] ' ~"
with

with

2"v'Z~Z',
~ N(Z~/k) I

'
ls-k 5[54 2(k2 —Z2)v + (k + Z )]5

~Z, vZ, exp(vZ, /k)
k k sinh(mZ~/k)

(27b)

This expression is exact within the eikonal ap-
proximation, but again it should be kept in mind
that the condition (11)has to be satisfied. There-
fore, Eq. (27) is valid only for sufficiently small
momenta k. In fact, unless k « —,'v the very con-
cept of projectile-centered wave functions does
not apply and one then has to treat the full three-
body problem. Our treatment is different from
the standard OBK treatment" of continuum cap-
ture (i) We. allow for k o0 and therefore have to
perform an angular integration. For this reason,
there is no direct simple relation between k and
the velocity v, in the laboratory system. (ii) The
eikonal treatment leads to a scaling factor n~
(with respect ot the OBK cross section) which is
similar in magnitude to the scaling factor for
bound state charge capture.

IV. DISCUSSION OF THE RESULTS

A. Electron capture from hydrogen targets

Atomic hydrogen targets are the most important
ones from the viewpoint of applications in plasma
physics and for an understanding of the basic
process. The capture cross section (22) for Z,
=2,'= I applies to a specific principal shell n.
Experimentally, however, it is often not possible
to specify the final electronic state, so that all
bound states contribute to the cross section. Fig-
ure 1 shows the relative contributions of the vari-
ous n shells to charge capture by fully stripped
carbon ions. It is seen that for not too high pro-
jectile energies a great number of principal
shells contribute with a maximum in the vicinity
of the resonant transition e =0 or e=Z~. Only

in Sec. IIIA. When use is made of Eq. (26) with
q' being fixed by the preceding reduction, a rela-
tion analogous to Eq. (20) shows that the denomi-
nator is indeed positive definite. Hence the inte-
grand has no singularities in the whole range of
integration.

As a result, we obtain the eikonal cross section
for continuum electron capture into the momentum
interval between k and. k+ dk with respect to the
proj e ctile

(27a)

where o, „ is given by Eq. (22c) with e =-,'(k'+ Z', )
and the QBK cross section for continuum electron
capture is
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FIG. 1. Relative contributions of various principal
shells n to the total cross section for electron capture
from hydrogen into C6+ are plotted for three different
projectile energies per nucleon. Between the integer
values of n smooth curves have been drawn to guide the
eye. The peak heights of the curves are normalized to
1.

for very high energies (when the cross section is
already quite small} the higher momentum tails
of the lower shells rather than the resonance
condition dominate the cross section.

In order to account for the contributions from
all principal shells it is useful to introduce a
theoretical scaling factor n(Ze, v) through the re-
lation

+carrt = g renr(

= n(Z„v) poor,sK(Z„v) . (28)

The numerical calculations show that the theoreti-
cal scaling factor is almost independent of the
projectile charge Z~, see Table I. This is easily
understood because in Eq. (22c), Z~ enters only
through the energy difference e, and e is always

0.1—
0 ~

0 0
~Q

0

I I I II I I I I IIII I I I I I IIII
100 1000

projectile energy per nucleon [keV/omu]

FIG. 2. Scaling factor obtained by dividing capture
cross sections by the corresponding OBK cross section
is plotted as a function of the projectile energy. The
curve shows the theoretical result of Eq. (22c) for the
representative charge Z&

—-2. The points indicate ex-
perimental data. Open circles, squares, triangles,
and inverted triangles refer to Refs. 20, 21, 22, and
23, respectively. The data for partially stripped ions
C, N, and 0 are from Ref. 24, for Si from Ref. 25.
Points for different charge states of a given proj ec tile are
represented by the same symbol. The effective charges
q ff given by Olson and Salop (Refs. 8 and 25) have been
used to calculate the OBK cross sections (C~: 2.4;
C ' 3.2 N +: 2. 5 N +. 3.2; N +: 4.1 0+: 2, 6; 0+: 3.4;
O+. 4 3- Si4+: 3 Q. Sis'. 4.1; Si6+: 5.1). The data for
Fe with q=20-25 are from Ref. 26. All six experi-
mental points fall into the bar indicated if Z&-—q is used
to calculate 0. . The data of Refs. 21, 22, and 26
refer to H2 and have been divided by a factor of 2 for a
reduction to atomic hydrogen.

E
(keV/amu)

&=0

50 1000 5000

0.12 0.16 0.21 0.27 0.31 0.39

1
2
5

10
20

0.15 0.18
0.16 0.18
0.16 0.18
0.16 0.18
0.16 0.17

0.22 0.27 0.31 0.39
0.20 0.25 0.30 0.39
0.20 0.25 0.28 0.36
0.20 0.25 0.28 0.35
0.20 0.25 0.28 0.35

TABLE I. Calculated scaling factors &(1,Z&, v) for
hydrogen targets as a function of the projectile charge
Z&, and energy E per atomic mass unit. The first line
shows the resonant scaling factor (&= 0) for comparison.

associated with yj = 1/v. Hence, at low-projectile
energies when q is appreciable each projectile
finds its appropriate resonance at n =Z~, & = 0,
while at high energies when e is appreciable (cf.
Fig. 1) yI is small. In both cases, the e independ-
ent terms in o, „(Ze, v} dominate. In fact, taking
e =0 in Eq. (22c) gives a pretty good estimate for
o(Ze, v) = o (v) defined by Eq. (28), see Table I.

In Fig. 2 we show" the energy dependence of
the theoretical scaling factor for the representa-
tive projectile charge Z~= 2. Also plotted are ex-
perimental data points" ~' obtained by dividing the
experimental capture cross section c„„(expt) by
the summed OBK cross section Q„ryros„". For
partially stripped projectiles we have used effec-



JORG EICHLER AND F. T. CHAN 20

tive charges (as given by Olson and Salop') for
calculating 0 . The data are derived from a
large number of measurements with various pro-
jectiles and various charge states. Before re-
duction, the corresponding cross sections range
over many orders of magnitude. The experimen-
tal uncertainty is in most cases of the order of
30/0. In view of the sensitivity of the plot the
data all falls into a relatively narrow domain
around our theoretical curve.

B. Capture of ls electrons from multielectron targets

0
O

0.6

0 0 He'2

0 5 ~ ~ +&+x H'

V/VK

5 10
I I I I I I I I

A + He =A'q +He'

15
t

For multielectron targets, we adopt the follow-
ing simple picture: The captured ("active") Is
electron moves in a Coulomb field produced by
the effective target charges g, in the initial state
(entering only through the binding energy) and Z,'

in the final state (entering only through the eikonal
phase). All other electrons including the second
("passive") 1s electron do not change their orbits
during the reaction. Although, for large separa-
tions, the active electron only sees the net charge
1 of the residual target ion it will be a good ap-
proximation, in most cases, to put Z,'.=Z, because
small separations are weighted most heavily in
the transition amplitude (12). We take this point
of view but Eq. (22) offers more flexibility.

In order to be able to apply Eq. (22) two condi-
tions have to be satisfied: (i) The atomic repre-
sentation requires that the impact velocity v be
greater than the orbital velocity vz of the initially
bound Is electron (ii) The eikonal approximation
requires that etl/(trZr) « I [cf. Eq. (11)j. Usually
condition (i) is more restrictive. It suggests to
introduce v/t/„or the projectile energy per nucleon
divided by Z', as a parameter to characterize a

&.collision system.
In Table II we present the calculated scaling

tII 0.2— H'-
0

He'2- 0
0

v
&x

factors for He, Ne, and Ar targets (taking bare
charges Z, =Z,'=2, 10, and 18, respectively) and

a variety of projectile charges Z~. It is seen that
the scaling factor is a function of t//vr, which is

I I I I I I III I I I I I'IIII I I I I

100 1000
projectile energy per nucieon /Z, [keV/ornuj

FIG. 3. For a helium target the scaling factor e
obtained by dividing the total capture cross section by
the corresponding OBK cross section is plotted as a
function of the projectile energy per nucleon divided by
Z2& with Z&= Z&=1.6875. The solid and the dashed lines
show theoretical results for Z&

——1 and Z& =2, respec-
tively. The points indicate experimental data. Closed
circles, squares, triangles, inverted triangles,
diamonds, and crosses refer to Refs. 27, 28, 29, .30,
31, and 32, respectivel. y. Open circles and squares
refer to Refs. 22 and 21, respectively.

TABLE II. Calculated scaling factors &(Z&, Z&, v) for He, Ne, and Ar targets and various projectiles as a function of
the projectile energy per nucleon divided by the square of the target charge number Z~. The ratio v/vE between the
projectile velocity and the velocity of the target K electron is also given. In all cases bare target charge Z, =Z~ have
been used.

E/Z'
(keV/amu)

v/vE
Target He

50
1.41
Ne Ar He

100
2.00
Ne Ar

200
2.83

He Ne Ar

500
4.47

He Ne Ar He

1000
6.32

Ne Ar

1
2
3
5

10
15
20

0.21 0.24 0.24 0.21
0.15 . 0.23 0.24 0.15
0.16 0.23 0.24 0.16
0.16 0.21 0.23 0.16
0.16 0.15 0.20 0.16
0.16 0.16 0.17 0.16
0.16 0.16 0.15 0.16

0.23
0.22
0.22
0.21
0.18
0.17
0.18

0.23 0.23
0.23 0.22
0.23 0.20
0.22 0.20
0.21 0.20
0.19 0.20
0.18 0.20

0.24 0.24
0.24 0.24
0.24 0.24
0.23 0.24
0.22 0.23
0.20 0.22
0.20 0.21

0.28 0.28
0.27 0.28
0.26 0.28
0.24 0.28
0.25 0.27
0.25 0.26
0.25 0.25

0.28
0.28
0.28
0.28
0.28
0.27
0.27

0.32
0.31
0.30
0.29
0.28
0.28
0.28

0.32 0.32
0.32 0.32
0.32 0.32
0.32 0.32
0.31 0.32
0.30 0.31
0.30 0.31
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approximately independent of Z~ and Z, . The
reasons are the same as discussed in Sec. IVA.

Figure 3 shows the energy dependence of the
theoretical scaling factor for the capture reac- .

tions H'+He(ls') —H+ He'(ls) and He" + He(ls')
—He'+He'(ls). For the screened target charges
we have taken the standard' values Z, =Z,'=1.6875.
Also plotted are experimental data points obtained
by dividing the experimental capture cross sec-
tions"'"" "by twice (for the two 1s electrons)
the corresponding total QBK cross section.
Similarly as in Fig. 2, the agreement is very
satisfactory regarding the sensitivity of our plot
and the simplicity of our theory.

d'or target atoms heavier than helium systematic
measurements with high-energy projectiles (such
that v/vr ~ 1.5 or E/(Z2+) ~ 50 keV) are needed.

V. CONCLUDING REMARKS

In the present work, we develop an approach'
to electron capture into arbitrary principal shells
and into continuum states of the projectile. The
approach is based on the momentum density matrix

p(q, q') of the captured electron summed over all
substates, l, m or integrated over all emissioh
angles, respectively. As a starting point, we

rewrite the density matrix in a form which clearly
exhibits its dependence on the "momentum spread"

~
q —q'

~

. We then proceed to give arguments that
for electron capture it should be a good approxi-
mation to replace p(q, q') by p(q, q) everywhere in

momentum, space because owing to the particular
capture kinematics only the domain q=q' con-
tributes to the total cross section. This approxi-
mation" should be valid for any approach to elec-
tron capture. As an example, we treat the eikon-
al theory in its prior form. We discover that in

thiswase the replacement prescription leads to
an exact result. As a consequence, it is possible
to calculate the eikonal cross section both for
capture into arbitrary principal shells and into
projectile- centered continuum states without

further approximation. The final formula is a
simple analytical expression factorizing into the
well-known OBK cross section times a scaling
factor n =0.1-0.4. This scaling factor turns out

to be a function of v/vr, approximately independ-

ent of the projectile and target charges. In view

of its simplicity and better foundation our final
formula should replace the OBK expression as a
starting point for further refinements. Compari-
son with existing experimental data shows sur-
prisingly good agreement. More precise data
over a wider energy range and for a variety of
targets arid projectiles are needed to assess the

limitations of our formula. In the meantime it
may serve to estimate unknown cross sections
needed for plasma research.
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