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ac Stark splitting in double optical resonance and resonance fluorescence by a
nonmonochromatic chaotic field
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A detailed theoretical analysis of ac Stark splitting in double optical resonance and resonance fluorescence
by a nonmonochromatic complex chaotic field is presented. It is shown that a one-photon transition
undergoes Stark splitting, which is strongly affected by the intensity fluctuations of the chaotic light. On
resonance, the lines in the doublet structure of double optical resonance and the'sidebands of the triplet
structure in resonance fluorescence are broadened by the intensity fluctuations and tend to copy the Rayleigh
distribution of the field amplitude. Off resonance, the asymmetry of the doublet in double optical resonance
is reversed and a sideband asymmetry appears in resonance fluorescence for finite bandwidth of the incident
light. While on resonance the splitting is always reduced, off resonance the intensity fluctuations may lead to
an enhancement of the splitting in comparison to phase-diffusing light.

I. INTRODUCTION

Until. recently, the theory of the resonant inter-
action of intense laser radiation with atoms had
been based mainly on the assumption of monochro-
matic and coherent excitation. Although neglecting
the bandwidth and intensity fluctuations of the laser
seems to be justified for the interpretation of re-
cent exper iments employing mell-stabilized cw
lasers, ' ' light from pulsed multimode lasers ex-
hibits large intensity fluctuations and often has a
bandwidth at least comparable to the relaxation
constants of the atom. ' The interpretation of ex-
periments performed with such lasers requires
a generalized theory which can account for the
fluctuations of the exciting light. As has already
been apparent in recent experiments and as is
shown in this p'aper, the fluctuations of the field
and the associated bandwidth introduce important
new effects.

For a nonresonant Ã-photon transition to a broad
final state, which is described by a rate in &th
order perturbation theory, the effect of field fluc-
tuations is well understood as it enters through
the &th order correlation function of the incident
light. ' The calculation of transition probabilities
and line shapes of saturated resonant processes,
however, requires the summation of an infinite
sequence of resonant terms of the perturbation
series and contains therefore information about
all higher-order correlation functions of the field. '
This of course stems from the fact that saturation
is a highly nonlinear process. Under such condi-
tions, general solutions for electromagnetic fields
of arbitrary stochastic properties are no longer
available. The problem of atom-field interaction
must then be solved separately for each model of
the stochastic field. Two particular models, the

phase-diffusion (PD) modei7 ~
' corresponding to a

well-stabilized cw laser with a diffusing phase
and the chaotic field (CF)' describing thermal light
or light from a multimode laser with a large num-
ber of independent modes, ' have attracted particu-
lar interest in this context. The effect of a finite
laser bandwidth on the basis of the PD model is
by now well understood. "" On the other hand,
the understanding of these effects in CF, owing to
serious mathematical difficulties, has been either
purely qualitative" or based on such methods as
the decorrelation approximation (DA),""" the
validity of which for the CF in the saturation re-
gime is at best questionable. It is only recently
that solutions for the stationary density-matrix
elements of a two-level atom (TLA) in a C F field
have been given. "" Double-resonance and reso-
nance fluorescence of a TI A in a CF have, how-
ever, remained unsolved problems in this area.

As is well known, an atomic transition, under
the influence of a coherent resonant intense field,
undergoes Stark splitting when the Rabi frequency
becomes larger than the natural decay widths of
the atom. " This splitting can be observed either
in double resonance' '""or in fluorescence. "' '
In double resonance, the TLA is probed by a sec-
ond weak laser, inducing transitions to a third un-
perturbed level. The splitting of the resonance
line into a doublet, with peaks separated by the
Rabi frequency of the TLA, is observed as a func-
tion of the probe frequency. In resonance fluores-
cence, the spectrum of the TLA'exhibits a triplet
structure. "The central line coincides with the
laser frequency and is accompanied by two side-
bands which, for on-resonance excitation, are
separated by the Rabi frequency. Since the Rabi
frequency is proportional to the electric field am-
plitude of the incident laser light, the large inten-
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sity fluctuations of the CF, which are of the order
of the intensity itself, will tend to wash out the
splitting. On the basis of such qualitative a.rgu-
ments, it has been predicted that the triplet spec-
trum would disappear for C F's." On the other
hand, calculations within somewha. t simplified
models predict ac Stark splitting in double reso-

nancee.

"" The splitting of spectral lines in re so-
nance fluorescence and in double optical reso-
nance are, however, closely related. In view of
these discrepancies in the predictions for the
spectrum of double resonance and resonance fluo-
rescence in C F's, there is a need for accurate
calculations capable of answering questions re-
garding the existence of ac Stark splitting for a
TLA, the magnitude of the splitting, and the widths
and heights of the spectral lines of the spectrum.

In this paper I calculate the spectrum of double
resonance and resonance fluorescence in an in-
tense nonmonochromatic C F within a formalism
that has been developed in a series of pa-
pers. ' "~"'" Starting from a stochastic model
for the C F, introduced in Sec. II, I derive equa-
tions for the averaged atomic populations in double
resonance within the weak-probe approximation in
Sec. III. Within a similar approach Sec. IV gives
a treatment of the spectrum of resonance fluores-
cence.

II. MODEL FOR THE CHAOTIC FIELD

A multimode laser w ith a large number of inde-
pendent modes is accurately described by a non-
monochromatic ideal C F.' This model has also
been employed by other authors in the study of
different processes'. "v ' Typically, the Nth-order
correlation function of the electric C F amplitude
e(t) satisfies'

(e*(f,)" ~*(f„)~(f„„)"~(f.„)&

&~*(f,) &(f (,,„))&, (1)

where P stands for permutation. Assuming the
spectrum to be Lorentz ian, the first -order cor-
relation function is given by &e*(t)e(t')&
=

&~ « ~')e Q" ' ', with b being the.bandwidth of th@
spectrum.

A stochastic model for e(t) having the above
properties of a C F can be described in terms of
the Lang evin equations"

~(f) = -b~(f)+ P,(f), e*(f)= -S~*(f)+ F„(f), (2)

with Gaussian random forces"
I

&P,( f)P,.(f') &
= » & f

~
J

'&&( f - f')

&P,(f)F,(t')&= &F,.(f)F.*(f')&=o.
Thus we assume that e(t) obeys a normal Markov
process. " The Fokker-Planck operator L,(c, c*)
in the corresponding master equation

The stationary solution I.P,(c, «*)= 0 of the master
equation is the Glauber P-distr ibution function for
the C F'

P,(«, &*)= (1/v&~ c
~

))e

III. DOUBLE RESONANCE

(4)

We consider an atom with ground state ~0) and
two excited states

~
1& and

~
2), with respective

energies h&u, &her, &kv, ." The transitions
~

0)-
~
1)

and
~
1)—

(
2) are dipole allowed, while (0)—(2) is

forbidden by parity-selection rules. The excited
states

~
1) and

~

2) have natural decay widths K, and
K,. We assume that the first transition ~0&-~1) is
strongly driven by the C F of Sec. II. In double
resonance the ac Stark splitting of this transition
is detected by observing the population induced in
level

~
2) by a weak-probe laser as a function of

the probe frequency. ' This population can be
measured either by monitoring its fluorescence
to some unperturbed level or by observing the total
ionization from this uppermost level. In order
not to perturb the Stark splitting of the strongly
driven TLA ~0), ~1), we neglect the influence of
ionization and adopt the weak-probe approxima-
tion, i.e. , we assume that the probe laser does
not affect the strongly driven TLA ~0),

~
1) (p»

+ pQQ= 1;p»= 0). If the ionization or the probe is
strong, a much more complicated structure ap-
pears which is of no interest in this paper. In this
way we obtain the following eq uations for the s low-
ly varying density-matrix elements in the rotating-
wave approximation" '"":

+ E2 P22 t —$3Q P) 2 $ + c.c. y

(
d

+ &~2+ a&g2 Pg2 ~

= —f-', 0'p»(t) + ip„e(t)p„(t), (5)

+ 5 /+$ 2+ 2KQ2
~
pQ2(f)

)

i ,'0'p„(t-)+-f [p„c(t)]*p„(t).

pop pg 2 and p» fulf ill the equations of the TLA

for the probability distribution P(«, &, f) is given
by30f 31

L(c, c*)= b -—a+ ~ a*+ 2&~ &
~

) ~ ~. (3)
e s, , s'
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coupled to the strong field but not to the probe:

( + Kg I pu( t) = 5 p p~ e( t) pp~(t) + c.c. ,1) ll Ol

(
d—+ ib, + 2 K„ I ppg(t)

(6)

With the help of the stationary solution for the pop-
ulation of level

I
2) in coherent fields as has been

given in Ref. 22 [see also Eq. (14) below], we find

&P.2(t}&=2 K2

with K,&=K,+ K& and p,0l being the dipole matrix
element of the transition IO)- I1) and Q' the Rabi
frequency of the probe. 6,,= &d —v» and 62= v'
—v~ correspond to the detuning in the transitions
IO)-

I 1) and I1)- I2), respectively. A Lorentzian
bandwidth 5' of the weak-probe laser is easily in-
cluded in Eq. (5) by the substitutions —,

' K»+ b' and
—K +b'2 02

Since the electric field amplitude e(t) is a sto-
chastic function of time, the density-matrix equa-
tions (5) and (6) are stochastic differential equa-
tions" which must be solved for the averaged pop-
ulation & p»(t)), of level

I
2). & ), denotes aver-

aging over the fluctuations in the incident field.
The subscript indicates the explicit time depen-
dence of this average. Equations (5) show that
the population of state

I
2) p»(t), as induced by the

weak probe, depends on the off-diagonal density-
matrix element p»(t}. Because of the fluctuating
amplitude, p»(t) and p„(t) become stochastic func-
tions of time. The stochastic behavior is induced
directly by e(t) as well as by the fluctuations in
the population p»(t) and the off-diagonal density-
matrix element of the TLA p»(t). Both of these
fluctuations, of course, have their origin in the
stochastic driving field.

In the limit of a field with zero bandwidth, the
amplitude &t(t) is no longer a stochastic function
of time, but becomes a time-independent random
variable distributed according to the stationary
distribution function P,(c, a*)." The averaged
density-matrix elements &p,&(t)&, may therefore
be found by solving Eqs. (5) and (6) with a con-
stant field amplitude e(t) = c for p~~&'(c, e*, t}, which
is the solution for a monochro;vatic coherent
driving field, and averaging this solution over the
probability function P,":
&p (t))'=' = d'cP (6 c*)p'='(E f* t}.

x fae'E, (a) —be'E, (b)]+c c ,. . (8)
a —b

with a=4ST/0' 5= 2 ft I'I'tl', a,nd 0= 2Pip&l & I'&"'
R, S, and T are defined by R = i+l+ z K0l 8
+ —,

' K„, and T= t(t),, + t),,) + 2 K». E, denotes the
exponential integral. "

The solution of the density-matrix equation for
finite bandwidth fields is one of the central diffi-
culties in the tr eatment of the interaction of atoms
with stochastically fluctuating fields. One com-
monly employed approximation scheme in solving
these equations has been the decorrelation approx-
imation (DA) which decorrelates atom-field av-
erages of the form" """

This decorrelation can be justified only in the limit
in which the fluctuations of the electric field are
much faster than those of the populations, i.e. ,
the bandwidth of the field e(t) must be larger than
the Rabi frequency A=2 p«&Ie(t) I') ' (Ref. 32).
The DA is therefore only valid in the weak-fieM
limit and becomes questionable when the driving
field becomes sufficiently intense to saturate the
atomic transition.

We have recently outlined a rigorous method of
solving the density-matrix equations for a stochas-
tic Markovian driving field. Details of this method
are given in Ref. 30. A short outline of the appli-
cation of this formalism to Eq. (5) may be found
in the Appendix. The idea of the method is to con-
vert the stochastic density-matrix equation to an
infinite system of differential equations of certain
atom-field averages depending only on one time
argument.

Applying this formalism to the density-matrix
equation (5) and using Eq. (A8) of the Appendix,
we find that for the CF of Sec. 2 the atom-field
averages

PTER&)&=(

» ) &I+&)&I'" &+&)&&+ &
&)" '~' '& l~&)& I'&&1~1 &&& a&&))&I&I&I &'"'

o.'= 0, + 1, . . . , n = 0, 1, 2, . . . , (9)
I

with L„being Laguerre polynomials" obey the infinite system of differential equations
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~

—+K,+ 2nb p'„"(t)= i-,'0'p,',"(t)+c.c. , n= 0, 1, 2, . . . ,ddt

(—+S" p,'," t =z2Q 4n+1p'„" t — n p'„"' t -z&Q'p,'," t,dt

—+ p p02 t —z2Qv'n+1 p» t —p12 t —z2Q pp1dt

+K + 2n5 p11 t z2Q ~n+ 1 pp1 t npp1

(10)

(—+R"
~
p'„"(t)= —,

' nv' +1[p,',"(t) —p'„"(t) —p,',""(t) + p'„""'(t)],
dt )

Pll (t) + Pnn (t) n~O i

with Q= 2l1„v'(( g (2)»' being the Rabi frequency of the transition
~

0) —~1),

R"=in,,+~nK„+(2n+1)b, 8"=id,+~nK„+2nb,
'i

and T"= id, +id, , +2 K» + (2n+1)b. Note that the averaged populations are simply given by (p, ,(t)), = p", ,(t).
Confining ourselves to the stationary limit and neglecting time derivatives, Eq. (10) gives the following

expression for the population of level
~

2):
f

1 Q'
(p„(t)) = i-—p,",+ c.c. ,

2

where p,'," fulfills the inhomogeneous three-term recursion formula

1 (n+ 1)Q 1 nQ
~ o„ 1 (n+ 1)Q 0„,1 1 nQ

+
4 Tn Tn-1 IP12 4 Tn P12 4 Tn 1 P12

z2Q p1j + 4Q Q f1 p01 gg 1 pp1 y n y 1p p ~ ~ ~ ~ 12

The coupling of the average p,", to all the other
higher-order atom-field averages p,'," indicates
explicitly the influence of all higher-order corre-
lation functions of the incident field. The inhomo-
geneous terms on the right-hand side of Eq. (12)
arise from the population and population fluctua-
tions in the system

~
0),

~

1). Note that the differ-
ences W"= p,'1 —po," [from which p,'," and p',1 may be
found with the help of Eq. (10)] fulfill a similar
recursion relation

(K, + 2nb+A„+A„, ) W"-A„W""-A„,W" '= -K,&~,

(13)

with

nK„+ (2n+ l)b

As we discussed in Ref. 19, the solution of Eq.
(13) can be found in terms of continued fractions
so we can assume that the right-hand side of Eq.
(12) is known. On resonance and for high intensi-
ties the terms in Eq. (12), corresponding to the
population fluctuations, can be neglected. Such
an approach has been used in Ref. 20. Our method
includes these terms which will be seen to have a
significant effect on the off-resonance spectrum.

T +R'*K,/(R +R *)
X ozO &Q2

- +C C.
y+ 4

(14)

which is the result obtained by the DA. Equation
(14) also coincides with what is found for the PD
model having the same spectrum as the CF,

'
but

is necessarily different in its higher-order cor-
relations. " The DA obviously neglects terms of
the order (0/b)~ and is, therefore, valid only for
weak fields as we already noted before. The so-
lution of Eq. (12) can be expressed in terms of an
infinite sum over continued fractions. It turns
out, however, to be much more convenient to
solve Eq. (12) directly by numerical methods.
Equation (12) is a band-structured linear algebraic
equation which can be solved numerically very ef-
ficiently up to high orders since no pivoting is re-
quired. The convergence of (p»(t))= p'„' depending
on the truncation of the system can be checked
easily since for b = 0, where the convergence is
worst, the exact solution (8) is known. In Figs.
1-4 we compare the result of numerical calcula-

I

If we truncate both Eqs. (12) and (13) keeping only
the lowest averages, we obtain

Q12 Q
4 n 2 IC IB'I'/(R"+R") n')
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FIG. 1. Spectrum of double optical resonance. The
exciting CF (solid lines) and coherent field (dashed
lines) are monochromatic (b = 0) and tuned on resonance
(4, = 0). The spectrum is symmetric around Q = 0.

FIG. 3. Spectrum of double optical resonance. The
exciting CF (solid lines) and coherent field (dashed lines)
are monochromatic (b = 0) and tuned off resonance (&&
= 5K().

tions of (p»(t)) for the CF (solid lines) with those
for the phase diffusion model and DA equation (14)
having the same spectrum and intensity as the CF.

Figures 1 and 2 show the population of level
~

2)
as a function of the detuning of the probe laser 6,,
for 6,=0. The bandwidth is chosen as b=0 and
b=K, in Figs. 1 and 2. In each of these figures
the Rabi frequency is varied from Q Kg 5K' to
10K,. Only the right half of the spectrum is
shown since it is symmetric around b, ,= 0. For
low intensity corresponding to 0= K, and excita-

0.20

tion by phase-diffusing radiation, the population
of state

~
2) shows a single peak at the unperturbed

transition frequency ~1) —
~
2) with linewidth de-

termined essentially by the natural decay con-
stants of the atom and bandwidth of the field. For
the CF the intensity of this line is reduced since
fewer atoms are excited to state ~1)." Further-
more, the line shape in the CF is no longer Lo-
rentzian but has broader wings. %hen the Rabi
frequency is increased to Q= 5K, and 10K„satu-
rating the transition

~

0)- ~1), the spectrum splits
into a doublet. When the system

~
0), ~1) is ex-
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FIG. 2. Spectrum of double optical resonance. The

exciting CF (solid lines) and phase-diffusing light
(dashed lines) have finite bandwidth b =K& and are tuned
on resonance g

&

—-0). The spectrum is symmetric
around Q = 0.

FIG. 4. Spectrum of double optical resonance. The ex-
citing CF (solid lines) and phase-diffusing light (dashed
lines) have finite bandwidth b =K& and are tuned off res-
onance (&&

——5K&).
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cited by phase-diffusing light, the splitting fre-
quency is approximately equal to the Rabi fre-
quency Q." The heights and widths of these lines
depend only on the natural decay constants but
are practically independent of the intensity. The
splitting in the C F may be understood qualitatively
on the basis of Eq. (T) which states that for zero
bandwidth fields (p„(t)) is obtained by averaging

the corresponding population in a coherent field
pt (e, e*) over the distribution P,(g, g*). For high
intensities p~2,='(e, «*) is proportional to two Lo-
rentzians which, as we noted before, are shifted
by + p„ l

e
l

relative to the unperturbed transition
frequency. If in the average (8) these Lorentzians
are replaced by two 5 functions, thus neglecting
broadening due to spontaneous decay, we find

OO

I l 1n" 0''i. exp(-l~l'/&l~l'))
8 K ~E6«. -&., l&l)+5«. -l -l~l)]= K

~

l~, l, a»K„K, . (15)

Equation (15) predicts a doublet structure with Rayleigh distribution for the line shape corresponding to
the probability function of the amplitude of the complex CF. Note that in a real CF, which has a Gaussian
amplitude distribution, no splitting would occur. Equation (15) predicts a reduction of the splitting fre-
quency to (1/W2)Q in agreement with Figs. 1 and 2. Contrary to the spectrum for the phase-diffusion
model, a larger Rabi frequency now increases the width of the lines leading to a reduction of the heights.
The total intensity is, however, approximately the same as for the PD model and is nearly independent
of the intensity of the incident light. Although the maxima in the doublet decrease in proportion to 1/0,
the ratio of the minimum at b, ,= 0 to the maximum at 6,= a(1/2v 2)Q decreases for 5 = 0 according to

(p„) „&2e'~' K„+K„K,+„ln(Q'/K, j'6„) —,'K„K, In—(2g'/K„K,) (16)

as may be found from Eq. (8), thus improving the
visibility of the splitting for larger Rabi frequen-
cies (Fig. 1). The doublet spectrum in the CF is
insensitive to a finite bandwidth since for Q» b
the broadening of the lines due to the intensity
fluctuations is dominant. Only the minimum at 5,,
= 0 is raised with increasing bandwidth (Fig. 2).

Figures 3 and 4 show the spectra for b = 0 and
b = K„respectively, when the field coupling

l
0)—

l1) is tuned off resonance with 6, = 5K,. For Q
= K, the spectra for phase-diffusing light and the
CF are indistinguishable in these figures, as is
expected from Eq. (14). The line at b, ,= -b,, cor-
responds to a nonresonant two-photon excitation

l

0)-" -"
l
2) which is proportional to the intensity

of the strong field. " The peak at b, = 0 originates
from the two-step process l0)-" l1)-" l2) which
for 5= 0 varies as the square of the intensity. "
For finite bandwidth, photons in the tail of the Lo-
rentzian spectrum of the exciting light, which are
resonant with the transition

l
0)-

l
1),pump this

transition leading to a linear or weaker intensity
dependence. For b&K,/2 this two-step transition
becomes even stronger than the two-photon exci-
tation thus reversing the peak asymmetry in Fig.
4 in comparison with Fig. 3. Due to the long tail
of the Lorentzian spectrum this reversed p.sym-
metry persists for arbitrary detuning. " Since a
realistic laser spectrum has wings falling faster
than a Lorentzian, in an experiment this reversed
asymmetry appears only for detunings not much

l

larger than a few bandwidths of the field. 4 The
reversed asymmetry, being a bandwidth effect,
is also found in the CF spectrum. For 0=5'
and 10K„ the spectrum in the exciting phase-
diffusing light shows peaks at approximately
& [-d, a(b,,'+ 0')'~']. A qualitative understand-
ing of the different Stark shifts for the CF may be
obtained by considering the limiting cases Q «b,,
and Q»b, , in Eqs. (8) and (12). For Q«b, , the
PD field induces a quadratic Stark shift of =,'0'/

at the two -photon excitation line 6, + 6,,= 0.
Depending on whether —,'0'/L, »K„, b or —,'0'/

«Kp2, b, the Stark shift in the C F of this line
is found to be =,'Q'/b, , or —2—,'Q'/b, „respectively.
In the first case, where the fluctuations of the
Stark shift, as induced by the intensity fluctuations
of the CF, give the dominant contribution to the
linewidth, the peaks of the lines in the PD and CF
are shifted by the same amount (Fig. 8, 0= 5K,).
In the second case, where the width is dominated
by the natural linewidth or bandwidth of the field,
the shift in the CF is enhanced by a factor of two
(Fig. 4, A= 5K,). This enhancement is related to
recent findings in resonant multiphoton ionization
in CF"~": there it has been shown that in the lim-
it of a Stark shift, small compared to the band-
width of the CF, the shift is enhanced by a factor
of N+ 1 for an N-photon resonance. If the inten-
sity is increased, the broadening of the lines by
the intensity fluctuations always finally dominates
for Q»K„K„b. In this limit we find
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x exp ~"~~+~2'~ ", (b,,(b,, + d, & 0) .
(17)

Equation (17) predicts that for Q» b,, the peak of
the two-photon excitation line occurs at ——,'b., -(1/
2W2)Q, which means the peak in the CF is shifted
less than for the PD model (Figs. 3 and 4, 0
= 10K,), as we found on resonance. The increased
Stark shift for the two-step excitation line (6, =0)
for 0=5%, in Fig. 3 is explained by the quadratic
intensity dependence of this line for Q «6, and b
= 0, giving rise to an enhancement of the Stark
shift —,'Q'/b, , by a factor of two or three for —,'g'/
b,, »K» and —,'0'/6, «K», respectively. In the
case of a finite bandwidth CF, where the tail of
the exciting Lorentzian spectrum populates the
upper state 11), the intensity dependence of this
line becomes linear or weaker. " To the lowest
order in 0/6, the excited state and therefore the
two-step resonance line are shifted by the same
amount for both the PD and the CF (Fig. 4, Q
= 5K,). According to Eq. (17), an increase of the
intensity to Q»h, results in a, relative reduction
of the Stark shift in the CF, in comparison with
the PD model, to ——,'6, + (I/2v 2)Q (Fig. 4, 0
= 10K,).

The series of Figs. 1-4 clearly shows that the
DA cannot even account qualitatively for the sim-
plest features of the CF spectrum at high intensi-
ties indicating the inadequacy of this approach.

Up to now we confined our discussion to the ease
in which the transitron 10)—11) is a one-photon
resonance. For a two-photon resonance the Rabi
frequency becomes proportional to the intensity.
A qualitative understanding of the double-reso-
nance spectrum at high intensities may be ob-
tained in the approximation where the laser band-
width and spontaneous decay are neglected. As
in the derivation of Eqs. (15) and (17) on reso-
nance we find

g/2
&""&=4Kn '""'".

2

The spectrum is now an exponential function cor-
i

responding to the intensity distribution of the C F.
Instead of the doublet splitting, only a broadened
line on the transition frequency 11)-12)with a
width proportional to the Babi frequency appears.
Similar' results may be found for higher-order
resonances. ac Stark splitting in double-resonance
can therefore only occur in a CF, when a one-pho-
ton resonance. is excited by a complex CF.

Before closing this section, we point out that the
spectrum of fluorescence which may be observed
from level

1
1) to an unperturbed level 12) with en-

ergy /~2&5~, obeys a system of equations nearly
identical. to Eq. (5)." If we identify a,= -(~»
—&u») with &u» the frequency of the spontaneously
emitted photon, Figs. 1-4 show the corresponding
spectrum within a proportionality factor. "

omitting higher photon riumbers which give no con-
tribution in the limit of infinite quantization vol-
ume. ' From the expectation value of the number
of photons in mode k,

1
N (t) = Q (B „(t)1B,(t)),

g=0

the spectral emission rate of the TI A as the fre-
quency ~~ is found to be

d N~(t) = p„u~(x= 0)(A,(t)1B~(t)&+c.c. , (2o)

with u~(x) the mode function of the radiation field.
The quantities (A„(t)1B~„(t)&can be shown to be a
solution of24

IV. RESONANCE FLUORESCENCE

In this section we consider the spectrum of res-
onance fluorescence in a TLA 10), 11) driven by
the intense nonmonochromatic CF of Sec. 2. The
theory of resonance fluorescence for excitation
by coherent radiation is well developed and in ex-
cellent agreement with experiment. '"'4 " For a
complete list of references on this subject we re-
fer to Ref. 26. In order to generalize these theo-
ries so as to include the CF, we find it convenient
to calculate the spectrum within an approach which
for coherent radiation has been outlined by Mol-
low. " We separate the mode k of the radiation
field from the state vector

1
t) of the ato.m-field

system according to
1

It&= g 1»10&.l&.(t»+ g 1» I».IB..(t»

-d
+ Vp+

0

pgoC (t) p'0~E(t)

v,.~*(t) -v.,~(t)

tI 0, ~(t) —90, ~(t)

p„*(t) —p„*(t)
gK~ 0

(a, 1B„)
(x, 1B„)
(~ 1B )

=t&io"a(x=0)

(x, lB )

0

p„(t)

p,.(t)
(21)
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with 5= 6,+ &iX, and v~= cu —&u~. In Eq. (21) the os-
cillations at the optical frequency have been re-
moved according to the (AojB»)- (AojB»)e""" '". The terms on the right-hand side of Eq.
(21) are the slowly varying density inatrix ele-
ments of the TLA. The stationary solution of Eq.
(21) for coherent zero-bandwidth fields, as has
been given in Hefs. 24-26, will be discussed below
together with the spectrum in the CF.

When, owing to intensity and phase fluctuations,
the incident field amplitude e(t) becomes a stochas-
tic function of time, the spectral emission rate
(dldt)N~(t} becomes a stochastically fluctuating
quantity. As in the case of double resonance,
these fluctuations are induced directly by the fi.eld
as well as by the stochastic behavior of the density
matrix elements. In order to obtain the averaged
spectral emission rate ((dldt)N~(t))„Eq. (21)
must be solved for the average ((A,(t)jB„,(t))),.

I

When &(t) has only phase fluctuations according
to the phase-diffusion model, Eq. (21) can be
solved exactly. "" The solution as obtained by
the DA"'" coincides with the exact result, "due
to the fact that phase diffusion is a process with
independent increments. " As a result of averag-
ing over the phase, new damping terms propor-
tional to the laser linewidth b appear in Eq. (21)
(see Eq. (V) of Ref. 14). A discussion of the mod-
ification of the spectrum by the finite bandwidth
will be given below.

For the CF the DA is inadequate in determining
the spectrum; instead Eq. (21) must be solved by
the method employed in Sec. III. In the zero-band-
width limit the average may be performed by av-
eraging the spectrum in the coherent field [see
Eq. (95) of Ref. 26. ] over the stationary field dis-
tribution Pz(e, e*) of the CF. In this way we ob-
tain

(
b=o—&z(t) =

j po, u~ j
7)'a[(l+ a)e'E, (a) -l]5(v~)+-01

Vy+ Kg

a'(c —a) b'(c —b)x 1+
) ), e'E,(a)+

) )) )
e~E,(b)+ c.) If,

with

(22)

a= 2
j

& j'IQ', b= -(v, + iA )(v, + &)(v, —&')l[0'(v, +iZ I2)], c= 2(v', +SC,')In',

and E, the exponential integral. " The first term corresponds to the averaged coherent spectrum, while
the other contributions come from the incoherent part of the spectral emission rate. " For finite band-
width, Eq. (21) can be solved in a way similar to that employed for Eq. (5) encountered in double reso-
nance. Defining (A jB») "in analogy to Eq. (9), we get from Eq. (AS) of the Appendix:

I

i —+ v + 5+t2(n+ 1)b (A jB~) " 'A&n+-2((A~ jB~) "—(AojB ) ")

+ —,'gv'n+ 1((A, j B~) ' ' —(A, j B~) '"")= 0,

j—y v, - 5*+j2nb (A, jB,)'" 'Q+& n1(+(A, jB)0)"'"—(A, jB~) '")
dt

—o~~~n((A). jBg,) " —(Ao j Boo) ) = t&ot."a payat)

i —+ v +i% +(t2n+l)b (A, jB~) '"—oA(&n+2(A, jB@) '"—~n(AojB@)'" ')
dt

+-.'Ov'n+ 1((A, jB„&'"-(A, jB~)o"")= O

t —+ v, +t(2n+1)b (A, jB~)-'"-tX,(A, jB„) '"+-.'n(&n+2(A, jB„) '"-~n(AojB„) '" ')
dt

+-,'Av'n+ 1((A, jB~)'"—(A, jB~)o"")=i p„u~~p, o'"(t),

In the stationary limit the spectral emission rate is then given by

(—1V~(t) = potu)( —~oQD + tpogug p)g)/(v~ —5 )+ c.c. ,dt

where D"= (A, jB~) '" (A, jB~) '"—obeys the inhomogeneous three-term recursion formula

(24)
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~ ~ ~

(n+ 2)2Q ngQ (n+ l)2Q (n+1)~zQ
v&+ $g2n+ 1g5+ $X&— Dn

v„+6+i2(n+1)b v~+6+i2nb v~ —6++i2nb v~ —6++i2(n+ 1)b

+ 2Q'v'n(n+ 1)
' . - + ~ . &" '+2Q'v'(n+ 1)(n+ 2}

v~+ &+ i2nb v~ —~*+i2nb

X . — ++ (D""
v, + 5+i2(n+1)b+ v, —6*+i2(n+1)b&

v'n+ 1 Q,„v' n+1 Q, , v, +i K, + (2n+ l)ib
vz —&*+i2nb v& —6*+i2(n+ 1)b ~ v~+ i(2n+ l}b

and the averaged density matrix elements p,'f and

pP,
" are solutions of Eq. (10). Equation (25) has

an analogous interpretation as the corresponding
equation (10) in double resonance: the couplingof
D' to all higher-order averages D" demonstrates
the effect of all higher-order field correlations
on the spectrum. The inhomogenous terms are
due to fluctuations in the density matrix elements
of the system 10), 11). If Eq. (25) is truncated in
lowest order, we recover the decorrelation result
which already differs from the corresponding so-&

lution for the PD model since even in the lowest
approximation information on the second-order
field correlation function enters.

We have solved Eq. (25) numerically. Figs.
5-8 compare the results of these calculations for
the CF (solid lines) with those for the PD model
(dashed lines). For b=0 only the incoherent part
of the spectrum is shown in these figures.

Figures 5 and 6 give a graphical representation
of the on-resonance spectrum (b,,= 0) for b= 0 and

b = K„respectively. In each figure the Rabi fre-
quency assumes the values Q= 25Ã, and 50K,. The
spectrum is symmetric around ~~= co. The left-
hand side of the spectrum is plotted on a linear (Q»K, ). (26)

scale while for ~~~ co a logarithmic scale is
chosen. For monochromatic coherent excitation
Fig. 5 shows the well-known triplet with central
line at the laser frequency and sidebands shifted
by the Rabi frequency. ~ " The central-to-side
peak ratio. is 3:1while the corresponding ratio
of the widths is 1:3l2, in excellent agreement
with experiments. ' ' In finite bandwidth phase
diffusing light these ratios are modified to (K, + 4b)
: 2 (2K, + 3b) ' and (K, + 4b): (-, K, + 3b), respectively
(Fig. 6).""For the CF a triplet spectrum is
also observed. The existence of ac Stark split-
ting in resonance fluorescence for a CF can be
understood qualitatively for 5 = 0 by aver aging the
incoherent triplet spectrum under coherent exci-
tation over the CF distribution P, (e, e ) neglecting
the broadening o,f the sidebands by spontaneous
decay:

(—N~(t))

1.00
b=0
Q,

,
=O

0.75—

f-) 0.50—
Ltj

-1.2 —0.8

0.25—
l

Q =50II I

gl
0.00

-0.0

I

Il

lI

ll

II

l1

I&

II

0
(~& ~j

OA

IO

= 25K,

10

/
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I
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10

1.2

I t —10
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FIG. 5. Spectrum of res-
onance fluorescence. The
exciting CF (solid lines) and
coherent field are monochro-
matic (b=0) and tuned on
resonance (b, ~

= 0). The spec-
trum is symmetric around
ru&-—co. The left- and right-
hand sides of the spectrum
are plotted on a linear and
logarithmic scale, respec-
tively. The coherent 6-func-
tion contribution at ~z ——u has
been omitted.
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FIG. 6. Spectrum of res-
onance fluorescence. The
exciting CF (solid lines) and
phase-diffusing light (dashed
lines) have finite bandwidth
(b=E&) and are tuned on re-
sonance (&&

——0). The spec-
trum is symmetric around
co&= cu. The left-and right-
hand sides of the spectrum
are plotted on a linear and
logarithmic scale, respect-
ively.

0.0
-1.2 -0.4

I
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The central line is unaffected by the intensity fluc-
tuations, while the sidebands are smeared out ac-
cording to the Rayleigh distribution of the CF am-
plitude, predicting a splitting frequency of (1/0 2)A.
Since the wings of the central Lorentzian tend to
hide the sideband structure, the triplet spectrum
only appears for A~ 10K,(b= 0). For these large
values of Q'the intensity of the sidebands is al-
ready very small: the central-to-side peak ratio
is 2/X, :w/v'2eQ which increases with Q. Although
the sideband maxima go down with 1/g, the ratio
of the minimum between the mainline and the side-
band to the sideband maximum decreases as (9e/

0.30

2p ' (E',/mA)' ' thus improving the relative reso-
lution of the triplet structure (Fig. 5). A finite
bandwidth of the CF broadens the central line (Fig.
6). The broadening is always less than in the
phase diffusion model since the decay constants of
the Nth-order two-ti. me correlation function of the
CF increase only with Nb, compared to N'Q for
phase-diffusing light. ' Since the broadened cen-
tral line has an increased overlap with the side-
bands, the finite bandwidth raises the threshold
for splitting to higher Rabi frequencies.

It is interesting at this point to compare our re-

048
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FIG. 7. Spectrum of resonance fluorescence. The ex-
citing CF (solid lines) and coherent field are monochro-
matic (b =0) and tuned off resonance. The coherent 6-
function contribution at ~ = co has been omitted.

FIG. 8. Spectrum of resonance fluorescence. The ex-
citing CF (solid lines) and phase-diffusing light (dashed
lines) have finite bandwidth (b =K&) and are tuned off res-
onance {&&

——5K&).



20 ac STARK SPLITTING IN DOUBLE OPTICAL RESONANCE AND. . .

suits with those of Avan and Cohen-Tannoudji, "
and Eberly. " The suppression of the sidebands
of the triplet in resonance fluorescence had been
anticipated qualitatively by Avan and Cohen-
Tannoudji, although the triplet structure is not
completely mashed out as their arguments had

suggested. Eberly's predictions regarding the ef-
fect of amplitude fluctuations in resonance fluo-
rescence are based on the DA, which, in Eberly's
form, only retains information about the lowest-
order field correlation function. He deeouples
phase and amplitude fluctuations which can be
justified for a single-mode laser far above thresh-
old having small intensity fluctuations around a
constant intensity. " On the other hand, he as-
sumes the constant part of the intensity to be
zero. Consequently, Eberly's conclusion regard-
ing the modification of the heights and widths of
the triplet cannot be compared with our results. "

Figures 7 and 8 show the off-resonance spectrum
mith b,,= 5K, for b=0 and b=K„respectively. Q
takes on the values 5X, and 10K,. With excitation
by monochromatic coherent radiation the inco-
herent spectrum consists of two symmetric side-
bands separated by (6,'+ 0'}'~' from the central
line at the laser frequency (Fig. 7).'4 The domi-
nant contribution to the spectrum at w~= ~ comes
from the coherent 5 function. " A finite bandwidth

according to the PD model makes the spectrum
asymmetric (Fig. 8).""" The sideband nearer
to the atomic transition frequency ~„ is enhanced
since photons in the tail of the I orentzian spectrum
are resonant with (d„and favor the tmo-step pro-
cess ~0)-" ~1)- ~0). At the same time the other
sideband is broadened and decreases in intensity.
In the monochromatic CF the sidebands are still
symmetric (Fig. 7). For 0= 5', the peaks of these
sidebands are shifted outwards compared to those
in the coherent field. This increased splitting fre-
quency for b=0 is explained by the quadratic in-
tensity dependence' of the sidebands for 0«b, in
the coherent excitation spectrum: depending on
whether the fluctuations in the Stark shift or the
spontaneous decay midth dominate the broadening
of the sidebands, the Stark shift in the CF is en--
hanced by a factor of two or three in analogy to
our discussion of double optical resonance in Sec.
III. Vfith increasing intensities these peaks are
shifted inwards as we found on resonance (Fig. 7,
A=10K,}. The incoherent line at ~~= &o is more
pronounced in the CF as is again explained by the
quadratic intensity dependence of this iine for 0
«b, , leading to a 2l enhancement for the CF (Fig.
7, 0=5K,). The coherent 5 function of Eq. (22),
which cannot be graphically represented in Fig.
7, gives the dominant contribution to the spectrum
at ~~= (d. For the monochromatic CF this coher-

ent 'Line is less intense than for the coherent field
since fewer atoms are excited by the CF." In the
finite bandwidth case the sideband nearer to the
atomic transition frequency is again enhanced
(Fig. 8). Due to the intensity fluctuations this line
is almays broader than for the PD model. . Con-
trary to the spectrum for b = 0, this sideband is
always shifted less than for the PD field since
for 0 «0, the spontaneous emission ~l)-' ~0) of
the second step of the two-step process occurs at
the atomic transition frequency which to the low-
est order in Q/b, „ is shifted by the same amount

for both the CF and the PD model. The other
sideband, which is suppressed in the finite band-
width field, shows ari enhanced Stark shift for the
CF which is again explained by the quadratic in-
tensity dependence" of this line for Q «6,. The
central line in Fig. 8 consists of the coherent and

incoherent contribution of the spectrum. It is
dominated by the coherent part of the spectrum,
having a linewidth determined by the spectral
midth of the exciting light. For the CF this line
is again weaker than for the phase-diffusing light
since fewer atoms are excited by the CF. '

V. CONCLUSIONS

We have investigated the splitting of an atomic
transition in an intense nonmonochromatic chaotic
driving field. We have shown that in both double
optical. resonance and resonance fluorescence,
Stark splitting in a complex CF may be observed,
although in resonance fluorescence the central
line of the triplet spectrum tends to hide the side-
band structure. On resonance and for high inten-
sities the splitting frequency is reduced in com-
parison to coherent excitation. In this high-in-
tensity limit the spectral line shape of the lines in

double optical resonance and of the sidebands in

resonance fluorescence reflect the amplitude dis-
tribution of the exciting light. Vfith increasing in-
tensity these lines broaden, which can be under-
stood in terms of the intensity fluctuations induc-
ing fluctuations in the Rabi frequency which tend
to supress the lines in the doublet spectrum and
the sidebands in resonance fluorescence. Except
for the broadening of the central line in resonance
fluorescence, at high intensities the finite band-
width of the exciting light has only a minor effect:
it is the intensity fluctuations of the CF which de-
termine the spectrum. Off resonance we have
found that for fields of finite bandwidth the asym-
metry in double optical. resonance reverses and
a sideband asymmetry in resonance fluorescence
appears. Depending on the relative magnitude of
the parameters, the Stark shift (and therefore the
splitting frequency) may be larger or smaller than
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for coherent excitation.
A chaotic field has thus been shown to introduce

significant modifications in the saturation behavior
of a TLA. There seems to exist some evidence
that similar effects have been seen in double-res-
onance experiments. It is hoped that future ex-
perimental investigations in double optical reso-
nance, as well as resonance fluorescence, will
provide further insight into these effects.
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APPENDIX

The stochastic differential equations (5), (6),
and (21) are of the form

x,(t) = p x „(~(t),~*(t)}x,(t), (AI)
V

where in Sec. III X (t} is a density-matrix element
or, as in Sec. IV, a variable describing the spec-
tral emission rate of the TLA. A„„(e(t),e*(t)}is
a matrix depending on the stochastic driving field
a(t) which determines the time evolution of the
system. Equation (Al} must be solved for the av
erages &X'„(t)), where & ), denotes averaging of
X„(t)with respect to the fluctuations in the driving
field. The subscript t indicates the explicit time
dependence of the average. Since a(t) obeys a
Markov process, as we assumed for our C F so
that the corresponding distribution function
P(s, s*, t) obeys a master equation of the form

[S/St+L(e, «*)]P(», ~*, t) = 0,
the averages &X„(t)), may be found by solving the
system of equations"

—+ L( f, 6*) X~(c, c*,t) = Q 4 „„(s,e*)xp(t, t*, t)
9

V

(A2)

and integrating the solution according to

(~(~)),= fd rx (e.",t). '„,
Since for our model L is given by (3), Eq. (A2) js

a system of partial differential equations which
must be solved under the initial condition.

X,(e, e*, t= 0) = &X„(t)), ,P,(s, ") (A4)

with P,(c, c*}the stationary distribution function. "
Equation (A2) can be solved by expanding
X (e, e*, t) in the complete biorthogonal set of
e ig enfunctions of I.":

LP „(C 6 )=A „P „(t,f ),
Ltp „(f,6 ) = A+„Q „(~,e ') ~

t

For the C F of Sec. II these eigenfunctions have
been shown to be given by"

(A5)

P~„(t, t ) = P~(c, e )p.„(K, '*), n= 0, ~ 1, . . . ,

1y 2y ~ ~ ~

(A6)

K„"(~)=fdEQ „(~ E)K„(E C'", ~)

= &y*.„('(t),~*(t)}x„(t)&„ (A7)

we find from Eq. (A2) an infinite system of differ-
ential equations for the one -time atom -field av-
erages (A7),

d
+A „)X ~"(t}

d

Jt d'cQ*.„(», ~*)A „„(~,t*)P. (~, e*)

XXpm(t) (A6)

Explicit expressions for these matrix elements
have been given in Ref. 30. Note that due to $00
= 1 the averages &X„(t)},are simply given by
&x.(t)},= x",(t).

In the stationary limit, when all transients have
died out, Eq. (A8) reduces to an infinite set of
algebraic equations for &X (t)). Although these
averages become time independent in this station-
ary limit, the X„(t)'s are not, and we are not able
to neglect the time derivative in Eq. (Al). Apply-
ing the above formalism to Eqs. (5), (6), and (21),
as encountered in Secs. III and IV, we find with
the help of Eq. (AB) that Eqs. (5), (6), and (21)
reduce to Eqs. (10) and (23), respectively.

niP.„(~,e*)=
{n+ I a l) I) l

e
l

' (e'/e)~"

x L - (
I el /&I ~

I })/&I "l) .~ ~

with eigenvalues A „=b(2~+
l
n l). With the defini-

tion
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