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Orthogonally-spin-adapted coupled-cluster theory for closed-shell systems including triexcited
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The orthogonally-spin-adapted form of the nonlinear system of equations for the. extended coupled-pair

many-electron theory, which involves the monoexcited, biexcited, and triexcited states and cluster

components, is derived. A diagrammatic approach, based on second quantization, the time-independent Wick

theorem, and. the graphical methods of spin algebras, is employed. The advantages of using the orthogonally-

spin-adapted states and cluster components, rather than the nonorthogonally-spin-adapted ones which have

been previously employed, particularly in the triexcited case, are also discussed, It is also shown that the

formulas for the direct configuration-interaction method can easily be obtained in compact form from the

linear part of the system of extended coupled-pair equations.

I. INTRODUCTION

We have recently shown' how the diagrammatic
techniques of spin algebras' ' can be used to ob-
tain an orthogonally-spin-adapted form of the cou-
pled-cluster many-electron theory"' " (CCMET) .
The method was illustrated on the coupled-pair
approach (CPMET) and the orthogonally-spin-
adapted form of CPMET was given. '

By the orthogonally-spin-adapted form of the
coupled-cluster theory we understand a form in
which the connected-cluster components of the
wave function are represented by oxthogonal-
(and thus linearly independent) spin-adapted N
electron configurations. " This is achieved by de-
fining the appropriate linear combinations of the
orbital cluster components (i.e., t,. matrix ele-
ments), and by projecting the Schr5dinger equation
onto the one-dimensional subspaces spanned by the
corresponding ortho gonal -spin-adapted N-electron
configurations. This is particularly important when

higher than biexcited clusters are considered:
while the number of orbital t, matrix elements is
the same as the number of linearly independent
singlet configurations, this is not the case for high-
er than biexcited states. "" However, even in the
CPMET case, where only pair excitations are con-
sidered, the biexcited N-electron configurations
associated with the orbital t, matrix elements are
not orthogonal. In fact it can be shown that the
pertinent biexcited configurations are spin-bonded
functions. " On the other hand, the configurations
used in the orthogonally-spin-adapted form of the
theory are the particle-particle-hole-hole (pp-hh)
coupled-spin-adapted states, which may be re-
garded as electronic Gelfand states (or equivalent-

ly, Yamanouchi-Kotani states)" of the hole-par-
ticle formalism.

Thus, in the case of triexcited clusters, there

are six (three, two) distinct orbital t, matrix ele-
ments, but only five (two, one) linearly independent
singlet configurations can be constructed. This
introduces complications in the coupled-cluster
approach that we have indicated earlier": either
one additional equation must be added for each
distinct orbital occupancy or the linearly depend-
ent t, matrix elements must be eliminated from
the equations. The first remedy unnecessarily
increases the number of equations of the system
while the second leads to a highly nonsymmetric
form of the equations.

In contrast, the orthogonally-spin-adapted ver-
sion yields the correct number of equations for the
minimal number of t, mati. ix elements needed.
Moreover, the pertinent t,. matrix elements direct-
ly represent (up to possibly a, simple normalization
factor) the coefficients of the wave function ex-
pressed in terms of the orthonormal-spin-adapted
configurations. Consequently, our formulas can
easily be modified fear use in the direct configura-
tion-interaction (CI) approach of Roos and Sieg-
bahn" for the triexcited configurations relative to
a closed-shell ground state (cf. Ref. 4, where the
corresponding expressions for the biexcited direct
CI are given in terms of pp-hh coupled states).

An additional advantage of the orthogonally-spin-
adapted form of the coupled pair approach is that
it yields even sparser matrices for the nonlinear
part of the CPMET equations. For example, in
the 169-dimensional problem for the Be atom
(6s, 5P, 4d, 3f, 3g), the nonlinear matrices con--
tain 3.4%%uo nonvanishing matrix elements as com-
pared with 4. 2%%uo in the spin-nonadapted approach

The most important contribution to the correla-
tion energy arises from the pair clusters (biex-
cited cluster components), which already contri-
bute in the second order of perturbation theory
(the first order for the wave function). In the next
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(i.e., third) order of perturbation theory (second
order for the wave function), we find contributions
from connected monoexcited and triexcited clust-
ers as well as from the disconnected tetraexcited
ones (cf. Table II of Ref. 17). The importance of
these clusters is roughly proportional to their
number: the largest energy contribution comes
invariably from the disconnected tetraexcited
clusters, while the smallest effect is due to the
monoexcited ones (assuming that one starts from
the Hartree-Fock orbitals).

The effect of the most essential contributions,
namely, the connected biexcited and disconnected
tetraexcited clusters, is accounted for in CPMET.
It is also easy to include the effect of monoexcited
clusters, since their number is small. However,
the connected triexcited clusters require both an
essential expansion of the formalism as well as a
considerable increase in computational effort.
Consequently, the triexcited clusters are usually

*

neglected heuristically in both coupled-cluster
and direct CI approaches.

As far as we know there have been only two
coupled-cluster calculations which explicitly
consider triexcited clusters: a minimal basis
set ab initio study of the BH, molecule, "where
the results were compared with the corresponding
CI calculations, "and our recent calculations on
the Be atom. " The BH, study showed quite un-

' ambiguously that in contrast to the tetraexcited
clusters, where the disconnected part predomi-
nates, the major contribution in the triexcited
case is due to the connected clusters, while the
disconnected ones (which contribute for the first
time in the next order of perturbation theory),
are negligible.

We can also judge the relative importance of
the triexcited and tetraexcited clusters from the
results of CI calculations (knowing that in the
first case these are connected clusters and in the
second case the disconnected ones, which are
essential in the corresponding coupled-cluster
approach). Unfortunately, the triexcited states
and particularly the tetraexcited ones, are very
difficult to take care of in CI approaches and con-
sequently there have been few calculations which
consider these states. " Nevertheless, it is quite
clear from several existing studies that the tri-
excited states may play quite an essential role in
some cases and will always be important if ac-
curate results are desired. Thus, for example,
the triexcited states seem to play an important
role in intermolecular (interatomic) forces, par-
ticularly in the case of the He, system. "'" Very
recently, the essential role of triexcited states
was found in a study of the N, molecule by Rueden-
berg et al." Finally, even when the triexcited

clusters are relatively unimportant in energy cal-
culations (less than 1% of the correlation energy),
they may be important in the calculation of pro-
perties other than the energy, as is the case for
the monoexcited clusters.

In this paper we present the orthogonally-spin-
adapted form of the extended CPMET (ECPMET)
equations. As noted above, they are also applic-
able to the direct CI method (after a simple re-
normalization and the inclusion of an unlinked
diagram which does not occur in ECPMET, cf.
Sec. V). It is quite remarkable that the equations
involving the triexcited cluster components have
a simple structure when the appropriate spin-
coupling scheme is used, and the pertinent spin-
coupling coefficients are all expressible in terms
of one special 6-j symbol, which in turn is simply
relatedto representations of the symmetric group
3

II. COUPLED-CLUSTER FORMALISM

To fix the notation we briefly review the formal-
ism of the coupled-cluster theory for closed shell
systems, and two of its most important approxi-
mations: the coupled-pair approach (CPMET) and
an extended CPMET, referred to as ECPMET.

Consider the ground state ~4) of an N(= 2n) elec-
tron closed-shell system, described by a spin-
independent Hamiltonian

A. g B X~XB

+ — ~ (AB(v) CD) X X~X~Xv. c
A.BC D

(2.1)

(2.3)

where T,. is an excitation operator creating from

The annihilation (creation) operators X„(X~~) are
defined with respect to some one-electron spin-
orbital basis ( (A)) where )A.) =[ a)(o.) . Generally
we follow the notation of Refs. 1 and 4. Thus,
upper (lower) case Latin letters label spin orbitals
(orbitals), lower case Greek letters label spin
functions and superscripts (subscripts) designate
particle (hole) . states. Labels without indices
[e.g. , those in (2.1)] are then used to denote ar-
bitrary one-electron functions.

In the closed-shell coupled-cluster approach the
exact (nonrelativistic) ground-state wave function
is expressed in the form of a cluster expansion

(2.2)

where ~O, ) is the nondegenerate independent-
particle-model ground state.

The operator T has the form
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I 4, & the connected i-times excited cluster com-
ponent of I

&I &:

and the correlation energy Ae is defined by

(2.i5)
T, =(t))-'2 (B'."B'I t, IB," B,) II x', &x„j=l

(2.4)

where E is the exact ground-state energy eigen-
value of Il. The one-electron matrix elements in
(2.13) are given by

(2.5)

where fB) denotes the unrestricted summation
over all particle and hole labels specified in the
t j matrix elements. The antisymmetr ized t j matrix
elements (cluster coefficients) are defined by

&B'"B'lt IB" B)
= Q (-1)~&(B' ~ ' B~

I t
I B ~ ~ ~ B. )

P)

where p~ is the parity of the permutation

(2.6)

i ) .~, ) (2.7)

Since our Hamiltonian is spin independent, the or-
dinary t, matrix elements in (2.4) can be expres-
sed in terms of orbital t j matrix elements"' "
&B'"B'It, l B, B,)

11&8!!Bg&)(5 ''b
/ tg/ 5 ' 5$&

j =1
(2.8)

The t j matrix elements also possess the symmetry
properties

(Bk )Bk lt ~I B . ..B )j k~ kj

=(B' 8 I t IB '''B ) (2 9)

(B'&" B'~It, lB. "B )

a„l ~&=~~I e&,

where

(2.11)

I„=H-(4'0IBI 4', & =F„+V„, (2.12)

B N XA~X~

v„=— p (&Bl~leiI&f)I'[x„'x',x,x,], (2.i4)
ABCD

(2.13)

=(-1)&'~s (B' B~lt, I B, B,)„, (2.10)

and we note that (2.9) is also satisfied by the or-
bital t, matrix elements defined in (2.8).

In order to obtain the explicit form of the cou-
pled-cluster equations, using the diagrammatic
methods based on the generalized time-independent
%ick theorem, "it is convenient to us@ the normal
product form of the Schrodinger equation""

&half

I B& =&alai B&.+~ (ac,l~ I Bc,&„,
Cl

where

&»I~le»&=&»I~le» &aB-I~I Bc&. (2.17)

If the reference state
I C,) is chosen as the Har-

tree-Fock (HF) wave function, then f is just the
one-electron HF operator.

The Schrodinger equation (2.11) can be cast into
the form

(2.18)

where the subscript C refers to the connected re-
sulting diagrams formed from one II skeleton and
one M skeleton (collection of T skeletons). ""
This is the basic equation of the coupled-cluster
theory and is completely equivalent to the origi-
nal Schr5dinger equation (2.11).

By projecting (2.18) onto the one-dimensional
subspaces, defined by the appropriate set of
linearly independent N-electron configurations,
we obtain a system of coupled nonlinear algebraic
equations, determining the various t j matrix
elements. The subset of these equations corre-
sponding to projections onto the subspace of i-
times excited configurations is obtained from the
connected resulting diagrams having i open
paths. It is important to realize that the system
of coupled-cluster equations does not contain the
correlation energy and that this follows quite
naturally from the diagrammatic approach. In

fact, the correlation energy is determined in
terms of only the t,- and t,-matrix elements via
a separate equation

(2.19)

obtained by projecting (2.18) onto I C,&, or
equivalently from the connected resulting dia-
grams having no open paths (no external lines).

In practice the system of coupled-cluster
equations must be truncated by including in the
expansion (2.2) of the exact wave function only
the most important clusters, and projecting
(2.18) onto the pertinent finite dimensional sub-
spaces.

In CPMET the following approximation is used:

(2.20)
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g~ ~ o o

= ('[ I «'„i «„)( e, ) . (2.22)

In this case three types of diagrams may be used
to obtain the resulting system of equations: Hu-
genholtz diagrams" (antisymmetrized t and v
matrix elements), Goldstone diagrams (ordinary
t and v matrix elements), and the mixed Gold-
stone-Hugenholtz" (Brandow~) diagrams (ordinary
v and antisymmetrized t -matrix' elements).

For the spin-independent Hamiltonians, which
we are considering, an orbital form of the cou-
pled-cluster equations may be obtained from the
Goldstone version of the spin-orbital form by
summing over all spin-projection quantum num-
bers, and using (2.8) and the spin independence
of the f and v matrix elements to obtain a system
of equations involving the orbital t, f, and v
matrix elements. This is most easily achieved
by assigning a factor of 2 to each closed loop of
the Goldstone dia.grams, and replacing all spin-
orbital matrix elements by their corresponding
orbital ones. We shall refer to these equations
as nonorthogonally-spin-adapted equations, "
since they do not correspond to projections of the
Schrbdinger equation (2.18) onto an orthonormaI

and (2.18) is projected onto the subspace spanned
by the biexeited configurations. This is a useful
approximation whenever the connected tetraex-
cited cluster component T, is negligible compared
to the diseonneeted component —,'T', . We recall
that while the disconnected component appears for
the first time in the second order of perturbation
theory, the eonneeted component appears for the
first time in third order.

This situation is reversed for the triexcited
component: the connected component T, appears
in second order, whereas the disconnected com-
ponents first appear in the third order. This
leads to a version of ECPMET defined by

T T1+ T2+T3 (2.21)

In the expansion of exp(T) we then keep the linear
terms Tl T2 and T, and the nonlinear term —,'T»
which take into account all clusters appearing in
the first two orders of perturbation theory and we
neglect all other disconnected terms, such a"-

T'„(1/3!)T'„TT„et .c, appearing for the first
time in higher orders (cf. Table II of Ref. 17). In
this case we project Eq. (2.18) onto the subspaces
determined by the appropriate monoexcited, bi-
excited, and triexcited configurations.

The spin-orbital form of the coupled-cluster
theory"' " is obtained by projecting Eq. (2.18)
onto the i-times excited configurations (i = 1, 2,

)

set of configurations, but rather to projections
onto a nonoxlogonal set of spin-bonded func-
tions. "

In contrast, by an orthogonally-spin-adapted
form of the coupled-cluster theory, we mean one
for which the Schrodinger equation (2.18) is pro-
jected onto an orthonormal set of spin-adapted
configurations.

A convenient procedure for obtaining the ex-
plicit form of the orthogonally spin adapted cou-
pled cluster equations has been formulated in Ref.
1, using the Goldstone-Hugenholtz orbital dia-
grams in Brandow form (Goldstone v and f ver-
tices and Brandow t vertices), which were re
ferred to as Goldstone-Brandow diagrams. The
rules for the assignment of f and v matrix ele-
ments to the Goldstone one- and two-electron in-
teraction vertices, spin-adapted t, matrix ele-
ments to the Brandow vertices, the evaluation of
sign and weight factors, and the construction of
the spin diagram associated with each orbital dia-
gram are also given in Ref. 1. We would also
like to mention that a similar approach to atomic
systems, using .spin and orbital angular-moment-
um diagrams, and based on the Goldstone formal-
ism, has been recently given. '

III. SPIN-ADAPTED STATES AND CLUSTER COMPONENTS

We now construct the orthonormal-spin-adapted
monoexcited, biexcited, and triexcited configura-
tion states and discuss their symmetry properties.
It is shown that the recoupling transformations,
which are needed for the triexcited states, are
simply related to representation matrices of the
symmetric group 8,. The spin adaptation and the
recoupling transformations can easily be obtained
by using the graphical methods of spin algebras,
which we have previously applied to the orthogon-
ally spin adapted CPMET approach, ' to the deriva-
tion of compact formulas for spin adapted CI ma-
trix elements between biexeited states, ' "and very
recently to obtain the matrix elements for Berber
states. " Finally, the spin-adapted t „ t „and t3
matrix elements are constructed in the same man-
ner as the corresponding states. In this way, for
each fixed orbital occupancy, we obtain a one-to-
one correspondence between the orthogonal (and
thus linearly independent) spin-adapted states and
the distinct t, matrix elements. As a result, in
the orthogonally-spin-adapted coupled-cluster
equations, there will always be the same number
of equations as there are distinct t matrix ele-
ments

A. Orthogonal-span-adapted states

The orthogonal-spin-adapted states are construc-
ted from the basic spin-orbital configurations.
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blpl blpj ( 2

P, Xatg Xa [ 4'2& .
&j (3.5a)

then the coefficients in (3.3a) for the monoexcited,
biexcited, and triexcited states are given by

[(p}SM] =( s,p, s'p'~ SM&

(3.I) [s„s"(p)sM] = c(s„p„s"p"(sM&, (3.5b)

Wehave shown earlier' that it is more convenient,
in the hole-particle formalism, to use the config-
urations

[s„s„,s"s'-(p}sM] =c,& s„,p„,s'"p'-I SM&,

(3.5c)

~'"a
~ ~ ~ JP ) 2 ail

b 1pl ~ ~ I b2 pl
sf Sg

j b1P. '" bPi

(3.2)

where p= —pand s~ = —,
' (j =1, . . . , i). These con-

figurations can be coupled in the usual way to ob-
tain the spin-adapted states

and hence those in (3.3b) are given by

&(p) SM& =(-,'[s])'~' &SMs,p, [ s'p'&,

& $,,$"(p}SM& = c,([s]/'[s"1)'~'

x &SMS„P„[s"p"),
($ $ $' $»3(P}.SM& =C ([$]/[$»3])1~2

(3.6a)

(3.6b)

SM (3.6c)

b1p1 bi P4

[x,x'(p) sM]
8

(3.3a)

where we have used the shorthand notation

[x] =- 2x+ 1 . (3.7)

Qlp'e o e y& P
=N,Z (X,Xa(p}S~~

b1 1 "bop&
(3.3b)

The coefficient in (3.3a) is a generalized Clebsch-
Gordan coefficient (CG), defined, by the chosen
coupling scheme, and given as a product of the or-
dinary CG coefficients of SU(2). Further, X3 and
Xs are the sets of intermediate spin quantum num-
bers for the hole- and particle-coupling schemes,
respectively, S and M are the total spin and spin-
projection quantum numbers, (p) denotes summa-
tion over all spin-projection quantum numbers
except M, and N, is a normalization factor. Other
coupling schemes are possible, namely, those
which include hole-particle couplings. However,
they give rise to more complicated formulas,
symmetry properties and spin diagrams (cf., for
example Ref. 4, where both the pp-hh and ph-ph
coupling schemes were considered for biexcited
states). The transition from (3.3a) to (3.3b) is
easily made by using the mell-known symmetry
properties of the CG coefficients. '

If we sequentially couple the hole (particle)
states and define

Thus, the monoexcited, biexcited, and triexcited
states, which we shall use, are

SM =g &(p}SM&
(8) b1P1

(3.8a)

Q 1/2 12

12

blplb2p2

=x,p & s„s"(p}sM&
(a$ 1 1 2 2

(3.8b)

s "s'"
S 12S 123

=N, g( s„s„,s"s'"(p) SM&

blplb2p2b3p3

X 0

b,p,b,p, b3p,
(3.8c)

$1/2

Since we are considering closed-shell systems,
only the singlets (S=M=O) are needed, and. we
introduce the simplified notations

b?

(3.9a,)

C, =( s,p,s,p, I S„p„)(s'p's'p'i S"p"&,

C, =&.,P,s,P,I s,.P„&& "P"'P'I $"P"
&

( 12P12 3P31 123P123)( P P I P

(3.4a)

(3.4b)

y 1-y2g3

b,b2b3

g ly2y3 S S

00
&1&2&3 s„s,

(S —S $123)

(3.9c)

(S,= S„=S") (3.9b)
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where 8=(S», S",Sl) is the set of intermediate-
spin quantum numbers for the triexcited singlet
states. %e shall also omit the b labels, if no con-
fusion can arise, and simply indicate the appro-
priate subscripts and superscripts within the "bra"
or "ket" symbols. Thus, we shall write, for ex-
ample

lmn

bi bj bk

b, b b„
(3.10)

For the biexcited states in (3.8b) or (3.9b), the
normalization factor is simply given by

~ =([1+6(y y,)][]+ 6(y~ y)/j-»~ (3.11)

For the triexcited states, Eq. (3.9c), the same
normalization factor can be used if we make the
standard ordenng convention, namely, that a
doubly occupied particle (or hole) orbital always
appears in the first two particle (or hole) posi-
tions in (3.9c)." This can always be achieved by
a simple recoupling transformation [cf. Eci. (3.17)j.

B. Graphical representation

As mentioned earlier, it is most convenient to
use the mixed Goldstone-Hugenholtz (or Brandow)
representation (cf. Refs. 1 and 24). Thus, for the
orbital diagrams we use one Goldstone repre-
sentative of the Hugenholtz diagram for our states

C. Symmetry. properties of spin-adapted states

We now consider the symmetry properties of
the orthogonally-spin-adapted states (3.9). For
the biexcited states we obtain the simple sym-
metry property

12
( 1)&a+P) s~

12 (3.12)

and the Goldstone representation for the spin-in-
dependent one- and two-electron operators of the
Hamiltonian. The spin part will then be repre-
sented by the usual angular-momentum diagrams
(cf. Refs. 1, 3, and 4).

Thus, the orbital diagrams for the states will
have the form shown in Fig. 11(a) of Ref. 1. The
corresponding spin diagrams are most easily
constructed using CG.vertices. They can be sub-
sequently transformed to a more symmetric form
in terms of 3-j m vertices, using the transforma-
tion rules (64a and 64b) of Ref. 4. The spin dia-
grams for the monoexcited and biexcited states
(3.8a) and (3.8b), have been given in Fig. 2 of Ref.
4. The singlet case (3.9b) has also been given in
Fig. 4 of Ref. 1. Here we give only the spin dia-
grams for the triexcited states (3.9c) in Fig. 1,
using 3-jm vertices. For the sake of brevity, we
also introduce a more compact form for these
diagrams which is shown in Figs. 1(b) and 1(d).

S]

Sg S

bbb
b1 b2b3

bbb
b1 b2bg

s2

Jl S]

la)

S12

s

S3

F )l SI

FIG. 1. Graphical rep-
resentation of the spin
parts of the spin-adapted
triexcited "ket" states (a)
and (b) and "bra" states
(c) and (d). The overall
factor for each diagram
is Z=(-i) [S„,S ', S,] ~~

and s& = s = &, j= 1,2, 3.
Diagrams (a) or (b) also
represent the spin parts of
the t3 matrix elements as-
sociated with the Brandow
t3 vertices of Figs. 3 and

+ I

S12 s2

s1

(d)
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where

~, p = 1, 2 (I= 2, '2 = 1) . (3.13)

If the particle and/or hole states are doubly oc-
cupied, it then follows that

=0 (3.14)

For the triexcited singlet states, the correspond-
ing results are more complicated, except for
transpositions of the first pair of particle and/or
hole states:

773 123
(3.15)( 1)1S +jJS~2 123 g

p, p, 3

which is identical to the corresponding results for
the biexcited states in (3.8b) [cf. Eqs. (29) of Ref.
4]. For more general permutations, we must
consider the recoupling transformation

k,k,k3

j lj 2j3

123
g 1 23-

1 23 k, k, k3

(3.16)

corresponding to the permutations P~ and I'z of
the particle- and hole-state indices, respectively
[cf. Eq. (2.V)] . In (3.16), 8 =(S„,S",SI} and
6 =f S», S",S~}. In general, the recoupling trans-
formation matrix in (3.16) is the product of an

orbital phase factor (-1)~~'~&, determined by the
parities of these permutations (and follows from
the resulting orbital diagram), and a spin coef-
ficient -given by the resulting spin diagram. The
latter is obtained by connecting the pertinent lines
of the "ket"-state spin diagram of Fig. 1(a) to
the lines of the "bra"-state spin diagram of Fig.
1(c), as determined by the orbital diagram (or,
equivalently, by the permutations P~ and P& ).
Thus, for example, the "ket"-state line with
label s~ & is connected to the "bra"-state line with

label s . The resulting spin diagram, giving the
spin part of the recoupling transformation matrix,
is shown in Fig. 2, where we have taken into ac-
count all 36 possibilities using the indices 7, p.

defined in (3.13) and the indices x, X= 1, 2, 3.
Each particle or hole index is evaluated modulo
3 (i.e., 4=1, 5=2, 6=-3). Thus, the identity per-
mutation corresponds to z = X= 3, v = 2 and the
special case given in (3.15) corresponds to x= &

= 3. This notation is very convenient for compu-
ter implementation of the ECPMET equations
(cf. Sec. IV). Using the graphical rules of spin
algebras (cf. Appendix I of Ref. 4 for a useful
summary) this spin d'iagram can be separated
across two lines (S, and Sz ) and the summation
over SI in (3.16) disappears [rule (VO) of Ref. 4].
Each of the two resulting component spin dia-
grams is proportional to either a Kronecker
delta [5(S»,S„)or 5(S",S")] or a simple 6-j
symbol with three angular momenta equal to one-
half. Thus, the most complicated spin coeffici-
ent is proportional to a product of two 6-j sym-

S12

b1 b2b~ b"+~b "+

b1 b2bg b),+~b),+~b),

(QF F G) +12

(OFF) SI )(
3+"-

$12

S12

(a)

)I sl
FIG. 2. . Graphical calcu-

lation of overlap matrix
element between two tri-
excited states (cf. text for
details). The overall fac-
tors are defined. by Q=
=( 1)",S=(-1) [S„,

il and G= [S
&&6(SI,S~), where p is the
orbital phase factor [cf.
remarks following (3.16)
of text]. Diagrams (b) and
(c), along with the factors
&, I, G, give the spin
coefficients (3.18) that
appear in (3.17).

+i
1

(c)



-B. G. ADAMS AND J. PALDUS 20

TABLE I. Spin coefficient defined in Eqs. (3.18) and
(3.19) (cf. also Table II).

D„(Z;X, F)

(-1) 6(Z; X, F)
(-1) A(Z; X, F)

6(x, v)

one-dimensional antisymmetric representation,
since D„(—'„1,1)= 1 is the only nonvanishing ma-
trix element. The matrices D„represent cyclic
permutations with the group property

Pn, (z;x, I) D„( z;y, x'') =D„„(z;x,x'),
(3.22)

bols, and (3.16) can be written in the compact
form

which includes as special cases the orthogonality
relations'

gs(z;x, I')a(z; I',x') = 6(x,x'), (3.23)

=P ( 1)~+&I) ($ ~ S'2 S'2)
8

xa, „(s,;s„,s„)6(s„s,)

123

satisfied by the 6-j symbols, and the Racah-
Elliot sum rule '"

g(-1)'~(z x &)~(z y x')

123 (3.17} = (-1)»+» S(Z;X,X') . (3.24)

where

D„,(Z;X, Y') = (-1)'"+"D (Z.X, Y), (3.16)

and D„ is defined in Table I in terms of

ggX
~(z;X, I ) =~(z; I,x) =[x,I ]",,22

Thus, the transformation matrix in (3.17) can be
interpreted as the outer direct product of two
representations of S„one corresponding to per-
mutations of particles, the other to permutations
of holes. For S~ = ~ we obtain the trivial recou-
pling transformation

(3.19)

Here we are using a generalization of the nota-
tion in (3.V), namely,

K+'T g+g g

1, 1, ~ = (- 1) '+ &

x+px+p x

123
1 1 —'

1 231,1~3

(3.25)

[x„x„.. . ,x„]= [x,][x,].. .[x„]. (3.20)

The possible values of b, (Z;X, Y') are given in
Table II.

It is worth noting in (3.1V) that (-1)""is just
the orbital phase factor mentioned above. Fur-
ther, if we define

c,(X, I') =(-1)'"tt(X,y'); ~=1, 2, (3.21)

Finally we note that all recoupling transforma-
tions can be obtained from those corresponding
to the transpositions (12) and (18):

then the six matrices @,D, with g = —,
' and with

rows and columns labeled by X, Y = 0, 1, form a
two-dimensional irreducible representation of the
symmetric group S,. For S~ = &, we obtain the

TABLE II. Spin coefficient defined in Eq. (3.19).

123
"123

=(-1)' ' 123 (3.26a)

&(z,x, r) $ S g g12 g12

2

2.
2

2

2

2

123
x b, (S~;S„,S„) 1 2 8, (3.26b)

and the analogous results for the particle permu-
tations.



COUPLED-CLUSTER THEOR Y. . .

D. Spin-adapted t; matrix elements

To obtain the spin-adapted t,. matrix elements
we first write the i -times excited connected clus-
ter component of the wave function in the form

TABLE III. Nonvanishing linearly independent tri-
excited states or t3 matrix elements (cf. Sec. III for
details) .

X: Nonvanishing triexcited states or t3 matrix elements

T I c.& =g T, (sm)l 4'. &. (3.27)
bf &b2&b bf b2

S Sf2 SI bf ~b2 &b3 b b bf b2 bf b2
12 f 2

For closed-shell systems we need only consider
the singlet components

r, (00)l c,&= g&b I t,(o)lb,&,

0
0
1
1
1

0
1
0 2

1
1 ~2

Totals

X

v, (00)lc,&=,', , g gx, -
s&

x (b'b'I t,($))l b, b, ) S, , (3.28b)
1 2

T,(00)l c) =

(2k
gly2y3

x ( b'b'O'I t,(S)l b,b,bg
1 2 3

(3.28c)

&b'I t, (o) I b, & =2 &(p] oo& & b "p'I t, l b,p, &,
(s)

{b'b'I t,(s, )lb, b, & =x, g & s, s,.'[p)oo&

(3.29a)

x(b'p'b'p'It
I

b p b p )„, (3.29b)

&
b'b'b'I t,(8) I b p,b, & =N, g & s„s,s"s,f pj oo &

I

where 8 =(S„,S",$1]. and fb] denotes unrestricted
summation over all orbital labels. The normali-
zation factors ensure that each distinct state is
counted only once. The spin-adapted t 1 t 2 and t3
matrix elements are defined in the same way as
the corresponding states [cf. Eqs. (3.8) and (3.9)]:

ized in Table III for states or matrix elements
satisfying the standard ordering convention in
which doubly occupied orbitals appear in the first
two positions. As mentioned above, the normaliza-
tion factor in (3.11) applies in this case. This is
the only case that we need to consider: if a doubly
occupied orbital appears in other positions, it
follows from the recoupling transformations (3.17)
and Table III that such states or t, matrix elements
are simply proportional to one of the standard or-
dered ones. In case all orbitals are singly occupied
(N, = 1 in this case), the standard ordering conven-
tion may, for example, be defined by b' & b'& b',
b, & b, & b3 in terms of the chosen ordering of the
one-electron orbitals and again the recoupling
transformations may be used to express any state
or t, matrix element as a linear combination of
standard ordered ones. If particle, hole, or par-
ticle and hole recouplings are needed a linear com-
bination of at most 2, 2, or 4 standard ordered
states or matrix elements is obtained [for Sz = —',

we always obtain a simple proportionality. , Eq.
(3.25)].

The spin-adapted t matrix elements can also be
expressed in terms of the orbital t matrix ele-
ments of the nonorthogonally spin-adapted theory"

b' t, o) b, =~2 b' t, b,),x
&

b'P'b'P'b'p'.
I t, l b,P,b.P.b.P.&.

(3.30a)

(3.29c)

It follows that the spin-adapted t,. matrix elements
possess exactly the same symmetry properties as
the corresponding states. Thus, (3.17), (3.25),
and (3.26) are also valid if the states are replaced
by t matrix elements and hence we obtain, for
each fixed orbital occupancy, the same number
(5, 2, or 1) of. spin-adapted t, matrix elements as
spin-adapted triexcited states. This is summar-

&
b'b'I t,(s )I b,b, &

[$ ] 1/2 Q P ( 1)Ts D12($ . $12 S )
K= 1 7'=. 1

x (b""b""b"
I t, l bp b, ) . (3.30c)

=-x, [s, ]'~'p (-1)"'*'(b'b'I t.l b.b-. )
K= 1

(3.3Ob)

(b'b'O'I t, (S)I b,b,bg
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If desired we can avoid the normalization fac-
tors completely by defining unnormalized t, and

f, matrix elements
I
ef. Eq. (32) of Ref. 1],

N '
a

a'a2a3
3:~» 4

Q 10203 c

(b'b'I v, (S, )Ib,b, ) =N, '( b'O'I t,(S, )bP, ), (3.31a)

(b'b'b'I 7.(8)I b b.b.) = & '(b'b'b'I t.(8)l b, b b.) .
(3.31b)

(a'a'a'I &"(8)I a,a.a.&
= o

j=2

and the equation

(4.2c)

Thus, if these matrix elements are used in (3.28)
and unnormalized states are also used then all
normalization factors are removed. The normali-
zation factors can easily be reintroduced into the
equations. They are needed to obtain the direct
CI formulas (ef. Sec. V). In Sec. 1V we give the
spin-adapted form of the ECPMET equations using
the unnormalized matrix elements.

(&„e'),I@.& = gj=0
(4.1)

If we use the ECPMET approximation (2.21), pro-
ject onto the orthogonal standard-ordered unnor-
malized spin-adapted states mentioned above, and
also use the unnormalized t matrix elements de-
fined by (3.31), then we obtain the following sys-
tem of coupled nonlinear algebraic equations for
the orthogonally-spin-adapted t „ t „and t3 ma-
trix elements:

a'
X"' C = Q (a'I&"'I a, ) =0, (4.2a)

a'a2
~(2)

a 3 g g C
l 2

3

(a'a'IA''(S, )I a,a, ) =0,
—0

(4.2b)

IV. SPIN-ADAPTED ECPMET EQUATIONS

We now present the explicit form of the ortho-
gonally-spin-adapted ECPMET equations by pro-
jecting the Schrbdinger equation (2.18) onto the
monoexcited, biexcited, and triexcited spin-adap-
ted states defined in (3.9), and by using the Gold-
stone-Hugenholtz (Brandow) diagrams combined
with the graphical methods of spin algebras to
enumerate and evaluate the various contributions.
For completeness the CPMET part of this sys-
tem, which has been given elsewhere, ' is also
included.

We can express the left-hand side of the Schr5-
dinger equation (2.18) as a sum of i -times excited
components (i=0, 1, . . .):

(4 ISC I4 )=Q Ji ' =QE+'Qg
g=1

(4.3)

A2 ~ 2 A2I 2 +A2y 2
L EL (4.4)

The CPMET approximation is obtained by consid-
ering only the terms A' ' and A' ' in (4.2b) and the
terms A' ' in (4.3).

The orbital and spin diagrams for the two terms
in (4.4) and the inhomogeneous term A' ' are
given in Figs. 3 and 5 of Ref. 1 and the orbital
diagrams for (4.3) are given in Fig. 13 of Ref. 1.
The orbital diagrams for the terms A' ' are es-
sentially the same as those given in Fig. 3 of Ref.
11. The corresponding spin diagrams are trivial
and are easily obtained from the graphical repre-
sentation of the monoexcited states given in Fig.
2 of Ref. 4. In a similar manner the orbital and
spin diagrams for the terms A' ' and A' ' are
easily obtained from the graphical representations
in Fig. 4 of Ref. 1.

In the present paper we give only the orbital
diagrams forA'', A'', A'', and A'' in Figs.
3 and 4, respectively. 29 The external-line particle
and hole labels in Figs. 3 and 4 correspond to those
appearing in the states of (4.2), and are assigned
in all distinct ways using z, A. =1, 2 (T=2, '2= 1) for
the biexcited-state orbital indices and rc, X=1,2, 3;
7, p, =1, 2 for triexcited-state orbital indices (cf.
Sec. III). Thus, for example, Fig. 3(e), parts (i)

which determines the correlation energy in terms
of the t, and t, matrix elements. Except for the
case i =j = 2 the terms A" ~, j ~ 1, in (4.2) are
linear in the t~ matrix elements, and are obtained
from the connected resulting diagrams having i
open paths, formed from one H skeleton and one
M skeleton consisting of a single T~ skeleton (7
skeleton having j open paths). " The inhomogen-
eous terms are those in (4.2a) and (4.2b) with

j = 0. In the HF case the linear part of A' ' and
the inhomogeneous term A' ' do not contribute.
For i =j = 2, both the linear terms A'i ' in the t,
matrix elements and the nonlinear terms A'„'i
(M skeleton consisting of two 7, skeletons), aris-
ing from the disconnected tetraexcited cluster
component —,'T'„occur. Thus,
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FF

I+

S12
Jb+

1rs)

S12

FF

S12

I rs/

S12 S12

+I 1—

FF II Sl

S12

/1si FF ~I ITS,

b+

S12

Iii) +

S12 S12

(c) t&)

FEG. 6. Spin diagrams associated with the orbital dia-
grams of Fig. 4. (a), (b), (c), and (d) correspond to Figs.
4 (a), parts (i) and (ii), 4 (b), parts (i) and (ii), 4 (c),
and 4 (d), respectively. The overall factor for each
diagram is EE, where E and E are defined in Fig. 1.

gether, using the compact graphical representa-
tion of Fig. 1(d). The spin diagrams are easily
evaluated using the graphical rules given in Ap-
pendix I of Ref. 4. In particular, all spin dia-
grams can be separated across two lines using
rule (70),' except for those in Figs. 5(c) and 6(d)
which must be separated across three lines using
rule (71).' Each smaller resulting diagram either
reduces to oyster diagrams [cf. Eq. (74) of Ref.
4] by further separations across two lines, or to
diagrams each representing a 6-j symbol [cf.
E(l. (75) of Ref. 4]. Fihally, the resulting spin
coefficients and orbital factors which give the
total contributions to the various A" ' terms,
when multiplied together and summed over all or-
bital labels on internal lines and intermediate
spin quantum numbers specified by the Brandow
f vertices (untilded labels), are given in Tables
IV and V.

Thus, we obtain the following expressions for
the terms of the spin-adapted ECPMET equa-
tions (4.2):

(a'I A"'I a, & =~2&a'Ifl a, &,

&a'lJ("la, &=K &a'If lb'&&b'If, (O)la, &-g &b if la, &(a'I t, (o)lb, &

b 1 bj

+ Q (2(a'b, l vl a,b'& -(a'b,
l vl b'a, &)(b'I f,(O)I b, &,

b lb

(4.5a)

(4.5b)

(a'I A''I a & =+ Q (-1)~b (-,'[s ])' '
S'a b b l

x g(b b[v[ b )(b' a[( 'aa)~ bbbb-g(a'bJv[ b b')(b'5'[ '( )'v8)),tb a
b2 b2

(4.5c)

(a'IA"'I a &=2 '/' g [S ]'i' g g (b,b, lvl
'b&b(a' bb'Iv, ( „S, „S, S)l a,b,b, &; (4.5d)

S12s SI b'b2

2

(a'a'IA" (S; )I a,a, &
= —[S& ] '/' g (-1)"&(a"a"Ivl a,a,),

K= 1
(4.6a)

TABLE IV. Contributions of the orbital diagrams {Fig. 3) and the spin diagrams {Fig. 5) corresponding to the terms
A ', A ', and A ' of the ECPMET equations.

Orbital
diagram

(a)

b(i)

b(ii)

c(i)

e('ii)

Weight
factor

Orbital factor
6=(sq2, s, sq)

(bqb2Iv Ib b ) (a b b I T3(S) la(b fb2)

(-1) (a'b, lv Ib b')(a'b b'I T3(S) laqa2bq&

(-1) (b2b&lvla„b )(a a b I7'p(6)la~b2bg)

(-1) (a"bglv layay+g) (a + a"+
I &2(Sb)lbgay+b)

(-1) (a a"+ lvla~b )(b a"+ l&~(S;)la~+~a~+2)

Spin
diagram

(a)

(b)

(c)

Spin factor

(~2tS&l)' ~(S S )

(-1)"("'*)((s,)/(s;))'/2

X6(S' Sf2)~(Ss S )

(-X}'("'( fS,]/ts~])

DK(Sii S, S;)Dy(SI,' S12, S;)12
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TABLE V. Contributions of the orbital diagrams (Fig. 4) and the spin diagrams (Fig. 6) corresponding to the term
A3'3 of the ECPMET equations.

Orbital
diagram

a(i)

a(ii)

b(i)

b(ii)

(c).

Weight
factor

Orbital factor
6 = [S»2, S,S»)

&a""lflb'& &b'a" a'
l T2(S) la»a2a2&

&a"+ a +
Iv lb b & &b b a 102(S) la»a2a2&

—&b» lf lag, »&
&a'a'a'I ~2(S) lb»a g, 2a g&

&b»b2lv la~+»a&&+2&(a a a lT2(S)lb»b2a&&&

&a"+ b»lv lb a&,+»& &b a + a" l7'2(6)la~+2b»ay&

&a "b»lv lamb &
&a""a"' b'17'2@) lax+»ax+2b»&

Spin
diagram

(a)

(b)

(c)

(d)

Spin factor

6(S„SI)6(S»,S„)
XD„(S;Si2 S»)

6(S» S,)~(S",S")

xDx(SI~ Si2, Si2)

(-1) + i2~(SI, SI)

xDK(SI,.S,S )D~(SI,.Si2y Si2)
i2 i2

[SI, SIl' 'fsi2] '~(S",Si2)

XD„(SI,' S Si2)DX(SI Si2y Si2)

2

j ~" (S, )l ..) = (-.[S, ])1/2 ~ (-i)(K+X+ &s»

Ky X=1

x (P (l,a"Ivi avaa)(a"I t, (0)I 0, ) -g(ana" ivl 0'a „)(0It, (0)I-a )'),
() 1

(4.6b)

2

&o'a lt(»'(S, )l o,a &= + g &0"If lb'&&0'a"I v(S, )la~& -+ &0 if la )&aa"I v(S, )in a-„&)
K=1 5

+ a'a' e b'b 5'O' V2 $& a,a2 + b,b2e a,a2 a'a' 7, S& b,b
b~b2

+ g g ( y)(K+K»»»l [S S ] /2(a blvla
2

K ~ j gj b~5

—Sn(S, , S, ) &
a"0 Iv I 0'aa&) &

0'a"
I v(S, )I axn, &, (4.6c)

( 1 2lg2 ~ 2(s }l ) Q Q Q Q ( ]) sK+»a+»s[»s sl s2]1/2
S' S y'y2 ~ ~~2

x [C(S, , S,', S,') & bP2lvl b'b'& —«(bP2lvl b'b') ]& a'b'I v, (S»')la. ba&(a'b'I ~2(S» )la-.b.&

+-' p $ p (-1)"a~is l.t &nnivlnn')
K= Sg 5 52 bi&2

x [(a'a'l ~2(S» )l a-„b,) ( b'b'l v2(S» )l a„b,)» ( b'a"
l v2(S» )la,ag(a "b'l r2(S» )l bP, ) ]

——'(-1)»[S»] ' P g (b,b, lvl b'b')(b'b'l7'2(S»)la, ag(a'a2lv2(S»)l bPQ n (4.6d)
b yb2

t)1/2
(a'a'lA' '(S») a,a, ) = g g (- &)"a» —

l 5(S»2, S, )6(S",S» )
[S»1 /

xi+(b 0 Ivla„b')(a'a t'Iv (S)la„b 0) 2&a"b ivlb'0'&&a-"b'0'-Iv, (S)lan 0));
(4.6e)
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3. 2 1/2
&a'a'a'Ia"(I)l a,a,a, ) = g g g (-1)"», ', D„(S„S",S, )D,(S„S„,S, )

Ks X.=l 7=1 S.
5

x +&a'b Ivl axa&, + &&
a"'' a"+'lv, (S, )l b a&,+

--&v*v"*'Iv) vvV'&& V'v"'I v.(V;)iov„v., ;&)
b 1

(4.7a)

3

&a'a'a
I
A' '(I)

I a,a,a, ) = Q Q t&(s», s» ) 6(s&2, s&2)D „(s»;s",s")

a"" b' b'a" 'a' v3 8 a,a,a, + a" 'a"+'v b'b' b'b'a" ~3 8 a,a,a3
b

x -p &b&lfla&+&&&a'a'a'I& (3)lb a&,+2az&

P ( V,V,(v(av„av„&&v'v'a'(v, (S)l Vp,vv&)
b lb 2

g 6(s„s,)D,(s„.s„,s„)D,(s„s",s")
K, X= 1

x Q &a"'b,lvlb'a„, ) &b'a""a'I v2(s)lb, a„2a„&
b lb 1

+ X, [S» Szl' '[S&21 '6(s" S&2)D.(S»'S" S&2)D~(S»'S&2 S.)

a"b, v a~b' a"'a""b' 7, 8 a~+yap
b bl

(4.7b)

In these formulas we are using the notation intro-
duced in (3.7) and (3.20), and the notation g

=(S„,s",S,), g=(S„,S",S»} for the sets of in-
termediate spin quantum numbers whic'h label the

3 matrix el em ent s and the triezc ited states onto
which the Schr5dinger equation is projected, re-
spectively. The spin coefficient C appearing in
(4.6d) is a 9-j symbol defined by [cf. E&I. (43) of
Ref. 1]

in Table I (cf. Sec. III).
The contributions to the correlation energy in

(4.3) are easily determined from the diagrams of
Figs. 10(i) and 13 of Ref. 1. Thus,

& b, l fib'& & b'I f,(0)lb, &

+ — Q Q (2&b,b, lvl b'b')
b lb 2 b lb 2

1
1 2

!

c(x„x„x,)= —,
' x, 1

2 (4.8)
-& bp, lvl b'b'&) &b'I f,(o)l b,& & b'It, (o)lb. )

(4.1Oa)

and satisfies

C (X;,X, ,X ) = C(X„X„X,) (4.9)

for any permutation of the indices. The explicit
values forX,. =O, 1 are given in Table VI. The
spin coefficients D appearing in (4.7) are defined

and

g~ &2) Q Q ( 1)l+ s» [s ] 1/2
2

i b lb 2 b lb

x&b&b2lvl b'b') &b'b I ~2(s» )I bp2) ~ (4 10b)
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C(X,,X2,X,)

0 0 4

TABLE VI. Spin coefficient (9-j symbol) defined in Eq.
(4.8).

By applying steps (i) and (ii) above, we obtain
the normalized set of equations

N N

aI + Q b,') tq + Q c~)» t~t~ =0
j =1 y —@=I.

(i=1, . . . ,M), (5.2)

0 12

36

where

a. =N, a-,s a~

b)~) =N]N (5.3b)
The first term in (4.10a) vanishes in the HF case,
while the second term, which first appears in the
third order of perturbation theory, is usually
negligible in comparison with hc'", which first
appears in the second order.

V. DISCUSSION

The orthogonally-spin-adapted equations, which
are given in Sec. IV, represent a simple and sym-
metric form of the ECPMET equations for the
minimal number of t matrix elements. Also, be-
cause of the orthogonality of our states, the ma-
trices corresponding to the linear and nonlinear
parts of the ECPMET equations are sparser' than
in the nonorthogonal case (cf. Sec. I). The spiri
coefficients which are needed in the orthogonal
ease are quite simple: the only nontrivial spin
coefficients are a simple 6-j symbol [Eq. (3.19)
and Tables I and II] needed for the triexcited part,
and a simple 9-j symbol [Eq. (4.8) and Table VI]
needed for the nonlinear part.

The ECPMET equations, that have been given
here in terms of unnormalized states and t matrix
elements, can easily be converted tq equations
involving normalized states and t matrix elements
by (i) using Eqs. (3.31) to replace unnormalized
t, and t, matrix elements by normalized ones, (ii)
multiplying Eqs. (4.2b) and (4.2c) by the normali-
zation factor N, of the state onto which the Schro-
dinger equation is projected.

We can write the unnormalized form of the
ECPMET equations in the compact form

a)+ Q b))7~+ Q c;,~v,. 7~ =0, (i=1, .. . ,M),
j= 1 q-A=X

(5.1)

where M is the total number of monoexcited, bi-
excited and triexcited states, N is the total num-
ber of biexeited states, and v& is an unnormalized
t matrix element. The coefficients a, , b,&, and

c,» are given in Eqs. (4.5)-(4.7) in terms of the
f and v matrix elements, and a, =0 ifi designates
a triexcited state or, in the HF case, a monoex-
eited state.

c;')„=N) (N)N„) 'c)» . (5.3c)

(c)

FIG. 7. Disconnected diagrams which appear in di-
rect CI but not in ECPMET (cf. Sec. V for details).

Here, N, is the pertinent normalization factor,
Eq. (3.11), a,nd t, is a normalized t -matrix
element. We also note that the matrix represent-
ing the linear part of the CPMET equations be-'

comes hermitian (symmetric in the real case) if
normalized states and t matrix elements are used.

From Eqs. (5.2) and (5.3) we can easily obtain
the formulas needed in the direct configuration
(CI) method of Roos and Siegbahn (cf. Ref. 15).
Using the notation of Refs. 4 and 15, such formu-
las are given in terms of the CI expansion coef-
ficients c& and the matrix elements of the Hamil-
tonian JI„, by

Zo,.= Q (i ( a„(j ) c, . (5.4)
j= 1

Here, as in (5.1), i and j index the distinct mono-
excited, biexcited and triexcited states. In most
cases the diagrams that we have used to obtain the
linear terms of the ECPMET equations (cf. for
example, Figs. 3 and 4) can also be used to eval-
uate the matrix elements (i

~
IfJj ) in (5.4)." Thus

from (5.2), we immediately obtain

(5.5)

and the right-hand side of (5.4) can be written
explicitly from the linear part of (5.2), after re-
placing t,- by the corresponding CI coefficient c&,
and using (5.3b) and the pertinent expressions
from (4.5)-(4.7) for b„. We note, however, that
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(i ( HNI j) = 5',
q

+ 5', (5.6)

If only monoexcited, biexcited, and triexcited

some of the diagrams needed for the evaluati. on
of the matrix elements of Jf„ in (5.5) may corre-
spond to disconnected diagrams of ECPMET
which, of course, do not appear in the final form
of the coupled-cluster theory. Thus, in such
cases, the right-hand side of (5.5) will also con-
tain a term b",

&
arising from such disconnected

diagrams:

states are considered, then it is easily seen that
b&z 4 0 only for the disconnected diagrams shown
in Fig. 7. In the HF case, which we are consid-
ering, only the diagram in Fig. V(c) will contri-
bute. In fact, this diagram gives directly the
contribution to (5.4) when i designates a triex-
cited state and j is summed over the monoexcited
states, since no connected diagrams are possible
in this case [cf. Eq. (4.2c)]. Thus, using the nota-
tion introduced in (4.2), and denoting a general
monoexcited CI coefficient by (5'~ cJ 5,), we obtain
the contribution

3 2

(a'a'a'I A'~'(@I aa~, ) =fi, (,[Sl ])' -' g g (-I)' »D,„,~(S, ; S",3„)(a""a"")e)a„„a~,—,) &a"Ic&la~)
Ky )L= 1 %=1

(5.V)

from the diagram in Fig. V(c). Here, the subscript
D is used to emphasize that this is a disconnected
contribution and hence does not appear in the
ECPMET equation, (4.2c).

Thus, in the HF case we can obtain the direct
CI formulas, involving orthogonally-spin-adapted
monoexcited, biexcited, and triexcited states,
directly from the linear part of the ECPMET equa-
tions, (4.5)-(4.V), except for the term given in
(5.V). For the case of biexcited direct CI, we have
previously obtained compact expressions for Eq.
(5.4) directly from formulas for the matrix ele-
ments of the Hamiltonian between orthogonally-
spin-adapted pp-hh-coupled spin-adapted states
[cf. Eqs. (49) of Ref. 4]. On the other hand, we
can use the expression that we have obtained in the

present paper for the right-hand side of (5.6) to de-
rive compact expressions for the matrix elements
of the Hamiltonian between orthogonally-spin-
adapted monoexcited, biexcited and triexcited
states. "
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