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An expression is obtained for the quantum-mechanical second virial coefficient in the form
of an inverse Laplace transform of the logarithmic derivative of the Jost function. This form
is useful for the calculation of the direct part of the virial coefficient at high temperatures in
cases where the Wigner-Kirkwood expansion breaks down. Explicit calculations are presented
for hard spheres, the square-well potential, and the square-well potential with a hard core.

I. INTRODUCTION

The straightforward method of calculating the
direct part of the second virial coefficient at high
temperatures uses the Wigner-Kirkwood (WK) ex-
pansion. This essentially is a perturbation expan-
sion of the Hamiltonian in powers of the kinetic en-
ergy and leads to an expression for the second vir-
ial coefficient as a power series in 5 . However,
for a large class of potentials, the WK expansion
breaks down. This class includes all potentials
V(r) which are nondifferentiable functions of r, as

well as potentials such as the exponential potential
for which higher coefficients in the WK expansion
diverge. DeWitt has analyzed the quantum cor-
rections to the second virial coefficient for a num-

ber of these potentials and has found that they in-
volve nonanalytic forms of h . The particular case
of hard spheres has received some attention,
and Mohling' has also treated the case of a square-
well potential with a hard core. In these instances,
expansions in powers of h are obtained.

The related problem of calculating the exchange
second virial coefficient at high temperatures has
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also been studied by several authors, ' ' and re-
cently Hill has given a general method for deter-
mining the exchange contribution when the potential
is more singular than x" at the origin.

In the present paper, we derive an expression for
the second virial coefficient in the form of an in-
verse Laplace transform of the logarithmic deriva-
tive of the Jost function. ' The asymptotic behav-
ior of the Jost function can then be used to deter-
mine the behavior of the virial coefficient at high
temperatures. The general method is the same as
that of Hill. However, our expression for the di-
rect second virial coefficient is simpler in that the
coordinate-space integration has been performed
explicitly at the outset, and only the inverse-trans-
form and partial-wave summation remain to be
done. Provided these are carried out in the cor-
rect order, there are no convergence difficulties,
and one does not have to subtract off "singular
parts" and evaluate them by a different method, as
in Hill's treatment.

In Secs. III-V, we present calculations of the
direct second virial coefficient for hard
spheres, the square-well potential, and the square-
well potential with a hard core. In the last case,
we obtain an expression which only partially agrees
with a result of Mohling.

II. DERIVATION OF BASIC EQUATIONS

The second virial coefficient can be expressed in
the form

form; c & (-Ez), where Ez is the least eigenvalue
of H. Use of (5) in (2) and (3) gives

Bars.~= 2&2"'l"' f d'«s'
x[G(r, r; —p) —G,(r, r; -p)],

B =+ 'N(-2s+I) '23~ Xoff dorLo'

x[G(- r, r; —p) —Go(- r, r; —p) ] ——,'},
where Go(r', r;z) is the Green's function for the
noninteracting system. %'e now substitute the par-
tial-wave expansion

G(r', r;z) =Z (2l+I) P, (r' r)g, {r', r; z), {9)

and obtain

&g~„g = —2 XX 6,1/P,

Bexc~ =Boxed + 2 A'& {2&+ 1)

(10)

where b, =g {+)'(Pl+I)B, ,
7=0

B,= —Lo'J„f 4wr dr [g,(r, r; —p)

-Zo~{r, r; -p)]],

(12)

B' -+ 2-"'Xl '(2s+1)-' . (14)

B,x~ is the ideal-gas contribution. Equations
(10)-(14) are equivalent to Eqs. (Cl)-(C5) of Hill. o

The radial Green's function is given by

where
+/fleet ++exch

nz

4m' xt' 8'(y„ygg
(i5)

B = 'X2"-'-~'Jd'r{r e- -e '"o r) (2)

B,„~= v —,
' N(2 s + 1) ' 2 ~ &'

x( Jd'r{—r~e o"—e "o~r)+ o') . (3)
H is the Hamiltonian for the relative motion of two
particles, each of mass m interacting via a poten-
tial V(r), and Ho is the corresponding Hamiltonian
in the absence of interaction; s is the spin of a
particle and &=(2mb P/m)'~, where P—= I/kT, isthe
thermal wavelength; B,x~ is the contribution from
the quantum statistics, the upper sign being for
Bose statistics and the lower sign for Fermi sta-
tistics.

It has been shown by Koppe" and Watson' that
the statistical operator e ~ is related to the re-
solvent (z -H) ' by a Laplace transform. If we
write

where y»yz are solutions of

where k = (m/8 )z is complex, with Imk &0.

yi= 0r(» r)) {is)

(IO)

is the Wronskian of the two solutions, and r& (r&)
equals the lesser (greater) of r' and r. For y,
and yz we can choose any two independent solutions
of (16) such that y, satisfies the inner boundary
condition and yz satisfies the outer boundary con-
dition. We take

G(r ', r; z) = {r '
i
(z —Jf) '

~
r ),

then (r'~ 'e~r)= —I;,'[G(r', r; -p)),
(4)

(5)
where y, (k, r) is the regular solution defined by

lim(2f+I)!! r ' ' y, (k, r) =1, as r-~, (20)

where I:,'= (/ mIf)2J dP e". -
is the inversion operator for the Laplace trans-

and f,(k, r) is the Jost solution defined by

lime""f, (O, r) =i', as r- (21)
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The Wronskian is

W[p, (k, r), f, ( k-, r)]=(-1)''f,(-k)/k', (22)

where f,(k) is the Jost function, and so

g, (r, r'; z) = (m/4(()I') (1/rr') (-1)'"
x [k'/f, (- k) ]y, (k, r()f, (- k, r)) . (23)

For the noninteracting case, this becomes

go, (r, r'; z) = (m/4mk ') (- i)kj, (k r() k,'"(k r)),
(24)

where j,(z) -=(v/2 z) ' Z. ..g z(z),

k'"(z) -=(v/2z)' H'" (z)

are spherical Bessel functions. If we substitute
(23) and (24) in (13), the integration over r can be
done explicitly. In Appendix A, we show that

J 4((r'dr [g,(r, r; z) go, (r-, r; z)]
= —(m/k z) (1/2 k)f ', (- k)/ f,(- k), (25)

where the prime denotes differentiation with re.-
spect to the argument. Equation (25) holds even in
the case where the potential has a hard core.
Equations (25) and (13) give

B,= L,' ( (1/2 iy) [f ', (- iy)/f, (- iy) ]], (26)

where y—=p', and o(=& /2((. Equation (26), in
combination with (10)-(12), is our final expression
for the second virial coefficient. The advantage of
this form lies in the fact that the large-P behavior
of the integrand determines the behavior of J3, for
small values of ((. (i. e. , high temperatures). This
remains true in the case of potentials V(r) which
are nondifferentiable functions of x, and for which
the WK expansion fails.

Although the above formulation is formally cor-
rect for both the direct and exchange parts of 8,
in practice it is only useful for calculating 8«„„
at high temperatures. In the exchange part, large
cancellations occur between the contributions from
the various partial waves, making summation diffi-
cult. Hill has shown that in the case of B,„,h, the
Sommerfeld-Watson transform can be used to do
the partial-wave summation before the inversion of
the Laplace transform, at least for potentials more
singular than x at the origin. His result can be
obtained by applying the Sommerfeld-Watson trans-
form to our equations (11), (12), and (26), although
care must be taken in interchanging the order of P,
and L~'.

The equivalence of (26) to the usual phase-shift
formula of Beth and Uhlenbeck' is easily demon-
strated. The transformation P = y gives

zf'( i)-
(2&)2' f, (- )iy'

where the contour lies to the right of all the singu-
larities of the integrand. f,(k) as a function of k is
analytic for Im k & 0," and has simple zeros on the
imaginary axis at k = —ik„corresponding to bound
states of energy E„=—(k /m) k„. It is continuous
on the real axis and has no zeros there except pos-
sibly at k =0. Therefore, f,'( iy-)/f, (-iy) is ana-
lytic for He&&0, except for simple poles at p=k„.
Thus we may shift the integration contour in (2V)
to the left to lie along the imaginary axis, picking
up the residues at the bound-state poles as we go.
This gives + f(o

B,=g„e ~'~- —P dye r 2f'(- iy)
2' J

.„z f', (-k) f', (k)
2v(, f,(- k) f, (k)

(28)

Using the relation between the Jost function and the
phase shift 5((k)

f (k)/f ( k) e2(5((k)

we obtain the usual expression

B,=g„e-" +— dke"1,2 d6
n „0 dk

(29)

(3o)

f,(- iy) = (2a/v) "'y "Z„(yu), (32)

where v—= l+-,' and K„(x) is a modified Bessel func-
tion. Substitution in (26) then gives

v a Z'„(ay)
y' y If,(((y)

(33)

In order to evaluate this for small Q. , we require
the asymptotic expansion of the integrand for large

This is obtained from the Debye expansions for
the modified Bessel functions, ' which are uniform-
ly valid for 0& p&~. These are

f„(x)-(2v) '~'(v'+x') '~'e"

xQ [t u(, (t)](v +x')
a=a

K (x)- (-'7()' '(v'+x )
' e "

(34)

xZ [(-t) 'u„(t)](v'+x') " ',
0-" 0

(35)

I',(x)-(2(() ' x '(v x )' e"

xZ [t 'v, (t)] (v'+x') ')',
&=0

(36)

III. HARD SPHERES

For hard spheres of radius a, the Jost function is

f,(k) = —ik'(-,' ((ka)'~'H, '((z, (ka) .
This gives
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if'(X) (17/) 1/2X-1
( 2+ X2) 1/4 e n

xZ [(- t) "v,(t)] (v'+x')-'/'
a=o

where p, = (v + x )
'/ —v sinh '(v/x),

(37)

(33)

The next step is to perform the summation over l.
In Appendix B, we obtain the results

CO

ve-&n y p ( / 2n+2 (1 2-2n-1) An

1=0 2A „~6 n! 2(n+ 1)
(51)

t= v(v'+x') ' '. (39)

un(t) and v, (t) are polynomials in t. [We give the
series for I„(x) for later reference —only (35) and

(37) are required for hard spheres. ]
From (35) and (37), one obtains

Z'„(x) 1
" t 'C, (t-)

If (x) x + (x2+ 2)(B-I&/2

where

&,(t) =1,

(4o)

~.(t) =(- I)".,(t) -& (- I)" ".,(t) ~, (t). (41)
F220

(42)

where

The explicit expressions for coefficients fo to g5

are given by Hill. The series (40) is now substi-
tuted in (33) to give

B,=-,'e'" Z i [h,(T)),
a220

2 f ( A1/2) 1 -1/2 A-3/2 -1/2

l =0

2 +4 (I 2-2n-3) A"'1/ (52)
,„,n! (n+2)(2n+1)

where B2„are the Bernoulli numbers. The other
series required can be obtained by differentiating
(51) with respect to A. From (10), (12), and (49)-
(52), we obtain the final result

BB„«,(hard spheres) = 3N7/a —1+ 3
a

m a 16m 2 a 05m2 a

(*) 'o(.) I
which is identical to that of Hill.

IV. SQUARE-WELL POTENTIAL

v 1 f9(T) —1
h9(T) =

2 2
—

2 2'Y —v 'Y —v 'Y —1 'Y+ v

1 T "g,(T)
hn(T)= —

2 2 „,', k&1.
v

(43)

(44)

For the square-well potential

v(v)=- v„v&b, v(v)=0,

the Jost function is

(54)

Here we have set T= v/y, A= (X/a) /27/. In deriving
(42), we have used the translation property of the
inverse Laplace transform:

I,,'[Z(p+c')] = e-" l. [Z(p)]. (45)

The inverse transforms in (42) can be performed
using'

g-1 [(Pi/2+c)-1] 7/-1/2P-1/2 c&Bc erfc( Pi/2c) (45)

I '[(p+c') "]=e '"P" '/r(/1), (47}

f, ( iy) = (y/ I-') "[I'bK„(yb)I„'(I'b)

—yb~„'(yb)f„(1'b)],

where I' =y —mV9/h' . (55)

—if'(- iy) 2
—1 1

f,(- iy) v+ (v2+y'b2) '/2 v+ (v'+ 'bI')"

1 1

(
2 y2b2)1/2(v2 F2b2)1/2 2(v2 ~y2b )

The expansions (34)-(37) give, after some work,

where erfc(x) = 27/ '/ J„e ' dt . (48)

This leads to

B,--,' verfc(vA'/ )+-,'e " P v "8„(A),
fI=O

where

g -1/2 p-1/2 1 1 -1/2A 1/2
0 —2+4 W

(49)

81—-

82=

83-—

84-—

1/2 A3 2 —g A2+ 0(A5 2)

5 2 1/2 AB/2 3 A2 ~ 2 1/2 AB/2+21 A3 ~ O(A7/2)6 +4 80~ +32

~A3++2 +-1/2 A7/2 g A4+O(/19/2) (50)

756
~22 -1/2 A9/2 ~A5 0(A11/2)+ 128

J13 AB+ O(A13/2)

This gives

B,= —,'(I —eB o) verfc(vA'/ )+ Be

x [ (I BBv9)7/-1/2A-1/24. z C(pV ) ~0(A1/2)] (59)

where C(x) -=2e"/ 16(—,
' x) —1 —e" . (5o)

The I suir. mation is performed with the aid of (51)
and (52) and yields

The inverse Laplace transforms can be done using
(46) and (47) together with'6

1
[P 1/2(P+c2) 1/2] e Bc /2Z ( 1Pc2) (53)
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B«„«(square well) = f7/Nb

X 1 —e o — -- t" PVo
— +O (61)

We note that as Vo- —~, then C(pV,)-—1, and
we obtain the first two terms of the expansion for
hard spheres of radius b. In the other limiting
case where PVO is small, we find

i/, (x) = (v'+ x') '/' —v sinh-'(v/x),
then

1 fi ( tr')'e &r)m pEr(p)= . r.
( )

=e " ~Vob

&u(I'b ) —&u(I'a) 1

I'~[+(yb) ~ e(I'b)] u&(y)

where

(72)

B«,„,(square well) = —vNb'

X —-,'V, + Vo' —,
' —2-'~2 ~ g

which agrees with a result of DeWitt. "
V. SQUARE WELL WITH HARD CORE

For the potential

V(x) = ~, x & a

=- Vo, a&x&5

=0,

the Jost function is

f,(- fy) = —(2a/~)'/'y" I b

(62)

(63)

/b( '2
~ P2f) 1/2

E„(I) = 2[9,(I'b) —V(ia)]= df . (73)
"a2

The exponential in (72) dominates the behavior of
E,(P) for large P, and leads to the conclusion that
B«„„(linking) does not behave asymptotically like
any power of n at high temperatures. This can be
demonstrated by means of the following lemma. '

Let g(P) be the Laplace transform of a function
g(o.'). Assume that g(p) is analytic except on the
real axis for p&po, and thatg(p)*=g(p*). Assume
further that for some g & 0, limp" "g(p) = 0, as
(p)-~, holds uniformly in argP for )p( -~ in the
right half-plane and uniformly in ReP for ImP - ~
in the left half-plane. Then

limn "g(o.) =0, asn-0+ .

E,(P) satisfies the conditions of this lemma. for any
g&0 and every l, so

x [C,(y) 1,(1'a) —D„(y)K„(1"a)], (64) limn "L,' [E,(p)]= 0, as n 0+ (74)

C„(y)r„(ra)
D„(y)K„(I'a)

(67)

The first bracket is the Jost function for hard
spheres of radius a, with Z replaced by I'. The
second bracket is the Jost function for the square-
well potential (54). Substituting (64) into (26) and

using (10) and (12) gives

B~»„(square well+ hard core)

= e OB,»„(hard spheres) +B«,«t(square well)

+B~»„(linking) (68)
where the last term arises from the Jost function

f, (- fy) = 1 —C„(y)I„(I'a)/D„(y)K„(I'a) .
The expansions (34)—(37) can now be used to ob-
tain the asymptotic form of (69). If we set

where

C„(r)= K„(rb)K„'(I'b) —(r/I')K„'(rb)K„(1'b), (65)

D„(y) = K„(yb)I„'(I'b) —(y/I')K„'(yb)I„(I'b), (66)

and I' is defined by (56). This can be written in the
form

ra "' „ yf, ( iy) = — -I'"K„(I'a)
~ I'bD„(y)

for all q &0. Also, the series

Q (2E+ I) L„' [E,(p)]
L=O

is uniformly convergent, so we can interchange the
limit and the sum. This gives

limn "B«„„(linking) = 0, as -o0+ (75)

x (1 —e'o) —
& C(PV, ) — +0(&') . (76)

Mohling has also calculated 8«„« for the square
well with hard-core potential (63). He obtains the
terms from the hard core and from the square well
(for the case where PV, is small), but he also ob-
tains additional terms

for all q & 0, and so B«„«(linking) does not have
an expansion in any powers of n."

Thus, at high temperatures the only significant
contribution to B«,„,(square well+ha. rd core)
comes from the hard-core and the square-well
parts separately; and from (68), (53), and (61), we
have

B~„«,(square well + hard core)

3 8T 3 2= —3Nma e o 1+ — + —,'Nmb
2v"2 a

(u(x) = (v'+x')'/', (70) 2 Nvt)a (pVO+ q(pVO) +0[(pVO) ]]+O(X )
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In the light of our present investigation we can only
regard them as spurious.

APPENDIX A: DERIVATION OF (25)

Let y, (k, x) and yz(k, x) be two independent solu-
tions of the differential equation

+—,I/(r} +k' y(k, r)=0, (Al)
I(I + 1) m

where» is complex with Im» & 0. It follows that

f y, (k', ~)y, (k, r)d~

= [1/(k" —k') ]W[y, (k', ~), y2(k, r) ] .
Taking t e limit »' » gives

((~() ((y() r d((' - ='—', (s((', ~)) (A3)
r

ay, (k, 1)

%e require the integral

f1(z) = f, 41/~'d~ [g,(r, ~; Z) -g01 (~, ~; z)] . (A4)

Substituting the expression (23) for the Green's
functions, and using (A3) gives

I,(z) = (m/2K')(- 1)"'k' '

APPENDIX 8 DERIVATION OF (51) AND (52)

We wish to evaluate

F(cr) =Z (I+-2) exp[-o(l+-,')'], (al)

where o is small. The Mellin transform of E(o) is

S(p) = f, F(o)a~ 'do, (a2)

S(p)=& (1+5)F(p)/(I+2)",
l=0

S(p)=&(p) &(2p-I)(2"-I), (Rep») (a4)

where r(z) is the Riemann f function. The inver-
sion theorem for the Mellin transform then gives

(ae)

dary condition (20) is now replaced by

(/(, (k, a) = 0, —(/1, (k, r) „,= 1, (A9)8J
where a is the hard-core radius. The %'ronskians
in (A5) still va, nish at the lower limit, and the con-
tribution from the upper limit is unchanged by the
presence of the hard core.

a(/(, (k, r) f,(- k, x)
ek ' f (-k)

90k »&+

g=o
(A5)

where c & 1. Now f(2p —1) has a pole at p = 1 with
residue —,', and I'(p) has poles at p = —n (n = 0, 1,
2, . . . ) with residues (- I)"/n! . Thus, shifting the
contour to the left and picking up the residues at
the poles of the lntegrand gives

where (/(0, (k, r) and fa, (k, x) are the regular solution
and the Jost solution in the absence of interaction.
The boundary condition (20) shows that the Wron-
sklans vanish at tile lowel llmlt. At the upper llIQ-
it we use (21) and

q, (k, ~)- —,'~' "k '-' [f,(- k)e-'"" —(-)'f, (k}e' ],

(Ae)

to Obtain

E(o)-—+ Q 0(-2n —1)(2 " —l)a",
" (-1)"

an 1.=0
(ae)

and using

5(- 2n —1) = ——'8 „, /(n+1), (av)

where the Ba„are the Bernoulli numbers, gives
(51). The result (51) was first obtained by Mulhol-
land by a different n".ethod.

The same method can be applied to the sum
~~Ps» ~

sk ' f, (- k)

x 2»- ' + 2l+1 +2Nx, as x-~. Av
1'(- k)

f, (-k)

F{o)=Z (I+-,')'erfc[(f+-,')g'/'].
l =0

The Mellin transform is

(ae)

For the noninteracting case, the corresponding re-
sult ls

~go)», t'
t og

--,'(-I)'k-'-'[(2I+I)+2fk~], as ~- . {Ae)

S(p) = v "'p '&(p+-.') (2" '- I) C(2p-2},

Rep —,
' (»)

and the inversion integral now gives

(-1)"1&-1/ 3 o-8/ 8 2 -1/ 8 +~
2 +I

From (A5), (A'/), and (Ae), we obtain the result
(25).

It should be noted that (25) still holds in the case
where the interaction has a hard core. The boun-

x (2-&((-3 1) t ( 211 2) on+1/2

Use of (a7) then gives (52).

(alo)
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The analysis of the preceding two papers in this series is applied to the specific case of a
degenerate Bose fluid, in which there can be macroscopic occupation of the zero-momentum
state (in a system at rest). The quasiparticle ensemble of Mohling and Tuttle is incorporated
into the theory in order to guarantee that Nernst's theorem for the entropy is satisfied. It is
shown that a double-quasiparticle model emerges naturally from the theory, as developed
earlier, and this feature is then incorporated into the quasiparticle ensemble. The general
theory is prepared, with the aid of the A transformation, for calculational applications. A
phenomenological theory of the degenerate Bose fluid, based on the double-quasiparticle
model, is presented, but no significant physical implications are deduced from it.

1.INTRODUCTION

London' emphasized that liquid helium, nature' s
best example of a degenerate Bose fluid, undoubt-
edly undergoes Bose-Einstein condensation when
it cools from the liquid I phase to the liquid II
phase. Lee and Yang used this concept in one of
the first modern attempts to derive a quantum-
statistical theory of the degenerate Bose fluid.
Their x ensemble, which introduces into quantum
statistics the possibility for macroscopic occupa-
tion of one quantum-mechanical single-particle

state, is a stepping stone for the developments in
the present paper.

We are concerned with the derivation of a quan-
tum-statistical theory of the degenerate Bose fluid
which is useful for practical applications to liquid
helium rr. In the preceding two papers of this
series, we have developed a general theory of
quantum fluids and, in particular, have shown how
to apply the theory to the special cases of normal
Fermi and Bose fluids. For the degenerate Bose-
fluid case these two papers represented a simpli-
fication and outgrowth of earlier work by Mohling


