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A classical analysis of time correlations in simple fluids based on the generalized Langevin
equation is presented. Formulas for the current-current correlations are developed explic-
itly in a region of frequencies ({d- 10 3 sec ') and wave numbers (k -10 cm ') whj. ch are ex-
plored in typical slow-neutron-scattering measurements. %here applicable, comparisons
are made with the results of the numerical calculations of Bahman in argonlike liquids, and
good agreement is generally found. The analysis is based on a hydrodynamic description of
fluids involving frequency- and wavelength-dependent transport parameters. The frequency
and wavelength dependence of shear and longitudinal viscosities are given explicitly for argon-
like liquids.

I. INTRODUCTION

The calculation of coxrelation functions in clas-
sical simple fluids in terms of microscopic quan-
tities plays an important role in statistical me-
chanics, both for the interpretation of scattering
experiments and the evaluation of the frequency-
and wavelength-dependent transport coeff icients.
Among these, the density-density {or Van Hove)
correlation function has received the most atten-
tion becRuse of its dix'ect x elation to the cbfferen-
tial scattexing cross sections. Othex corxelation
functions, such as the transverse cuxrent-current
correlation functions, which are not readily acces-
sible in experiments, have been subject to quanti-
tative investigations only recently following the
publication of Rahman's' computer calculations in,

argonlike liquids. Computer studies of correla-
tions using molecular dynamical calculations pro-
vide a stringent test of the validity of the various
classical theories introduced in correlation analy-
sis because they only assume a known model inter-
particle potential, and involve no quantum effects.

The classical analysis of correlations is usually
based on either a kinetic or hydrodynamic de-
scription of fluids. The kinetic description devel-

oped extensively by Welkin and his co-workers
has been justified theox'etically for dilute gases,
and used successfully to interpret Brillouin scat-
tering from gases. '6 It has also been extended to
dense fluidsv Rnd applied to Rahman's molecular-
dynamics calculations for liquid argon with poor
quantitative agreement. 8

The hydrodynamic description of fluids has long

been in use in the fluctuation analysis in axbitrary
continuous media as a phenomenological theory.

In this approach, the conventional hydrodynamic
equations are used to describe the linear response
of the fluid, and the correlation functions are
then related to the linear response by means of
the fluctuation-dissipation theorem. Using the
formulation described by Landau and Lifschitz, ~0

Rytov applied the fluctuation-dissipation theorem
to distributed parameter systems and calculated,
among others, density-density correlation func-
tions in an arbitrary continuous medium. This
hydrodynamic approach has been used to interpret
light scattering from liquids successfully by
Mountain. ' A systematic and general hydrody-
namic description of fluids fox the calculation of
correlations and transport coefficients has been
developed by Kadonoff and Martin. " The latter
approach has been applied by Chung and Yip to
Rahman 8 cRlculatlons of curx'eQt-current corre-
1Rtlons.

The objective of this paper is to present a clas-
sical analysis of coxrelations in simple fluids
based on the generalized Langevin equation devel-
oped by Zwanzig" and Mori~6'~~ and to interpret
quantitatively the current-current correlations
computed by Rahman for liquid argon. This ap-
proach has several appealing features. First by
choosing the dynamical variable in the desex'iption
of the fluid as the microscopic phase density func-
tion one obtains" an exact kinetic equation for t e
correlation function I"{v,v'; x, x', t), which re-
duces by approximation to the kinetic equation de-
rived by Zwanzig' and welkin. However, by

making an alternative choice of the dynamical
variables to be microscopic densities in configu-
ration space {e.g. , mass, current, and energy
densities) one arrives at an exact hydrodynamic



F LUCTUAT ION ANA L YSIS IN SIMP LE F LUIDS 963

description of correlation functions in terms of
frequency- and wavelength-dependent transport
parameters. The choice of the appropriate set
of dynamical variables is arbitrary. For any
choice of these variables one obtains exact ex-
pressions for the correlation functions of the
variables in the set. Different levels of approxi-
mations can be obtained for a particular correla-
tion function by adding new variables to the set
and using the same simplifying assumption (e. g. ,
Markov assumption) in each case. The continued
fraction expansion of correlation functions by
Mori, for example, can be obtained by using an
orthogonal extension of the set starting from a
given dynamical variable. The separation of
thermodynamic and transport parameters can be
given a geometric interpretation in terms of pro-
jections of dynamical variables on appropriate
orthogonal axes, and the extension of their defi-
nitions to short wavelengths where the anisotropies
become significant can be made in a systematic
way.

In this paper, we will use the configuration-
space (hydrodynamic) description of fluids to in-
vestigate the current-current correlation functions,
and obtain approximate formulas for transverse
and longitudinal current-current correlations in
the frequency and wavelength regions encountered
in neutron scattering using a Markov assumption.
The results will then be compared to Rahman's
computer data~ for liquid argon. We will also ob-
tain the wavelength and frequency dependence of
shear and longitudinal viscosities explicitly and
discuss the influence of thermal effects as a func-
tion of wavelength. The objective of this paper is
similar to that by Chung and Yip; however their
approach is based on the correlation-function for-
malism developed by Martin and Kadonoff, rath-
er than on the projection-operator formalism by
Zwanzig and Mori.

II. GENERALIZED LANGEVIN EQUATION

Extending the projection-operator technique
first introduced by Zwanzig, "Mori' proves
that the equation of motion of a set of dynamical
variables a&(t) can be written in the form

da t —tn a(t) ' y(t —u) a(u) du =f(t), t ~ 0 .
(2. 1)

The state vector a(t) is defined such that it has no
invariant contribution, e. g. ,

a(t) =A(t) -(A(t)) (2. 2)

where ( ~ ~ ~ ) denotes the thermal average of the
vector A(t). Equation (2. 1) is the generalized
form of the Langevin equation ' in the stochastic

theory of Brownian motion. The random-force
vector f(t) is given formally by

f(t) =e u " (1 —P)a (a =iLa), (2. 2)

where I- is the classical Liouville operator and P
is a projection operator defined for any arbitrary
phase function G(t) by

PG(t) =(G(t)a ) ~ (aalu) ' a (2. 4)

Here a denotes the row vector which is the Her-
mitian conjugate of a. The (aa~) ' is the inverse
of the square matrix [(a,a,)] which is the static
correlation matrix. It should be noted that the
evolution of the force vector f(t) is determined by
the special propagator e'" ",whereas the evo-
lution of the state vector a(t) is given by

a(t) =e" a

It is shown by Mori" that

(2. 6)

(f(t)a') = o, to--o . (2. 6)

(2. 6)

dR (t) t
—in ~ R(t)+ y(t —u).R(u) du=0, t ~ 0 (2. 9)

where R(t), the normalized dynamic correlation
matrix, is defined by

The one-sided Fourier transform of R(t) is ob-
tained from (2. 9) as

R(i&a) = [iu) - in y+(i~)] ' (2. it)
where

y(i&a) = lim J e """"y(t) dt (2. 12)
0

The projection technique enables one to find a
closed set of linear equations for the correlation
matrix R(t) when the state variables a&(t) are
chosen as fluctuations from thermal equilibrium.
The theory, although formally exact, serves only
to transform the calculation from the direct com-
putation of R(t) to the computation of n and y(t).
However, the frequency matrix 0 is determined
from static correlations which are generally much
easier to compute than the time-dependent corre-
lation functions, and we may use approximations
to compute the damping matrix y(t). In particu-
lar, we will consider representations in which we
can make a Markov approximation on rp(t), viz. ,

The square matrices y(t) (damping function) and
n (frequency matrix) are defined by

y(t) =(f(t)f'(0)) ~ (aa') ' (2. I)

in =(a'a') ~ (aa') '

Multiplying (2. 1)

hyatt

(aalu) ' from the right-hand
side, taking the thermal average of the resulting
equation, and using (2. 6) yield
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(2. ls)

to approximate the transform of the correlation
matrix R(i~) by

R(i~) =- [i~-iQ+ W] ' (2. 14)

%e shall follow this formal procedure to calculate
the current-current correlation function and its
transform by choosing the components of the state
vector as the spatial Fourier transforms of the
local densities of conserved variables.

0=k
gC«(k)/p, 0 (3.6)

Since (1 —P)a& =ik(1 —P)a2 -0, th—e random force
component f,(t) is identically equal to zero and the
damping matrix y has only one nonzero element,

the volume of the system, and p0 is the equilibrium
density. Here C«(k) is one of the elastic moduli
calculated by Schofield. The frequency matrix
0 is calculated using (3.4) and (3.5), and noting

a~ =ika2 as follows:

%'e first calculate the cosine transform of the
transverse current correlation function as a sim-
ple application of the generalized I angevin equa-
tion, and then compare it with Rahman' s compu-
tations. For this purpose, we choose the compo-
nents of the state vector as

(3. Ia)

where

y»(t) =-
& (1 —P)as e 'u " (1 —P)a, & & a, a2 &

'
(3. 7b)

The generalized Langevin equation for the set
[a,(t), a, (t)] becomes

a, =Z, (k),
a, = II„(k) (3.1b)

da, (t)
dt

(3.8a)

where J(k) and II(k) are the mass current density
and the stress tensor, respectively. They are
defined by

da~(t) . C«
dt

—ik a~(t) + ' y»(t - u)a~(u) du =f2(t) .
(s. sb)

J&(k) = Qmv, 'exp(ik x') (S.2a)
The transverse current correlation function is

defined by

R (k t)
&ag(t)&g& (s. 9)

2P 1 ~X
(84 e)

dV(R) 1 —e '"'"
dR —ik R

(s. 2b)

(3.2c)

(3.2d)

Rr(k, &u) =Re[i~+ (k'/po)qr(k, i&a)] ', (3. 10)

Its cosine transform Rr(k, &) is the transverse
current power spectral density. The latter can
be obtained directly from (3.8) by multiplying it
by a,*, taking the thermal averages, and using
&f,(t)a,*) =-0 as

In these definitions, x and v denote the position
and velocity of the &th particle in the system, and

the subscripts i and j refer to the Cartesian com-
ponents in a coordinate system in which k is par-
allel to the z axis. With this choice of variables
the static correlation matrix is diagonal, viz. ,

'

&a,a,*) 0 (3. 3)
0 (a, ag&

since the VR11Rbles Q1 Rnd Qp Rl e, 1 espectlvely,
odd and even functions of the particle velocities
so that &a&a~*& = 0. Furthermore, a direct evalua-
tion of the diagonal terms using (3. 2) yields

(P/V) &, ,*& = p. , (s. 4)

(tI/V) &....*& = C,.(k)

n z 3
82 V (1 —cos kz)

= —+ n' d3Rg R

(3.5)

where P= (1/keT)(ke = Boltzmann's constant), V is

where q r(k, i~), which we refer to as the trans-
verse viscosity, "is defined by

q r(k, i (u) -=(po/ik) ( a p(i u))a,*&/& a, (i ~) a,"),
(3. 11a)

qr(k, i(u) ='C«(k)/[i&up y»(k, iv)] . (3, lib)

Rahman' has computed Rr(k, ~) for various values
0 and &. Vfe have been able to obtain an exact ex-
pression for it in terins of the Laplace transform
of the damping function, viz. , y»(k, i&u). How-

ever, the evaluation of the latter using (3.'Ib) is as
difficult as solving the Liouville equation, although

perturbative techniques such as expansions in

density or interparticle potential' may be used in

dilute systems. For sufficiently small frequen-
cies, we can approximate (3.10) by replacing

y»(k, i&a) by its zero-frequency limit y»(k, i~ =0).
This approximation corresponds to a, Markov de-
scription of the fluid in terms of a,(t) and a,(t), in
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The frequency range in which the Markov assump-
tion may be expected to be valid can be estimated
by considering the next term in the expansion of

y22 (k, iv) in powers of (i~):

y22(k, i ~) dy22 (k, i~)
8 2 ice- 0

(3. 12b)

It is clear that the Markov assumption ceases to
be valid if y22(k, i& = 0), the leading term in this
expansion, vanishes for some values of k. In such
cases it turns out to be more convenient to go to

a more complete description of the fluid by intro-
ducing new variables.

With these remarks, we obtain the following ap-
proximate form for Rr(k, ~):

er(k)k2C«(k)/p2
~ (u (k) [k C (k)/p —&u']

where we have introduced

&ur(k) = limy22(k, i&a) . (3. 14)

Calculation of &ur(k) directly from (3. 14) is still a
formidable task in dense fluids, although it is
simpler than calculating y22(k, iv). Therefore, we

choose to try to guess its 4' dependence by consid-
ering the asymptotic behavior of qr(k, i&u) in the
small-k limit, and of R r(k, &) in the large-k limit.
We shall show in Sec. IV [cf. (4. 54)] that

lim qr(k, i&a) =C44(0)/&ur(0)
k2 f2) 0

(3. 15)

is equal to the conventional shear viscosity p, .
Hence, the small-k limit of &or(k) is given by

~ r(0) = C44(0)/'/t 2 (3. 16)

[note that C«(0) is G in Zwanzig's notation '].
The large-k behavior of Rr(k, &u) may be pre-

dicted from the transverse current spectrum of an
ideal gas, viz. ,

2 2
RIC (k &) (&p~/2k2)1/2 &-Bme /2k (3. 17)

This function has a single maximum at &=0 for
all k. On the other hand, (3.13) attains its maxi-
mum for a fixed 0 at a frequency

NTm(k) = k C«(k)/Po 2~r(k)- (3. 18)

for ~r(k) &2k C«(k)/p2, and at ~=0 otherwise.
[ The function &ur (k) is often referred to as the
dispersion relation. ] The dispersion relation
(3.18) is expected to approach that of an ideal gas
as & - ~ because for large 4 the particles behave
as free particles. (This is more apparent in the

which the convolution integral in (3.8b) is replaced
by

J duy22(t-u)a2(u):-a2(t) f du y22(u) . (3. 12a)

case of longitudinal current correlation function
because it is related directly to the neutron scat-
tering cross section where the large values of k

correspond to large momentum transfer to the
scattering medium. ) Hence, we require &r (k) to
approach zero for large values of k, i. e. ,

&sr(k) - 2k2C44(k)/p2 (3. 19)

Thus, we obtain the asymptotic behavior of +r(k)
for small and large k from (3. 16) and (3. 19). The
k dependence of &ur(k) for the intermediate values
of k can be obtained by interpolating it between the
zero and large-0 limits by the following formula:

~'r(k) = 2k'C«(k)/po

~2r(0) —2k 2 (C«(k) —p2/ p rn )/p2
, (3.20)

+ 0

where ko is an adjustable parameter whose choice
will be discussed presently.

It is interesting to compare (3.13) using the
above expression for &ur(k) to the ideal-gas result
in (3.17) for zero frequency and large k, because
the Markov approximation becomes exact at ~ = 0.
Noting that C«(k)/po- (I/Pan) [cf. Eq. (3.5)], we
obtain Rr(k, 0) from (3.13) as (2P~)'/'/k whereas
(3.17) yields (vPm/2)'/'/k. The ratio is (4/m)' 2

= 1.12. Thus (3.13) recaptures the ideal-gas re-
sult in the limit of small & and large k. It may
be pointed out here that (3.10) can be approximated
for large frequencies by replacing y»(k, i~) by

y22(k, & = 0)/i&u [short-time expansion of y22(k, t)].
Since our interest lies in the small-frequency re-
gion we shall not dwell on this point further even
though y»(k, f = 0) is calculable exactly.

With the aid of (3.20) we have been able to ob-
tain an expression for the transverse current pow-
er spectral density (3.13), which contains only
one adjustable parameter ko. The value of 40 de-
termines the transition from the small- to large-
& limits. It is expected to be in the vicinity of the
main peak of the structure function S(k), which

0
occurs at k = 2 A ' in Rahman's computer calcula-
tions for liquid argon. We have chosen F0=1.5P. '
which yielded a good fit to the computed curves
although the value of A'0 is found to be not too crit-
ical. The other constant in (3.20) is ~r(0) which
is obtained from (3.15) as +r(0) =0.1&&10'2 sec
corresponding to a value for the shear viscosity
&2 =2.8X10 P at p2=1.407 g/cm2 and T = 76 'K
for liquid argon. The values of C«(k) were com-
puted according to Eq. (3.5) in which the interpar-
ticle potential is taken, following Rahman, as

&(R) = 4E [(t7/R)" —((7/R)']

with (e/ks) = 120 'K (ks = Boltzmann constant) and
v = 3.4 A. The variation of C«(k) is plotted in
Fig. 1.
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FIG. 1. Variation of elastic moduli with wavelength.

Figures 2 and 3 show the variation of &ur(k) and

qr(k, 0) =C«(k)/~r(k) with k. We observe that the
k-dependent shear viscosity decreases very rap-
idly by a factor of 100 in the region of k from
zero to 2 A, and approaches zero as 1/k. This
k dependence of q r(k, 0) appears to be crucial to
the behavior of Rr(k, &) for the k values in 1-4
A '.

Figures 4 and 5 show comparison between the
calculated curves and Rahman's data. It is note-
worthy that the present model predicts well the
cutoff wavelength in the dispersion curve, i. e. ,
&ur (k). Other features are self-explanatory.

IV. GENERALIZED HYDRODYNAMIC DESCRIPTION
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FIG. 2. Variation of the transverse and longitudinal
relaxation frequencies with wavelengths.

The previous application indicates that the cor-
relation function associated with a dynamical vari-
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FIG. 3. Variation of shear viscosity with wavelength.

able a, (t) [e.g. , J,(k, t)] can be obtained by solving
the appropriate generalized Langevin equation. If
only the autocorrelation function is of interest, the
one-component description of the system is suffi-
cient in principle. The correlation function in
this case is obtained by solving

R,(t)+ J,'du y, (t-u)R, (u) =0 (4. 1)

(note that the frequency matrix is always zero in
one-dimensional description). The damping func-
tion y, (t) involves f(t) = exp[t(1 —P)iL](1 —P)a, (0),
where P projects a phase function onto a~(0). Al-

though (4. 1) is exact, the calculation of y, (t) is as
difficult as calculating (a, (t) a,*) directly. Crude
approximations for y&, such as the Markov as-
sumption, are generally not precise enough to in-
clude even the qualitative features of the correla-
tion function, or the power spectral density asso-
ciated with it, for large values of ~ and k. By in-
troducing instead a multidimensional description
of the system, one actually extracts a great deal
of information about the collective motion of the
system through the frequency matrix even though
one may still be interested only in the autocorrela-
tion function of a single variable. This information
is contained in p, (t) in one-dimensional descrip-
tion. A proper choice of the additional variables
in a given system can lead to a sufficiently pre-
cise expression for the correlation function in a
wide range of (d, 0 even with crude approximations
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q (k) =-Q (k) —(Q1J*(k)) ~ (J(k)J*(k)) J(k) . (4. 6)

The definitions of J(k) and II, 1(k) have already been
given in (3.2a) and (3.2b), respectively. The
1Iuantities E(k) and Q1(k) are the energy density and
the energy current density, respectively. They
are defined as

V» = COI[+11& +22& +33& O13& +23& +121.

The variables 8, 0~, and q& are defined by

(4. 2b)

on the multidimensional damping function. The
variables J,(k) and II„(k) introduced in Sec. III
provide such adescription for the transverse cur-
rent correlations. The description of the longitu-
dinal current correlations requires a more de-
tailed description of the fluid including thermal and
viscosity effects as will be demonstrated in this
section. Moreover, a multidimensional descrip-
tion also allows the computation of the various
cross-correlations between the variables in the set
in terms of the same thermodynamic and transport
parameter s.

The purpose of this section is then to present a
14-dimensional description of a simple liquid, and
to compute specifically the transverse and longitu-
dinal current correlations. This description in-
cludes thermal effects, and sheds light on the an-
isotropies in the fluid for large-0 values.

For state variables, choose
a= col[p& 8, o~, —J„q1j, (4. 2a)

where J& and q& are vectors with three components
(i,j = 1, 2, 3) and o~ is a six-component vector with
i1=1, . . . , 6, ) viz. ,
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FIG. 5. (a) Maxima of a transverse current-current
correlation function versus wave number k. Solid line
due to present theory and points represent'Hahman's
data. (b} Frequency at which the transverse current-
current correlation function is maximum. (c) Trans-
verse current-current correlation at zero frequency.
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N N

E(k) =Z —,'mv" v +2K V(!x —xol) e'"' ",
e=1 &=1

(/Pe)
(4. 7)

(i/v) &p(o)) = p„ (4. 11a)

1 2—(E(o))= -,
' ' +-,' i~ d'ft v(ft)g(ft),

(4. 11b)

—&11,,(0)& = 5,,P,
2

(gr))
rnp Gm

(4. 11c)
Here, P0 is the equilibrium pressure. We shall
always assume that these averages are subtracted
from p, E, and II;& whenever they are not zero, so
that the state vector a will denote fluctuations.

Eight of the 14 components of the state vector a
a.re even, and the remaining six are odd functions
of particle velocities. Hence a can be decomposed
into even and odd parts as

N

Qj(k) =Pv,. —,'mv v'+ —,
' g V(~x —8[) e'"'*'

e /=1
(BPe)

e8
+ —,'Q" (v'+v') x",', , P '(k)e'"'"'

g
lx~™8!'

(4. 8)

[x'o and P'o(k) were defined previously in (3.2c)
and (3.2d)].

The following usual conservation laws prevail
among the variables p, J&, II;,, E, and Q,.:

Bp BJ BE
(a) —= ik ' J, (b) —= ik II, (c)—=ik Q.

at ' at —' at
'

(49)
The tensors II;,. and o;,. are symmetric and have

only six independent components as implied in
(4. 2b). The variables o„and q& denote the viscous
stress tensor and the thermal energy flux vector.
The g$), defined by (4. 4), will be replaced later by

T (k) =g(k)/p, C„(a} (4. 10)

whose average with respect to a perturbed distri-
bution function yields the temperature in the con-
ventional linearized hydrodynamic description of a
fluid. ' Such an identification, however, is not
needed for the present. The quantity C„(k) will be
defined later (it will be identified as the specific
heat at constant volume).

The average values of p(k), E(k), and II;,(k) are
zero for ktp. When k=p, we have

where
& pp'&

y'-=&a'a"& = 0 (gg*) 0

0 0 &oot&

(4. 13a)

and Q'=-&a a' t& = (JJ) 0

&qq')
(4. 13b)

The block diagonality of Q' and Q is a, consequence
of the choice of the state variables as in (4. 4),
(4. 5), and (4. 8), which imply the following orthog-
onality relations:

&pg*) =&&; p*) =&o; g*& =&q;J,*& =o . (4. 14)

0 &u uot& .@0
~

&g =
&

~ o 8~&. @8-~ 0
(4. 15)

As a consequence of the conservation relations
(4. 9),g(0) = (1 —P)u has only nine nonzero compo-
nents:

(4. ia)f(0) = col[0, 0,f~, 0, 0, 0, f& ]

Therefore, the damping matrix g(t) is of the fol-
lowing form:

0 0 0 0—
0 g"(t) 0 @"(t)q(t)=
0 0 0 0
o y"(t) 0 g"(t)

(4. iv)

where y and cp are 6x6 and 3x3 square ma-
trices. The off-diagonal matrices y"(t) and q"
are 3x6 and 6x3.

Substituting (4. 15) and (4. 17) into the generalized
Langevin equation discussed in Sec. II, we obtain
the following set of equations:

p(t)=ik J(t)
0

pp

(4. 18)

(4. 19)

g(t)+&gJ ) (JJ ) ' J(t)=ik q(t) (4.20)

o(t)-&oq'& (qqt) '
~ q(t)+ g q"(t-u) ~ q(u)du

—&~J'& &JJ ~&
' J(t)+ f' qP'(t-u) g(u)du=f'(t),

(4.21)

The static correlation functions appearing in Eqs.
(4. 13a) and (4. 13b}will be discussed later.

The frequencymatrix (iQ) =&aa ) ~ P
' can be writ-

ten

a= col[a', 0]+col[0, ao].

(4. 12)

Consequently, the static correlation matrix

P = &aat& splits into two disjoint submatrices as
e 0

0 o

q(t) —
~ g(t)+ y"(t -u) ~ q(u)du

ggQ
0

-&qo'& &oo'& ' o(t)
t

+
J q (t-u) g(u)du=f'(t) .

0 (4. 22)
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Equations (4. 18)-(4.22) describe the time evolution
of the state variables p, 8, p~, J;, and q; exactly.
We shall approximate them by neglecting the cou-
pling between the viscous stress tensor and the
energy flux vector and introducing the Markov as-
sumption in (4. 21) and (4.22). The first approxi-
mation is equivalent to setting (o q'& =0 and g"
-=0 in (4. 21) and (4.22), and the second to

g(R) being the static pair correlation function. We
will refer to Cz, (k) as the longitudinal isothermal
speed of sound because one can also define a trans-
verse isothermal speed as

C' (k) -=&II„p*&/(pp*) = &If„p*&/(pp*), (4. 30a)

x —z dV sinkC., (k) S(k), „P d.R
R dRg(R) k n

f zp" (t —u) ~ o (u) du = W'(k) g(t)

f rp"(t —u) q(u)du=W'(k) q(t)

where W'(k) = f dt @"(t)

W'(k)= f dt &"(t) .
0

(4. 23)

(4. 24)

(4.25a)

(4. 25b)

+p~r g x —z dV y )1 —e'

(4. 3Ob)

where g(R, k }is the Fourier transform of the three-
particle distribution function g(R, S ) with respect
to S, i. e. ,

Furthermore, the following definitions and equal-
ities will be introduced:

0

&Sp*&/&pp+& = c', (k-) ik,
(J T+&/&TT+& =- C', (k) p, p, (k)i k,

(I/I') & d; d;) =- (po/P) 5;

(4.26a)

(4.26b)

(4. 26c)

(EE ) ( g&
To C~(k)

4. 26d

(P/V) (o,g+& -=tk„Z, ,.„(k),

(qS*)/&ee+&= zk I"-.
(4.26e)

(4. 26f)

where E„„is the rate of strain tensor, i.e. ,

e „(k)= (i/2p, ) (k J„+k„d ) (4. 28)

We shall discuss the physical implications of the
various quantities appearing in this set.

The Cz2 (k) introduced in (4. 26a) can be defined
also by

Cz(k) =(II„p*)/(pp*&,

Czz(k) = 1/PmS(k),

where S(k) is the structure factor defined by

(4.29a)

(4.29b)

S(k)= 1+(pp/m) f d Re' '
"[g(R) —I], (4.29c)

Then, we obtain the following approximate descrip-
tion:

p (t) = ik, J,(t), (4.27a)

J;(t) —Cz, (k)ikz[P(t) + Pz, (k)POT(t)] = ik~5z~(t), (4. 27b)

e(t) —p, (k)c,'(k)T, p(t) = ik, q, (t), (4.27c)

o, (t) -+„„(k)~,(t) + W;. (k)o.(t) =f; (t), (4. 27d)

qz(t) —ik I';„tI(t)+ W,' q (t)=fz(t), (4.27e)

n'g(5, k)=- —( 2; 5(5-x" )e*' ' ""&U, o r

(P, y&zz; P&y) . (4. 30c)

In the isotropic limit where ka «1, a being the
mean linear force range, k 5,«1 and Cz = Cr.
In this limit, the distinction between the longitudi-
nal and the transverse speeds becomes unneces-
sary. The conventional isothermal speed of
sound Co(k) is defined by '6~ z'

, ( )
SP 1 &(Trli„)p+&

sp, 3 &pp&
(4. sod)

where P is the thermodynamic part pressure' &
'

P =
& Trli;z (the nonthermodynamic part, by defi-

nition, has no projection on p and T). Thus, the
longitudinal and transverse isothermal speeds are
related to C, (k) by

c', (k) =-', [c', (k)+2c', (k)] .

In the isotropic limit, we have C,(k) = Cz (k). We
may note that only the longitudinal isothermal
speed is completely determined by the structure
function S(k) when k is not small.

The quantity Pz (k) in (4. 26b) can be defined
equivalently by

P, (k}-=[1/p, C,'(k)] ( II„T*&/& TT*& (4. Sl)

(use ik & II» T ) = ( O', T*&). We refer to Pz (k) as
the longitudinal thermal- expansion coefficient for
the following reasons. Similar to (4. soa) we can
also define a transverse thermal-expansion coef-
ficient as

P, (k) -=[1/p C (k)](II„T*)/(TT*) . (4. 32)

(Note that (II„T ) = (II22T&. ) The conventional
definition of the thermal-expansion coefficient p0
as a derivative of the thermodynamic part of pres-
sure16, 21 i
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1 1 &(Trrr„) r*&

p, c,'(k) s &re'&

1 BP
p3C30(k) s I' p.

Then, po(k) is related to pL, (k) and pr(k) by

( )
Pg (k)C~ (k) + 2Pr(k)cr(k)

Cg (k) + 2cr(k)

(4. ss)

&Ii„p*& =5„&11,, p*),

&II(gT ) =6(;&II;(T )

(4. S7a)

(4. 37b)

and using (4. 36a) in (4. 34b) we obtain the form of
Z~„as

~11 ~12 ~13
~12 ~11 ~13
~13 ~13 ~33

In the isotropic limit defined above P3(k) = P~(k)
= Pr(k). Since they reduce to the derivative of the
pressure with respect to temperature as in (4. 33)
in the limit of k-o, Pz(k) and Pr(k) are identified
as thermal-expansion coefficients.

The definition of C„(k) in (4. 26d) is identical to
that by Schofield. 2' It is identified as the k-depen-
dent specific heat at constant volume. Its expres-
sion in terms of the multiparticle distribution
functions is given in the cited reference [Eq. (50)
of Ref. 21].

The symmetric tensor g„„ introduced in (4. 26e)
can be defined alternatively by

Z„„=(p/V) & o.o.*&,
P &Il, o"

& & pII„'&
~u =

gv v &pp+&

(II„T'*&& Til*„&

& TT*)

(4. S4a)

(4. 34b)

where C,„ is the elastic-moduli tensor defined by

c,„= (P/v)&11„11„*& . (4. s5)

c(k) = C44

C44

C66-

(4. S6a)

The elements C44, C3„and C33 have been computed

by Schofield ' as functions of k in terms of the two-
particle distribution function. One can show that

C„„(k) has the following form:
IS]

C11 C12 C13

C12 C11 C1s 0

C13 C13 Css

, (4. 36a)

where Z» = Cqq-P3(cr/Cq)yr,

Z(3 = C13—pp(C T/CI, }yr
2

Zss = Css- poCI. yr
2

Z13 ——C13- PpCz yz~

In (4. 39), we have introduced

y, (k) = I+[r,C',-(k)P', (k)/C, (k)],
y, (k) =1+ [T,C', (k)P', (k)/C, (k)],

y„(k) -=I+ [ TC', (k) P, (k)P, (k)/C, (k)].

(4. 39a}

(4. 39b)

(4. 39c)

(4. 39d)

(4. 4Oa)

(4. 40b)

(4. 4Oc)

In the isotropic limit, yr(k), y~(k), and y»(k) be-
come equal to

y =1+(TocoP3/Cv), (4. 41)

~12 ~1st ~11 ~33& ~33 ~13 2~44 ~ (4. 42)

The matrix I'(k) introduced in (4. 26f) has the

following alternative def inition:

r„(k) -=&q, q,*&/&re*&

=
&

ee*& '[& e @*& —(p/p. v)1&~'~;*& l'1

It can be shown that ( q, q~ & is diagonal with the
elements &q,q*, &

= &q3q3) and (q, q,*). Hence

which is the conventional ratio of the specific heats.
It is interesting to note that Z»(k) —Z»(k) = 2ZM(k)
holds also for Z~„ for all values of k. In the iso-
tropic limit we obtain

with the following relation:

Cgg(k) —Cg3(k) = 2C33(k) . (4. 36b)

r =diag [r„r„r,],
where

(4.43a)

C11 —Css~ C13 —C12, C33 —C13 = 2C4 (4. S6c)

Hence, C(k) has in general only five distinct non-

zero elements, i. e. , C11 C12 C13 C33 and C44.
In the isotropic limit there are only two: C» and

C44
Verifying

This relation which can be verified directly is a
consequence of the isotropy in a plane perpendicu-
lar to k. In the limit of k-0, one finds in addi-
tion to (4. 36b)

r. (k) =-&~9*& '[&e e*& -(p/p. v) l&@~ &I'],
(4. 43b)

r. (k) =-«0*& '[&e q*& -(p/pov)l«11*&l'],

(4. 4Sc)

where &Q3 J3& =(Ell„& from stationarity. We shall
relate I' later to the thermal diffusivity tensor.

Relaxation Frequencies

We now focus our attention upon (4. 27d) and
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(4. 27e) which are generalizations of Maxwell's
model for the relaxation of the viscous stress ten-

sor, and Fourier's law. They both contain the k-

dependent relaxation frequency matrices W' and
W' which are defined by (4. 24) and (4. 25), respec-
tively. Although the elements of these matrices
can be obtained in principle from their definitions

[ cf. (4. 25)], we are forced in applications to mod-

el them as explained below. [A direct evaluation
of W' and W' using (4. 24) and (4. 25) is equivalent
to solving Liouville's equation with the reduced
Liouville operator (1-P)I., and thus not yet possi-
ble. ]

We first consider W' appearing in (4. 27d). The
mean of this equation reduces in steady state to

) & )
i

4 48

+11 12 +13

12 +f1 +13

W = (df3 (df3 6033

(d44

(4. 47)

+88

which is the conventional form, 1144 and (Ii12+ —
32Il44)

being the shear and bulk viscosity coefficients.
Using the form of Z „ in (4. 38a) and (4. 44c) we

can obtain a form for the relaxation frequency
matrix:

w„'„(o„) =z.„&6„), (4. 44a)
with the following restrictions:

&II;;) =n;; &2 )

we have

(m, n=1, 2, 3), (4. 44b)

~yv=W (4. 44c)

We shall use (4.44c) as a guide in modelling the
components of W~'„. The form of g&~ „consistent
with the cylindrical symmetry about k is

~1i ~12 ~13

~12 ~ff ~13

~13 ~13 ~33 (4. 45)

where &o„) and &6„) are the expected values of o
and 2„(recall that &f;) = 0 in the linear approxima-
tion'6). Since the linear relation between the vis-
cous stress tensor and the rate of the strain ten-
sor defines the viscosity tensor g, ~ according
to

13 ~33 ~12 ~11) ~ ( 33 12 11}

(4. 48b}11 12 88

13 f2p &44 f f —1 2, as k 0. (4.48c)

~z. Id2 &s ~s Idz }. (4. 48)

There are four independent relaxation frequencies
[i.e. , ~„(k), Id12(k), &u13(k), and &d44(k)] for arbi-
trary values of k, and two (i. e. , &d33 and &u») for
4 = 0. Although it is possible to obtain the time
correlation functions in terms of these relaxation
frequencies we prefer working with a simpler mod-
el in which cof2= (df3= 0 for all k. It will be seen
later that this choice of relaxation frequencies
eliminates the coupling between the components of
the stress tensor during their relaxation. Setting

j3 0 and denoting (d f1 and (d44 by wi and (d q

respectively, in (4.47) and (4. 48), we find

with the condition

$44

~44

~88

Thus, we have to model only two frequencies,
Idi(k) and &us(k), which satisfy Id2(0) = ~s(0).

We next consider W' in (4. 27e) whose mean re-
duces in steady state to

811(k) q12(k) 2q66(k) 1 (4. 48a)

Il13(k) - 1112(k),

II33(k) —Il„(k), as k —0.

(4. 48b)

Thus, the number of independent components of

q~„ is five (i. e. , I)11 f12 7/13 7)33 and 7)44) for ar-
bitrary values of k, and only two (i. e. , I7» and

Ii44} in the limit of k - 0. In this limit, (4. 44b) re-
duces to

~&v &

&OI~) =(~13+3~44)

which implies isotropy in the plane perpendicular
to k. In order to ensure isotropy in all directions
in the limit of k - 0 we must also require

833 (k} nl ( 3) kn244 (kt)

W„'&(q&) =r„&2k&&8)

Comparing this equation to

(q, ) =D,.2k.&e),

(4. 5Oa)

(4. 50b)

8" ~ D = I'.
Since I' is diagonal (cf. 4. 43a), we choose

W' =diag(~„ Id1| Ids),

(4. 5Oc)

(4. 51)

which implies a diagonal thermal diffusivity ten-
sor. Denoting the elements of D by (Dzr, Dr, D2),
we find

D, (k) = r, (k)/~, (k), (4. 52a)

D, (k) = r, (k)/~, (k) . (4. 52b)

where D, &
is the thermal diffusivity tensor, we ob-

tain
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In the limit of k-0, I'~(k) - I'r(k). Hence we
must require also [a,(0) = [as(0). In the isotropic
limit (4. 50b) reduces to the conventional Fourier's
law

e(t)- p, c,'T, p(t) =ikq, ,

as(t) —(sk/po) Zss Js(t ) + [di, a's(t) = fs (t),

qs(t) +[as[qs(t) ikD-~ e(t)] =fs'(t) .

(4. 55c)

(4. 56a)

(4. 56b)

(q) =-Dv(e), (4. 52c)

Transverse Current Correlations

The projection of J (k) on a fixed axis perpendic-
ular to k satisfies the following equations obtained
from (4. 27b) and (4. 27d):

a,(t) —(ik/p, )C„(k)Z,(t)+~, (k)a, (t) =f,'(t).
Multiplying these equations by J, , taking the ther-
mal averages of the resulting equations, and La-
place-transforming, we obtain the transverse cur-
rent spectral density as

Rr(k, &a) =- Re[i&a(+k /ps)qs(ks, i[a)] ', (4. 53b)

where D is the thermal diffusivity coefficient given
by

D=D, (O) =D, (0) .

In (4. 56) we have made use of the modeled form
of the relaxation frequency matrices VV' and W'.

Equations (4. 55) are exact, and equivalent to
the conservation laws (4. 9). Multiplying these
equations by J, (0), taking thermal averages, and

Laplace-transforming the resulting equations with
respect to time, we obtain for the longitudinal
current spectrum, i. e. ,

R~(k, &a) -=dt ' s~ cos[dt, (4. 57)
- ««, (t)~,*(0))

0

the following expression:

P. (a, w [ = Re (i [~ —0 'c' (0 )/a [

+
ps

"~ ' i[d+k 5(k, iu&)

(4. 5s)
where we have defined

where i)s(k, i[a) -=C«(k)/[i[d +&as(k)] .

Using (4. 44c) we find that

il, (k, 0) = sl4, (k),

(4. 53c) Pp ([Ts(i&)~s)

1 ( qs(i[a)J,*)
ik ( e(i[a)zf )

(4 59)

(4. 60)

which, according to (4. 46c), indicates that ils(0, 0)
is the conventional shear viscosity. Thus, i)z(k, i[a)
can be identified as the k- and co-dependent shear
viscosity.

A comparison of (4. 53) with (3. 10) and (3. 11) in-
dicates that

i), (k, ) = ),i(k, i ), (4. 54a)

i. e. , the transverse viscosity defined by (3. 11)
can be interpreted approximately as the k- and ur-

dependent shear viscosity. Equation (4. 54a) fur-
ther implies that

[ar (k ):-[d, (k) . (4. 54b)

Longitudinal Current Correlation

[Here, we should remember that the projection
operators involved in the definitions of &uz, (k) (i. e. ,
in the two-component description) and [az(k) (i. e. ,
in the hydrodynamic description) are different. ]
Thus, we can use the same expression for the A

dependence of [dz(k) as that of [ar(k) in (3. 20).

It is clear that (4. 58) is exact provided il~ and 5

are determined from (4. 59) and (4. 60) exactly.
We shall use (4. 56) to compute ili, and 5, and
thereby obtain an approximate expression for
R~ (k, [d):

i)z (k, i[d) = Zss(k)/[i[a + vz (k)]

qi, (k, i[a) = C„(k)—pgi, (k)C~(k)
i[d +&a&, (k)

(4. 61a)

(4. 61b)

= s [&ss(k)+2Zis(k)]/[i&a+[az(k)]. (4. 63)

The expression in (4. 63) is obtained by summing
(4. 27d) for p, = 1, 2, and 3. When [d = 0 and k = 0,
(4. 63) reduces to

5(k, i[d) =ILDI. (k)/[i&a+ [ds(k)]j[as(k), (4. 62)

where we have used (4. 39c) to replace Zss(k).
It is interesting to see the connection between

ilz, (k, i&a) and the k- and u&-dependent bulk viscosity
qs (k, iv). The latter is defined by

(k
.

)
p[[ 1 (Tra;,. (i[a) J,*)
ik 3 (Z, (i[a) Js )

The component of J(k) parallel to k satisfies
the following set of equations obtained from (4. 27): iii[(0,:0)= [7$s(0) + —', il44(0), (4. 64)

p(t) = i km, (t), (4. 55a)

Js(t) —ikC~s [p(t ) + P~ p, T(t)] =ika, (t), (4. 55b)

where we have used ilss=~ss/&4 and ignis= Zis/&~
[cf. (4. 44c)], and [ass(0) = g„(0)+ 2i44(0). We find
from (4. 46c) that sos[ (0, 0) is indeed conventional
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(4. 65)

bulk viscosity.
We can express zlz (k, ie) in (4. 61b) in terms of

zis (k, i(u) as
2 Z„(k)-Z„(k)

qz (k, i(u) = zls (k, i(o) + — .
(k)

us 1Ilg

k'c' (k)
Rz(k, &u) = Re i &u- +—zlz, (k, i&a)

pp

(5. 1)

qz (0, i &a) = zl$(0, i~)+ 3 1$ (0pi~).

V. ANALYSIS OF RAHMAN S DATA

(4. 66)

We have analyzed the computer data of Bahman

in the limit of k - 0, we have Z„(k) —g„(k) 2F«(k)
and &z (k) -&44(k) = (u$ (k). Hence, (4. 65) reduces
to the conventional form

which is obtained from (4. 58) by ignoring the last
term in the curly bracket. We have found that this
term, which represents the thermal effects, be-
comes insignificant for large values of k (e.g. ,
k & 1 A z for argon) as compared to (k /po)71 z, in
(4. 58). Substituting z)z (k, i(d) from (4. 61b) in«
(5. 1) we find

&u'k'&u (k)[C„(k)—p, y (k)C'(k)]/p,
uP{&u' —(k /p, )[C„(k)—(y (k) —I) p, C (k)]}'+re (k)[(u'-k'C, (k)]' (5. 2)

where C„(k) can be calculated from (4. 35) as

3 d V 1 —cosk&
C» (k) n =— +& d'R —,g(R)

(5. 3)

~,'(k)= k'C„(k)-p, C', (k)—

+ ~,'(0) — c„(k)-p, c,'(k)-

[see Fig. 1 for the variation of C„(k) with k]. The
k dependence of yz, (k) defined in (4. 40b) is difficult
to determine because its calculation involves
multiparticle distribution function. In the anal-
ysis of Rahman's data we set yz (k):-1 for the sake
of simplicity. Then, the only unknown function in
(5. 2) was &uz (k). Its value at k = 0 was estimated
us lng

(0) = [ C (0) pp C (0)y]/( Is + 3 g$ ), (5.4)

where g~ and g~ are the conventional bulk and

shear viscosities, respectively. We note that

lim C$$(k) =K„+ $G„,
0" p

(5. 5)

where G„was defined in Sec. III and K„ is thebulk
modulus in Zwanzig's notation. The value of
C„(0)was read from Fig. 1, and that of Cz (0) (the
ordinary isothermal speed of sound) was calculated
from (4. 29b). [Rahman has also calculated S(k). ]

To model the large-k behavior of ez (k) we con-
sider the ideal gas,

(d &~ Ski 2 2
RIG (k ) P~ ~ -Bme /2k 2

k' 2k' (5. 6)

which has a, maximum at u (k) =2k /Pm. Requir-
ing that the frequency at which (5. 2) attains its
maximum for a fixed k approach (2kz/Pm) for large
k and using the same interpolation formula as in
(3. 20) we obtain the following expression for &uz (k):

x (1+k/koz) ', (5. 7)

and where ez (0) is given by (5. 4). The variation
of vz (k) is shown in Fig. 2 (ko= 1. 5 A as in the
case of transverse correlations).

It is interesting to compare again Rz(k, ur)/ur

from (5. 2) and Rz (k, v)/&uz from (5. 6) for k - ~
and ur -0, as in the case of transverse current
power spectral density. Using Cz(k)-(1/Pm) and
C„(k)- (3po/P m) as k - ~, we find Rz(k, 0)/~

(Png) $ Q(3 )/k»d RrG(k 0)/~2 (Ppg)v2
x g (-,

' m)/k'. Thus, the approximate formula for
Rz, (k, e) yields the ideal gas limit for small u& and
large k within a factor g(3/w) = 0. 98.

The curves in Figs. 6 and 7 are calculated
using (5. 2) and (5. 7). The agreement between
Bahman's computer results and the theoretical
curves are remarkably good.

The thermal effects dominate for small values
of k such as those involved in light scattering.
We then approximate (4. 58) as

Rz (k, ~) = Re i [~ —kzcz2 (0)/~ ] + (k$/po)z)z (0, 0)
-1

+ Cz(0)k (y —I)/(i&u+kaD)I, (5. 8)

which is the result corresponding to the conven-
tional hydrodynamic description with constant trans-
port parameters. It appears that one has to in-
clude both the thermal effects and the dependence
of g~ on k and co for the intermediate values of k.
Since there are no computer results for such val-
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ues of k we have not attempted to investigate this
region.

VI. CONCLUSIONS

FIG. 7. (a) Maxima of the longitudinal current-current
correlation function versus wave number k. The points
are from Rahman. (b) Frequency at which the longitudinal
current-current correlation function is maximum.

In this paper, we have used the generalized
Langevin equation to investigate fluctuations in

simple liquids in the framework of a generalized
hydrodynamic description. The various transport
coefficients appearing in this description have been
defined in terms of time correlations of the dy-
namical variables, and computed numerically
whenever yossible for argonlike liquids. The re-
sults, such as the variation of viscosities with

wavelength, may be applicable to other simple liIi-
uids. In view of the good quantitative agreement
with Bahman's data for all values of k and v en-
countered in neutron scattering, we may expect
formula (5. 2) to be applicable to the interpretation
of coherent neutron scattering from dense fluids.
The formalism developed in this payer enables one

to calculate correlations between other pairs of

hydrodynamic variables, e.g. , (E(f)g*) and

(q(t) j*), etc. Computer results for these corre-
lation functions in conjunction with the analytical
calculations will shed light on the k and & depen-
dence of the thermal parameters yz(i'2), 0l2(k), and

D~(k) as we have demonstrated for the viscosities.
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The memory functions for the velocity, angular-momentum, and dipolar autocorrelation
functions from a series of molecular-dynamics studies of liqu1d carbon monoxide are exam-
ined. The velocity and angular-momentum memory functions decay initially almost to zero
in a Gaussian fashion. However, their long-time behavior has a much slower time depend-
ence. The dipolar memory function from a simulation using a strong noncentral potential
is approximately this system's angular-momentum autocorrelation function. Approximate
velocity and angular-momentum correlation functions are generated from approximate mem-
ory functions and the results are compared to experiment. Gaussian Inemories based on the
second and fourth moments of the corresponding autocorrelation functions give the best agree-
ment with experiment. However, none of the approximate memories examined adequately
represents the long-time behavior of the experimental memories. The static atomic radial
distribution functions are given and are shown to depend upon the strength of the orientational
parts of the pair potential used in the dynamics calculations. The non-Gaussian character-
istics of the Van Hove self-correlation functions are examined and shown to depend on the
potential and number of particles used in the dynamics calculations. The intermediate scat-
tering function and its memory are also examined.

I. &mRODUCnoN

A number of experimental methods exist for
probing the structure and molecular dynamics of
liquids. X-ray and neutron-scattering experi-
ments determine the structure factor S(K) which
is related by a Fourier transform to the pair-cor-
relation function of the liquid. Inelastic neutron-
scattering experiments determine the dynamic

form factor S(K, +), first introduced by Van Hom.
S(K, v} is related to the transition rate for the
liquid system to absorb momentum SK and energy
@w from the thermal neutron beam. Moreover,
the dynamic form factor S(K, v) is the Fourier
transform of the correlation function of the num-
ber densities at two different space-time points.
This same function plays an important role in the


