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Radiation from an W-Atom System. II. Spontaneous Emission from a Pair of Atoms
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Using the formalism developed earlier, we treat spontaneous emission from a pair of iden-

tical two-level atoms A&, A2, whose separation y2& can be comparable to the wavelength g. %6

obtain expressions for time-dependent intensities and damping rates with the initial conditions

(a) both atoms inverted, (b) prior excitation by a short 2z pulse, and (c) only A( inverted.

The results in (a) are compared with those obtained for a model consisting of two initiRHy ex-
cited harmonic oscillators 0&, 0&. The atoms exhibit superradiant behavior, whereas 0&, 0&

tend to trap radiation. In (a)„ the intensity pattern ~(9, t) develops lobes in different directions

at different times, so that the spatial distribution of photons at time t ~ is the same as in the

independent-atom case y2&» X. For the oscillators, the lobes of N, (9, t) do not change direction,

but only become more pronounced as time increases. In (b) and (c), the lobes oscillate back

and forth at frequency 20&2 corresponding to the shifts + 0&2 of the triplet and singlet states due

to the A.&-A2 interaction. The intensity can therefore have a sinusoidal component, Field cor-
relRtion functions calculated for (R) Rnd (c) show that A2 Rnd A2 rRdiRte simultaneously Rround

the frequencies 6 + Q)2) where 6 is the single-atom resonRnt frequency, The spectrUm is cRl-

culated for case (c}, and shows the effects of coherent linewidth enhancement in addition to

the frequency shifts.

I. INTRODUCTION

'In the preceding paper (henceforth referred to
a,s I), a quantum-mechanical formalism»s de-
veloped to study the radiation properties of N-

Rtom systems. As Rn lllustx'RtloD %Pe now Rpply
this formalism to the calculation of spontaneous
emission in the case where N= 2.

Gther dynamical txeatments of the two-atom
problem have either been concerned mostly with

interaction energy and coherent Linemidth enhance-
ment, or with probability amplitudes for partic-
lar combinations of photon states. 6 The solutions
presented here deal directly with physicaLLy mea-
surable quantities, such as emission rates and

field cox'I'61Rtlon functions. The treatment in-
cludes time-dependent radiation patterns 6' photon

trapping phenomena ' ' cohex"ent linemidth en-
hRncement, double frequency opex'ation, Rnd opti-
cal beating effects. Decay rates and radiation pat-
terns mill also be calculated for a model consisting
of two hax'monic oscillators in place of the atoms.
The discrepancies between these two models (e.g. ,
compare Figs. 2 and 3 with 4 and 5) tend to shed
doubt on the validity of approximating lnvel"ted
atoms by excited harmonic oscillators, even for
times f &p

Although the two-atom system is admittedly an
elementary model, it offers several advantages
over the multiatom px'oblem. Because of its sim-
plicity, one can obtain detailed and nearly exact
dynamical solutions with a variety of initial condi-
tions. The initial conditions treated here include
(a) both atoms inverted, (b) prior excitation by a

short —,
'

& pulse, and (c) only one atom inverted.
Many of the results Rx'6 analogous to phoDoIQena
thRt one would expect in Hlultiatom systems. FQI'

example, the nonexponential decay law (Fig. 3)
and simultaneous radiation at two frequencies
[Eqs. (50) and (53)] are elementary examples of
superradiant pulse formation 'o and interaction
broadening, " respectively. Gn the other hand,
the directional distribution of intensity (Fig. 2) and
radiated energy [Eq. (20)] are in contrast to the
ray-forming tendencies predicted by photon corre-
lRtlon arguments i In Rn elementary modelq 'these
results (along with those found for the harmonic-
oscillator system) can be easily interpreted physi-
cally, and thus provide insight into the behaviox' of
more complicated systexns. Finally, in a, two-
atom model, one can study a number of interesting
effects that would tend to be obscured in a larger
system. Examples of this include the optical beat-
ing [Eqs. (36) and (43)] and coherent linewidth en-
hancement [Eq. (55)] mentioned above.

II. RADIATION RATES

In this section, me solve for the avex'Rge photon
emission rates Ws (t) and W(t) defined by Eqs.
(I34), (I35), and (I3l) where I refers to the pre-
ceding paper. According to (I3V), the spontaneous
rates are obtained from the factors

q„,(t) -=(ot (tb, (t)&

= »p(0) & 0
~

o'.(t) o ~ (t)
~
0},

where 10) is the vacuum state and p(0) is the
initial atomic density operator. One could work
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directly with these factors, using expression (I29)
to obtain equations such as

Qll=-yQ11-I'12Q12-I'12Q2»

Qla YQ12 ~12 'Qll ~12 Qaa+ 2Yla(o 1 + 1 oa 112) I

d(ol o 1 oaoa)/dt= -2y(a,'olla, o 2), etc. ,

where I"12=——,
'

yla+ t A, a and yla [Ala] are defined by
(I20) [(125)]. It is more instructive, however, to
deR1 wltll qlla11tltles tllRt, satisfy sepR1'RMB eqllR-
tions. To this end, we define the transition opera-
tox's

.(t) =-e'"'I~, m&(p', m' e '"'
(2)

where
~

x, m) can be the singlet or triplet states

ox'

(Ba)

0101+O2 O2 +10,10 ++ 00, 00 + 11,11

~1 ca 2 '1+10,10 lp 00, 00+ tpop, lp +1Q100) I

and have the property

(4a)

(Bb)

(Bc)

respectively. These operators satisfy the identi-
ties

Pl 1,ll(t) P11,11 (0) e I (9a)

p o, o(t) = e [p o, (o) e

+ Plt, ll (o) (e ""'- e "')(Y+ Yla)/('Y - 'Y12)1, (9b)

Poo, oo(t) =e "[Poo,oo(0)e"' '

+ P11,11(0)(e""'—e "')(y —y12)/(Y+ Yla)1, (9c)

plo, oo(t) =Plo, oo(0)e
"' " '=

Poo, lo(t). (9d)

Note that as r, ra (so that y, a y),

Pl 0, 10(t) e I. Pl 0, 10(0) + 2ytP11, 11(o)], (10R)

(lob)Poo, oo(t) Poo, oo(0) ~

in agreement with earlier results. '
If the atoms are replaced by harmonic oscilla-

tol's Ol, 02, tllell tile Rvel'Rge 111 (IÃ) IIlllst be re-
placed by B,o(t)

-=( b~„(t) bo(t) ), where t1, is the
lowering operator for the ath oscillator. From
(I29), we obtain

I 1, 0) and 10, 0) contributes to the decay of p, p 00

at a rate equal to half the amount shown. The rea-
son p», » does not appear is that a nonzero value
of p, p 00 requires the I 1, 0) and I 0, 0) amplitudes
to be mutually coherent. Such coherence may be
present initially (e. g. , as a result of excitation by
a —,

'
v pulse), but cannot be produced or enhanced

by spontaneous decay from above. Finally, we
note that (Bd) requires only that I 1, 0) lie at ener-
gy 2012 Rbove I 0, 0). Tile RctuRl positiolls of tile

two levels will be examined in Sec. III.
The solutions of (8) are

(t))=p, „(t),
where p(t) is the reduced density operator contain-

ing only atomic variables. Thus, Eq. (137) can be

written as

Wit (t) = (By/871) [1 (R ' p) ]fplo 10 (t) + poo op (t)

+ 2P11,11 (t) + [Plo, 10 (t) Poo, oo (t)1 cos(~&81 cose)

+ t[ Pop, lp(t) Plo, po (t)1 sm(110 21 cos&)], (8)

~11 Y ~11 ~12 ~12 ~12 ~12

~22 ~~22 ~12 ~12 ~12 ~12

i„=-ya„-r„a„-r„a„.of(

The quantities

&:-=&11+&22~ &12~ &12,

B~"—= 811—822 a 812+ 91+2,

(lla)

(1111)

(1lc)

(12a)

(12b)

cos8=—R x» r21 =-r2

and the II/c factor has beell ig1101'ed, so that ts
Bubstituting expression (2) into (I29), and using

(5), we obtain the separable equations

12

Pll, 11 2%11,»
0

plo, lo= ('Y+ Yla)P11,11 (Y+ y12)plo, M

0

ppo, oo= ('Y 'Y12)P11,11 (y —yla)P00, 00 I

0

Plo, pp
= (2& f112+ y)P10, 00

(Ba)

(Bb)

(Bc)

(Bd)

Equations (Ba)-(Bc) can be written directly from

the transition rates shown in Fig. 1. One can also
write (Bd) from Fig. 1 by assuming that each level

FIG. 1. Energy-level diagram for the ( x, m) states,
showing the frequency shifts + ~&2(k =—1) and decay con-
stants y +y&2.
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satisfy separable equations with exponential solu-
tions; hence, one can easily show that

B11(t)+B22(t) = —,[B,'(0)e "»'+ B' (0)e"'2t]e "', (13a)

B»(f) = —,'[B,'(0)e "1"—B'(0)e"»'

1,2

1.0

+Bit (0)e 21-012t B'1(0)spto12t] 'Yt (13b) Oes

m-Pulse Excitation

If the atoms are initially excited into their upper
states (e.g. , by a short tt pulse), then

p11 11(0)= 1 ~ p1Q 1Q(0) = ppp pp(0) = ptp pp(0) = 0. (14)

Equations (6) and (9) then yield the average photon
emission rate

Ã (e,~j 0 ~ 6

0.4—

0.2—

W" (f) = 2W„" (f) (R(8, $),

where

(15)
0

0
I

30 60 90 120 150 180

(R(6, f) = A(t)+ B(t) cos(at'» cos6),

A(f) 2 (e "' ' e")—(r+ r12)(r —y12)

+ —,
' (e'»' —e ")(y —y»)(y+ y,2) '+ e ", (18a)

-1
B(t) =-

2 (e "2'-e "')(y+y12)(y-y12)

—,
'

(e"12' —e ")(y —y„)(y+ y„) ' . (18b)

If the atoms radiate independently (so that y1, = 0),
then 6t(8, f) =1.

The asymptotic values of $(8, f) are

(R(8, t) = 1+y,ptcos(Kt'» cos6), yf«1,
IR(6, f)

y- ~ y&2 ~ yx21 - '2 cos(Kt 21 cos8) e "» ',
2 y+ ~ yi2

(19a)

W'„-"(f)-=(3y/811)[1 —(R ' j)'] e "' (16)

is the radiation rate of a single isolated atom, and

8 (D9rees)

FIG. 2. Radiation pattern $(0, t) [defined by Eqs. (15)
and (17) l at times t = 0, y ', and 3y ', for two atoms (ini-
tially inverted) with spacing x2& = 4X. Solid and dashed
curves denote p II r2& and p g r2&, respectively, while the
dot-dashed curve applies to either case. Here, y is the
decay constant of a single atop, 9 is the angle between
r2 f and observation direction R, and p is the dipole ma-
trix element.

= (3/4tt)[1 —(R P)']= 2 f dtW' "(f). .(20)

An interesting consequence of Eqs. (15)-(18) is
that the average number of photons n~ emitted
along R is independent of the A& - A, interaction;
1.e. )

nft =- J dt W„-(f)

y„t» 1 (19b)

Apparently, R(8, f) starts out spherically symme-
tric, develops a weak nonspher ical radiation pat-
tern, becomes spherically symmetric again, then
begins to develop pronounced minima at the same
angles at which the earlier pattern was maximum.

To explain such behavior in terms of I 2; m)
states, we consider as an example, the case ~z»
= —,tt (Fig. 2). Since y, 2 & 0 in this case it is clear
from Fig. 1 [or Eqs. (9) and (14)] that p, p tp(t)
& ppp pp(f) for the early times yt &1. However, lev-
el I 1, 0) also decays more rapidly than 10, 0), so
that Ptp tp(f) &Ppp pp(f) when yt » 1. Since A1 and A2
are a quarter wavelength apart, the radiation from
symmetric state 11,0) has its maximum intensity
in the plane 8 = 90', whereas the contributions
from sntisymmetric state 10, 0) would tend to can-
cel in these directions.

W(f) =2r[A(f)+(r12/r) B(f)]e "'

r12 /r) & ~, ~&t

y»t » 1 1+ I y, 2 I /y

(21a)

(21b)

For r,- r, (so that y»-y), Eq. (21a) becomes

W(t) - 2y(1+ 2yt) e (22)

in agreement with earlier results. ' '" The curves
of W(t)/W(0) = W(t)/2y (Fig. 3) show a clear ten-
dency for the coupled atoms (K221« 1 and K221 = 2 1T)

These results, especially (20), seem to contradict
the prediction of photon-correlation arguments~
that the radiative coupling between A& and A~ en-
hances emmission in certain directions. This
point will be discuss .d in more detail in Sec. IV.

Integrating (15) over all Qtf, we obtain the total
emission rate
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2»0

1 ~ 0

0.5

~c

I

3

I I

30 60 90 120 150 180

FIG. 3. Time dependence of the normalized damping
rate 8'(t)/8'(0) for bvo atoms (initially inverted) with
spacing: A: r~~ «A. (p II r21 or r2~), B: &2~=4K(p II r2~),

~2g=4~(p~r2g), D: ~»«~(p II r2g or -Lr2f).

FIG. 4. Radiation pattern @(8,t) [defined by Eqs. (15),
and (24)j at times I;=0, y ', and 2y ', for two harmonic
oscillators (initially in their first excited states) mth
spacing ~» =4X. Solid and dashed c~~ves de~ote p II r»
and p g r», respectively, vrhile the dot-dashed curve ap-
plies to either case.

times y t & 1, when they are both excited. The
asymptotic forms of (24) and (25) for y&2t» 1 are

si (8, t) = —,
' [1 —(y„/ I y„ I ) cos (~r„cos 8)]e "~2~ ',

(25)
to decay more rapidly than they would if they were
independent (xsam, » 1). This is an elementary ex-
ample of the superradiant pulse formation that one
would expect in a larger system, and can be re-
garded, at least in part, as due to stimulated
emlsslon.

If Ay Rnd A2 Rl e replRced by harmonic osclllR-
tors initially in their lowest excited states, i. e. ,

which have the same (8, t) dependence as the cor-
responding expressions (19b) and (21b) in the
atomic case.

One can interpret many of these results in terms
of a heuristic classical model. In particular, con-

B„(0)= Baa(0) =1, B)2(0)=0, {23)

then according to (13a), (13b) and (137) (with

o b, ), we retain Eq. (15) with R(8, t) now given

by

$.(8, t) = cosh(y„t)

x [1 —tanh(yg2t) cos(K'Ygg cos 8)] . (24)

This pattern obviously has the same form for all
yt&0, as shown, for example, in Fig. 4. {Note
that the lobes need not be along + ~» in RQ cases;
e. g. , if p&Z» and ZX21=n', then y»&D, and the
lobes occlll fol R i ~». )

The total emission rate is

gr(t) = 2y[1 —(yq~/y) tanh (y, 2t)] cosh(yqat) e ", (25)
l

which is plotted in Fig. 5 for «ay «1 «p].
and zx»»1. The first two curves show clearly
that the oscillators tend to trap radiation, even at

PIG. 5. Time dependence of the normalized damping
rate 8 (t)jS"(0) for bvo harmonic oscillators (initially in

their first excited states) vrith spacing: A: ~&& «(p II r2f
or ~r2~), B: F2~=4~(p II r2~), C: ~2~=4'(pLP2g), D:
«A, (p II r~~ or L r2~).
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p (f) -=p

exp[-iaaf

—iq, (f) ——,'yt+ g'(f)},

where g (f) is a real function, satisfying

(26)

ly'(f)I &-'yf, 0'(0)=0.

sider a, pair of classical dipoles located at points
r» r» with time dependence

pily 11(0) 4

p&o, &o(0) = —,
' (1+cos k ~ ra,),

poo, oo(0) = 4(1 —cos% ' ray)q

1
pro, oo(0) = —,a sin k ~ ra, .

(34a)

(34b)

(34c)

(34d)

—,
'

[I -&, + f q exp(aI r,) I+&] [ I

- &a+ fq exp(fk . r,) I+&,],
(33)

where
I q I

a = 1; therefore,

The phase functions („(f)are random variables,
assumed to be initially uncorrelated; i. e. ,

&cos Pa, (0)& =(sin g»(0)& = 0,

Equations (6) and (9) yield

Ws(t)= W~ '(f) Oi (8, k, t),
where

(36)

where ga, =—ga —g„and angular brackets now de-
note a classical ensemble average. From sym-
metry considerations, it follows that &sin(a, (f )& = 0
for all times. The emission rates of the far field
can therefore be written as

61 (8, k, f ) = —a' $A(t) + cosh (y,at) —sinh (y,at) cos k r„
+ [B(f)—sinh(y, at) + cosh(y, af) cosk ra, ]

xcos(era, cos8) +cos(2Q, at) sink ra, sin(n a, cos8)) .

(36)
For t=0,

W"(f) =2W"'(f) e
R (8'(8, k, 0) =1+—,

' cos(k —eR) ra, , (37)

x [1+& cos Pa, (t) & cos (Kya& cos8 )],

W(t) = 2y[1+ (y»/y) &cosy»(f)&] e-~ ' '" "'. (30)

If p, (t) and pa(t) are harmonic oscillators, they
exhibit positive susceptibilities; thus, (&(t) and

ga(t) will tend to correlate so as to trap the radia-
tion. Hence, according to Eq. (30), we obtain

in agreement with Dicke's result. v In the indepen-
dent-atom limit where y» = 0» = 0, expression
(37) applies at all times.

For k ~ ra, 0 0, the maximum of R'(8, k, f) occurs
initially along A =+5, and oscillates back and forth
between +)'a and —k at frequency 2A, a (e. g. , see
Fig. 6). The intensity in a given direction (e. g. ,

»a&cos 4u«) &
- 0

2.5
l 1 I l I

or

&cos q„(t)&
= —

I
&«s Iai(f) & I yea /I »a I

(31)

2.0

and (29) has a radiation pattern similar to (24).
If p, (t) and pa(t) represent two-level atoms that

are inverted at time (=0, then their initial sus-
ceptibilities will be negative, and the phases will,
at first, tend to correlate so that

1.5

1.0

&«s (ai«) &
=+ I&«s (ai(f)&

yea/lydia

I
(32)

0.5
For later times, when the upper levels are nearly
depopulated, the susceptibilities become positive,
and the phases realign so as to satisfy (31). Thus
we see that (29) has the same type of radiation
pattern as (19a) and (19b).

00
I

30
I I I I

60 90 120 150 180

8 (Pegrees)

—'n-Pulse Excitation2

We now consider the case where atoms A„A2
have been excited by a short —,'m pulse of wave
vector k. The initial atomic state is then

FIG. 6. Radiation pattern S'(8, k, t) [defined by Eqs.
(35) and (36)] at times t=o, y ~, and 3y ', for two atoms
initially excited by a short 7(/2 pulse. The atomic spac-
ing is 4A, . The pulse, at frequency ~ = e, is directed along
r2 f with polarization along p (lr&&) .
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P11,11( ) P1-1y 1-1( (41b)

The probability of finding only A, excited at time
t is, according to Eqs. (9),

1&+I.&- IP(t)l+)1 I
-)2=2e "'[cosh(r12t)+cos(fllot)].

similarly, for A2,

= —,e "' [cosh(y, ot) —cos(Q»t)] .

These results agree with those of Hutchinson and
Hameka, and provide a simple illustration of the
radiation trapping discussed above. The photon
evidently tends to be handed back and forth from
one atom to the other, while the excitation decays
as 8»" for y»t »1. Such effects also show

up in the radiation rates

w; (t) = w '!1(t)et(8, t), (42)

A = t2) therefore has a sinusoidal component, For
y»t »1,
sl'(8, k, t)

~2' [1-(y„/Iy„I)cos(11rolcos8)je '» ', (38)

which has the same 8, t dependence as the corre-
sponding patterns (19b) and (26) in the w-pulse
cases.

The oscillation arises because the def inite phase
relationship between levels ) 1, 0) and ( 0, 0) (es-
tablished by the exciting pulse) changes periodical-
ly on account of their frequency difference 2Qyg

(see Fig. 1), Similar effects have been discussed
in connection with fine or hyperfine splitting in
single atoms. ' In the case of m-pulse excitation,
no such phase correlation existed at the outset,
nor can it be created by spontaneous decay from
( 1, 1).

The total emission rate

W(k, t) = —,'ylA(t)+cosh(y, ot) —sinh(y, 2t) cosk r21

+ (y,2/y )[B(t)—sinh(y, ot) +cosh(y, ot)cosk r2,]fe "'

(39)
contains no periodic component. For the case
where if.spy «1,

W(k, t) y(-;+yt)e~",
in agreement with earlier results. '

Single-Atom Initial Excitation

As a final example, consider the case where
only atom A, is excited initially; i. e. ,

(4o)

and therefore

P10, 10( ) PO y o(0)0P10,00( ) P00, 10( ) 2i (4 a)

It is interesting to note that Eqs. (42)-(44) are also
obtained for the analogous harmonic-oscillator
model.

III. SPECTRAL PROPERTIES

In this section, we investigate the spectral prop-
erties of the radiation by evaluating expression
(I40). If t'=0, then one can calculate this exactly
from atomic operators

&6'„„. ,(t)&0= &0I8„„. ,(t)I0)

by using the identities

o1 ( lg 10 + 11,00+8 10, 1-1+ +00, 1-1)

o2 = 2 (+11,lo+ lpll, oo+ lplo, l-l 8'00, 1-1) ~ (46b)

and noting that

( '(t) (0)) =T P(0)& '(t))o (0). (46)

Expression (I40) can then be written as

f (t, 0)= 2 T P(0)([&, (t)& +& (t)) ]

[,(o)+ (o)] (r +y )+ [&8'oo, ,(t)&o

-&8', oo(t)&o][o (o) —o (o)j(r —r )j. (47)

From (I29), we obtain

( 11,10)0 [2(e II12) 2 (3Y + Y12)]& ll, lo)0, (46a)

&+11,00&0 Ii(e + I~12) 2 (3r r12)] &
—
11,00)0 (46b)

&+ 10, 1-1&0= (r + r 12) &+11,10&0

+ [2(e + f112) 2 (r + r12)] &+10,1-1&0

00, 1-1)0 (r r12) & 11,00)0

+ lt(e ~12) —
2 (r r»)] ( oo,

—l-l)o, (46d)

which confirm the location of levels ) 1, 0) and

~ 0, 0) in Fig. 1, and yield the general solutions

&+11,10(t)&0 +11,10( ) xp[ (e tl12) 2 (3Y+ Y12)lt

(49a)

&0'„,„(t)&,= 8 „,„(0)exp[i(e+ n„) ——,
'

(3y —y„)]t,
(49b)

10, 1-1(t))0 p[ ( +~12) 2(Y+ Y12)]t{+10 1-1(0)

+(y+ y»)(y+2iQ, 2) '[1 —e '"'""»"]P»,,0(0)],

(49c)

where

%(8, t) = coshy, o t —sinh(y, o t) cos(vr2, cos8)

—sin(A» t) sin(Kr21 cos8), (43)

W(t) =y [1 —(y»/y) tanh(yl, t)] cosh(y»t)e "'. (44)
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As an example, consider the case of m -pulse ex-
citation described by Eqs. (14). Combining (4V)
and (49), one obtains

f(t, 0) = C"(t) exp[i(& + Q») --,'(y+ y»)]t

where

+C (t) exp[i(~ Q12) 2(y —y12)]t

C'(t) -=(y ~ y»)'(y + 2i Q») ' + (y —» Q12)

x(y+y»)(y+2iQ») 'e '"'"»"

is nonperiodic. The system therefore radiates
simultaneously around the frequencies e + Q», an
effect analogous to interaction broadening in multi-
atom systems . The periodic intensity in Sec. II
can then be regarded as a beat note whose (ensem-
ble) average phase is nonzero only if an initial
correlation exists between l1, 0) and l0, 0). For
yt and Q&2t «1,

f(t, 0) = 2ye"' = W(0)

For 'Y»t » 1,

f(t, 0) ~ exp[i(e —Q») —2(y y12)]t—

which comes entirely from the IO, 0) ll, —1)
transition.

So far, we have used no approximation except
those described in I; however, in order to treat
the general case where t' 40 in (I40), one must as-
sume the validity of the fluctuation-regression
theorem. This theorem has been derived else-
where, ' and for the present purposes, can be
written as '

(o'(t)o, (t')) =(e'"' (o'(t —t'))oe '"' o,(t'))

where t & t' &0. To implement it, one simply re-
places all of the time arguments in Eqs. (4V) and
(49) according to the prescription

Since the actual calculation can be tedious, it will
be carried out only for the simple case where
I@'(0))= I+)1I )2 I 0) [Eqs. (41)]. The result is

f(t, t') = 2 (y+ y12) eXp[i(e + Q12) 2(y+ y12)](—t —t')

x exp[- (y+ y»)t'] +-,'(y —y, 2)exp[i(2 —Q»)

——,'(y —y,2)](t t') exp[ (y —y12)t ] (5—3)

(1poo 1 1(t))0= exp[i(e Q12) (y y12)] t 1+ 00, 1 1(0)

—(y —y, 2)(y —2iQ, 2) '[1 —e '" ' " ]S 11,00(0)3.

(49d)

which reduces to (44) for t'= t.
Defining the spectral distribution of the radiation

by

w(10) =Re[1' dt f dt'f(t, t') e '"" ' ~), (54)

and noting that f(t', t) =f*(t, t'), we obtain

w(~) = ——
2 (&+ Q12 —01)'+ 4(y +y12)'

1 ~»
2 (e —Q12 —01) + —,'(y —y, 2)

Except for the shifts + Q» in the resonant frequen-
cies, this result agrees with that of Lee and Lin'
if the dipole matrix element p is averaged over
all directions.

IV. DISCUSSION

The results shown in Fig. 2 and Eq. (20) seem
puzzling at first, because they appear to contra-
dict the predictions based upon photon correlation
arguments. These arguments can be stated as
follows: If I(k2) is the probability per unit time

A
for finding a photon in direction k2 immediately
after one is observed along k„ then

I(k2) Io(k2)[1+ cos«(~2 kl) r21]
A

where Io(k2) is the probability rate for a single
atom. The photons therefore tend to "bunch"
around k2 = $„an effect that can be attributed to
correlation between the atomic dipole moments.
If this correlation persists throughout the decay
process, then the radiation pattern (R(8, t) ob-
served at ~t & 1 simply becomes more pronounced
at later times. The harmonic-oscillator model
does behave in this fashion (see Fig. 4), but in the
atomic model the initial correlation reverses it-
self, and (R(e, t) changes accordingly. Photon
bunching arguments are therefore unreliable (at
least in the atomic case) for even a qualitative
treatment of the dynamical behavior.

The solutions presented in this paper constitute
only one application of the general formalism de-
rived in I. Future work will concentrate on other
examples, including (a) spontaneous emission from
a multiatom system, and (b) fluorescence and scat-
tering from two or more atoms driven by an ex-
ternal radiation field.

The multiatom case is complicated by the fact
that the transition operators (P„~ „~ do not satisfy
separable equations for N&2 unless «(r 2) ~«1.
Thus, it will be necessary to impose additional re-
strictions, such as averaging over a smeared out
distribution of atomic positions, and treating only
the case where all atoms are initially inverted.

One would expect some of the phenomena dis-
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cussed in this paper (e. g. , coherent linewidth en-
hancement) to affect the response of a two-atom
system to external radiation. For example, if it
is driven by a weak field of wave vector k= 0 &o /c,
then only the I 1, —1)= I 1, 0) and I 1, —1)= I 0, 0)
transitions will contribute appreciably to the scat-
tering (Fig. 1). Since

l(1, 01&,l 1, - » I'"1+co» ~

l(0, 0
l H, l 1, —1) l

~ 1 —cosk ~ r2, ,

we then expect the total scattering cross section to
have the douMy resonant form

(1 + cosk ~ r2, )(y+ y, g)ov ~
2 1 2(&+A»-(o) +-, (y+y„)

(1 —cosk r„)(y —y„)
(& —il» ~)'+ l (y —y»)'
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