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Using the formalism developed earlier, we treat spontaneous emission from a pair of iden-
tical two-level atoms Ay, A,, whose separation 7y; can be comparable to the wavelength A. We
obtain expressions for time-dependent intensities and damping rates with the initial conditions
(a) both atoms inverted, (b) prior excitation by a short 3m pulse, and (c) only A inverted.
The results in (a) are compared with those obtained for a model consisting of two initially ex-
cited harmonic oscillators 0;, 0,. The atoms exhibit superradiant behavior, whereas Oy, O
tend to trap radiation. In (a), the intensity pattern ®(6, ) develops lobes in different directions
at different times, so that the spatial distribution of photons at time t—« is the same as in the
independent-atom case 7,;>>A. For the oscillators, the lobes of ®(6, t) do not change direction,
but only become more pronounced as time increases. In (b) and (c), the lobes oscillate back
and forth at frequency 29, corresponding to the shifts +Qy, of the triplet and singlet states due
to the A -4, interaction. The intensity can therefore have a sinusoidal component, Field cor-
relation functions calculated for (a) and (c) show that 4, and A, radiate simultaneously around
the frequencies ¢ £y, where € is the single-atom resonant frequency. The spectrum is cal-
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culated for case (c), and shows the effects of coherent linewidth enhancement in addition to

the frequency shifts.

1. INTRODUCTION

In the preceding paper! (henceforth referred to
as I), a quantum-mechanical formalism was de-
veloped to study the radiation properties of N-
atom systems. As an illustration, we now apply
this formalism to the calculation of spontaneous
emission in the case where N=2,

Other dynamical treatments of the two-atom
problem have either been concerned mostly with
interaction energy and coherent linewidth enhance-
ment, 25 or with probability amplitudes for partic-
lar combinations of photon states.® The solutions
presented here deal directly with physically mea-
surable quantities, such as emission rates and
field correlation functions. The treatment in-
cludes time-dependent radiation patterns,®:” photon
trapping phenomena,®3'” coherent linewidth en-
hancement, double frequency operation, and opti-
cal beating effects. Decay rates and radiation pat-
terns will also be calculated for a model consisting
of two harmonic oscillators in place of the atoms.
The discrepancies between these two models (e.g.,
compare Figs. 2 and 3 with 4 and 5) tend to shed
doubt on the validity of approximating inverted
atoms by excited harmonic oscillators, even for
times ¢t<y™'.8

Although the two-atom system is admittedly an
elementary model, it offers several advantages
over the multiatom problem. Because of its sim-
plicity, one can obtain detailed and nearly exact
dynamical solutions with a variety of initial condi-
tions. The initial conditions treated here include
(a) both atoms inverted, (b) prior excitation by a
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short 37 pulse, and (c) only one atom inverted.
Many of the results are analogous to phonomena
that one would expect in multiatom systems. For
example, the nonexponential decay law (Fig. 3)
and simultaneous radiation at two frequencies
[Egs. (50) and (53)] are elementary examples of
superradiant pulse formation’"*° and interaction
broadening,' respectively. On the other hand,

the directional distribution of intensity (Fig. 2) and
radiated energy [Eq. (20)] are in contrast to the
ray-forming tendencies predicted by photon corre-
lation arguments.” In an elementary model, these
results (along with those found for the harmonic-
oscillator system) can be easily interpreted physi-
cally, and thus provide insight into the behavior of
more complicated systems. Finally, in a two-
atom model, one can study a number of interesting
effects that would tend to be obscured in a larger
system. Examples of this include the optical beat-
ing [Egs. (36) and (43)] and coherent linewidth en-
hancement [Eq. (55)] mentioned above.

II. RADIATION RATES

In this section, we solve for the average photon
emission rates Wp(#) and W(¢) defined by Eqgs.
(134), (135), and (I131) where I refers to the pre-
ceding paper. According to (I37), the spontaneous
rates are obtained from the factors

QualB)= (L ()5(t)

=Trp(0){0 | oh(t)os(®) | 0) , @

where | 0) is the vacuum state and p(0) is the
initial atomic density operator. One could work
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directly with these factors, using expression (129)
to obtain equations such as

Qu=-7Qu-T13Q~T5 Qs ,

Q2= =YQa~T12Qu - Ty Qe+ 2715(0 {0 0}05,),

d(oloi0}0,)/dt=-2y(clo 0}0,), etc.,
where I';p=371,+iQ;, and yy, [Q,,] are defined by

(120) [(125)]. It is more instructive, however, to
deal with quantities that satisfy separable equa-

tions. To this end, we define the transition opera-
tors!?
G)rm,r'm'(t)Ee“”’y’ m><7l3 m,le-“” ’ (2)

where ! 7, m) can be the singlet or triplet states’

10,00 =27V 2(|4 ), | =)a=| =)1 | +)2) (32)
or

|1s 0>52-1/2(|+>1l'>2+|‘>1]+>2): (3b)

|1, £1)=[£)1 | %)z, (3¢)

respectively. These operators satisfy the identi-
ties
0] 01 +0302=P10,10 +® 00,00 + 2®P11,11 > (4a)
01 02=3 (®10,10 = ® 00,00+ Poo,10 ~®10,00, (4D)
and have the property
CPomyrme () = Promeyom () (5)

where p(#) is the reduced density operator contain-
ing only atomic variables. Thus, Eq. (I37) can be
written as

W ()= 3v/8m) [1 = (R $)*1{ p10,10 (8) + Poo,00 (2)
+2p11,11 () + [ P10, 10 (6) = Poo, 00 (#)] cos (k7 cosé)
+1[ Poo, 10 (t) = Pro,00 (1)] S (K721 cosf)},  (8)

where

cosO=R- 7y Fp=tp-T , (7

and the R/c factor has been ignored, so that{g—t2.
Substituting expression (2) into (I129), and using
(5), we obtain the separable equations®™

P11,11= = 2¥P11,11 5 (8a)
P1o,10= (¥ + ¥12)P11,11 — (¥ + Y12)P10,10 > (8b)
Poo,00= (¥ = Y12)P11,11 = (¥ = 712)Poo,00 » (8¢)
P10,00 = = (20 Q12+ V)P 10,00 - (8d)

Equations (8a)—(8c) can be written directly from
the transition rates shown in Fig. 1. One can also
write (8d) from Fig. 1 by assuming that each level

I'1,0) and |0, 0) contributes to the decay of pyq,g0
at a rate equal to half the amount shown. The rea-
SOn pyy,1; does not appear is that a nonzero value
of p1g,00 requires the |1, 0) and 10, 0) amplitudes
to be mutually coherent. Such coherence may be
present initially (e.g., as a result of excitation by
a 37 pulse), but cannot be produced or enhanced
by spontaneous decay from above. Finally, we
note that (8d) requires only that |1,0) lie at ener-
gy 294, above |0, 0).'* The actual positions of the
two levels will be examined in Sec. IIIL

The solutions of (8) are

p11,11(0) =p11,11 (0) ™2, (92)
P1o,10(t) =€ "% [p10,10(0) 7712

+p11,11 (0) (€77 12" = &™) (v + v15) /(¥ = 12)] , (9D)
Poo,00(t) =€ [ pog,00(0)e” 12*

+ 911,11(0)(67’12‘ -7y =v12)/ (v +712] , (9¢)
P1o,00(t) = Pm,oo(o)e—(m)”l P22t = oy 10(0) (9d)
Note that as Ty =T, (so that y;,~ ),

P1o,10(t) =~ € 2"* [ p1g,10(0) + 2¥tp11,11(0)] ,
Poo,00(t) ~ P00, 00(0)

(10a)
(10b)

in agreement with earlier results.!?

If the atoms are replaced by harmonic oscilla-
tors 0y, O,, then the average in (I37) must be re-
placed by B 4(0)=(b%, (t) bg()), where b, is the
lowering operator for the ath oscillator. From
(129), we obtain

Byy==vBy~T13Bp=-TH B, (11a)

Byy=~¥Bpa—T12 Bl =T By (11b)

Biy==¥Bi;~T12By ~ T2 By, . (11c)
The quantities

B/= By + Byt Byt BYy (12a)

B.'= By = By By, ¥ BY; (12D)

FIG. 1. Energy-level diagram for the |, m) states,
showing the frequency shifts +Q,(Z=1) and decay con-
stants vy +vq,.
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satisfy separable equations with exponential solu-
tions; hence, one can easily show that

Byy(t) + Byo(#) = 3 [BL(0)e 12" + BL (0)e™2*]e ™" , (13a)
By ()= :[B!(0)e 12! = BL(0)e12?
+ B}’ (0)e™*%2f _ B! (0)e? Mz']et,  (13D)

w-Pulse Excitation

If the atoms are initially excited into their upper
states (e.g., by a short 7 pulse), then

P11,11(0)=1, pyo,10(0) = pgo, 00(0) = P10,00(0) = 0. (14)

Equations (6) and (9) then yield the average photon
emission rate

(1)

Wa(t)=2Wz () R, 1) , (15)
where

We(t)= (3v/8m[1 - (R*§) e (16)

is the radiation rate of a single isolated atom, and

®(6, )= A(D) + B(t) cos(k 7z, cosb) , (17)
A=z (e12 —e ") (y+ 112)(y = 712) !

+3 ("2 —e ) (y =y (y+712) T+, (18a)
B()=}(e7"12 ~e ) (y+ 1)y =719

-z =)y =y v+ v (18p)

If the atoms radiate independently (so that y,, = 0),
then ®(0, t)=1.
The asymptotic values of ®(6, ¢) are

®R(6, 1) ~ 1+ vy, ¢cos(kry cosb), yi<1, (19a)
®®, b
Jly=1lvsl Y12 I71a1¢
~ 2yt 171, ~ Tyl cos(k7y cos@)} e ,

Y2t >1 | (19b)

Apparently, R(6, t) starts out spherically symme-
tric, develops a weak nonspherical radiation pat-
tern, becomes spherically symmetric again, then
begins to develop pronounced minima at the same
angles at which the earlier pattern was maximum.

To explain such behavior in terms of | 7, m)
states, we consider as an example, the case k7
=37 (Fig. 2). Since 7;,>0 in this case it is clear
from Fig. 1 [or Egs. (9) and (14)] that py,10(2)
>Pop,00() for the early times y#<1. However, lev-
el 11,0) also decays more rapidly than |0, 0), so
that pyg,10(¢) <Poo,00(t) when y¢>1. Since A4, and A4,
are a quarter wavelength apart, the radiation from
symmetric state | 1,0) has its maximum intensity
in the plane 6 =90°, whereas the contributions
from antisymmetric state | 0,0) would tend to can-
cel in these directions.

0.2 —

0 ] ] | | L
0o 30 60 90 120 150 180

6 (Degrees)

FIG. 2. Radiation pattern ®(9, ¢) [defined by Eqgs. (15)
and (17)] at times £=0, y~!, and 3y~!, for two atoms (ini-
tially inverted) with spacing #,;=4A. Solid and dashed
curves denote pliTy; and p | Ty;, respectively, while the
dot-dashed curve applies to either case. Here, v is the
decay constant of a single atom, 6 is the angle between
Ty, and observation direction R, and D is the dipole ma-
trix element,

An interesting consequence of Eqs. (15)—(18) is
that the average number of photons ## emitted
along R is independent of the A, - A, interaction;
i.e.,

nﬁEfo°° dt Wz (t)

=(3/4m)[1 - (R p)?]= 2f0’°dtwg> . (20

These results, especially (20), seem to contradict
the prediction of photon-correlation arguments’
that the radiative coupling between A, and A, en-
hances emmission in certain directions. This
point will be discuss=d in more detail in Sec. IV.

Integrating (15) over all @3, we obtain the total
emission rate

W(t) = 2v[A(t) +(v12/7) B(®)]e~" (21a)
2
Y12t > 1 Y(i:li::zzl[//:) e~7-1712lt - (21b)

For T,~ T, (so that ¥;,~7%), Eq. (21a) becomes

W(t) = 2y(1 + 2yt)e2"t | (22)

in agreement with earlier results.!>'® The curves
of W(t)/W(0)= w(¢t)/2y (Fig. 3) show a clear ten-
dency for the coupled atoms (k75 <1 and k7, =37)
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FIG. 3. Time dependence of the normalized damping
rate W(t)/W (0) for two atoms (initially inverted) with
spacing: A: 7y << 7&(5 It f21 or J—Fgl), B: 7y1= 21‘?\(5 I Fgl),
C: 7y= 2;1‘>\(5-L 521), D: 7y )\(5 I th orl f21).

times y¢<1, when they are both excited. The
asymptotic forms of (24) and (25) for y,,/ > 1 are

RO, )= 5[1 - (v15/]712]) cOS (kryy cos 6)] 712t
(26)

to decay more rapidly than they would if they were
independent (k75 >1). This is an elementary ex-
ample of the superradiant pulse formation that one
would expect in a larger system, and can be re-
garded, at least in part, as due to stimulated
emission.

If A, and A, are replaced by harmonic oscilla-
tors initially in their lowest excited states, i.e.,

B11(0)=By(0)=1, By,(0)=0, (23)

then according to (13a), (13b) and (137) (with
0,—b,), we retain Eq. (15) with R(6, ¢) now given
by

®(6, t) = cosh(yy,t)
X [1 —tanh(y,,t) cos(krs cos8)].  (24)

This pattern obviously has the same form for all
yt>0, as shown, for example, in Fig. 4. (Note
that the lobes need not be along + 7 in all cases;
e.g., if pL 7y and k7, =7, then v,,<0, and the
lobes occur for RL#,.)

The total emission rate is

W(t)=2y[1 = (y15/7) tanh (y,t)] cosh(y,,t) e,  (25)

which is plotted in Fig. 5 for K7y <1, k731 =3T,
and k7, > 1. The first two curves show clearly
that the oscillators tend to trap radiation, even at

LEHMBERG
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FIG. 4. Radiation pattern ®(9, #) [defined by Eqgs. (15),
and (24)] at times ¢=0, y~}, and 2'y", for two harmonic
oscillators (initially in their first excited states) with
spacing 7,;=4A. Solid and dashed curves denote B Il Ty,
and p | Ty, respectively, while the dot-dashed curve ap-
plies to either case,

W)=~ 2¥(1 = |35 /7) e =712t | 27

which have the same (6, #) dependence as the cor-
responding expressions (19b) and (21b) in the
atomic case.

One can interpret many of these results in terms
of a heuristic classical model. In particular, con-

W(t)/w(0)

FIG. 5. Time dependence of the normalized damping
rate W(¢)/W(0) for two harmonic oscillators (initially in
their first excited states) with spacing: A: 7y << @ |l Ty
or -L;gl), B: vy = éf)\(ﬁ I le), C: Vo= %)\(ﬁl fﬂ), D: Y1
< 7\(5 It le orl 521).
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sider a pair of classical dipoles located at points
T,, T, with time dependence

Do(t) =D exp{-iet - ipy(t) - 3yt + ' ()}, (28)

where ¢’'(¢) is a real function, satisfying
[’ @] <37, ¥'(0)=0

The phase functions ,(¢) are random variables,
assumed to be initially uncorrelated; i.e.,

(cos 9,,(0)) =(sin $,,(0)) =0,

where ¥,, =9, — ¥;, and angular brackets now de-
note a classical ensemble average. From sym-
metry considerations, it follows that (sin,,(t)) =0
for all times. The emission rates of the far field
can therefore be written as

-~ — (1) 2 (t)
Wi@®) =2w P(t) e

X [1+{cos P, (t)) cos (Ky, cosb)], (29)

W(t)=2y[1 +(vy5/¥){cosisy ()] et "2 (30)

If P,(t) and P,(f) are harmonic oscillators, they
exhibit positive susceptibilities'®; thus, ¥,(¢) and
1,(¢) will tend to correlate so as to trap the radia-
tion. Hence, according to Eq. (30), we obtain

Y12{cos ¢,y (£)) < 0
or

(cos Py (8)) = - |(COS Dor(2)) |7’1z/|7’12| ’ (31)

and (29) has a radiation pattern similar to (24).

If P,(#) and D,(#) represent two-level atoms that
are inverted at time #=0, then their initial sus-
ceptibilities will be negative, and the phases will,
at first, tend to correlate so that

(cos ¥y (1)) =+ [(cos Yo () | 712/ | 712] - (32)

For later times, when the upper levels are nearly
depopulated, the susceptibilities become positive,
and the phases realign so as to satisfy (31). Thus
we see that (29) has the same type of radiation
pattern as (19a) and (19b).

1m-Pulse Excitation

We now consider the case where atoms A,, A,
have been excited by a short 37 pulse of wave
vector K. The initial atomic state is then

2[[-—)1+1nexp(zk r1|+> [‘>2+“7 exp(iK - rz)l+>z],

(33)
where |7|2=1; therefore,
P11,11(0) =%, (34a)
P10,1000) =% (1 +cosK - Ty), (34b)
Poo, 00(0) = 1(1 — cosk - F5,), (34c)
P10,00(0) = ¥isink - F, . (34d)
Equations (6) and (9) yield
Wit)= Wi (t) ®’ (0,K,1), (35)
where

G{I(G, E, t) = %{A(t) +cosh (‘}’121‘)
+[B(#) - sinh(y ,t) + cosh(y,,1) cosk » T5,]

— sinh (yy,) cosk * T,

X cos(k7,, c0S6) +C0s(20,, 1) sink - Ty, sin(kr,, cosb)} .

(36)
For £=0,

®'(6,k,0)=1+% cos®-kR) - Ty, , (37)

in agreement with Dicke’s result.” In the indepen-
dent-atom limit where y,,=Q,,=0, expression
(37) apphes at all times.

For k. ¥,,# 0, the maximum of R(9, k,#) occurs
initially along R +%, and oscillates back and forth
between + % and - % at frequency 29, (e.g., see
Fig. 6). The intensity in a given direction (e. g.,

&6kt

Y N R R
0 30 60 90 120 150 18

8 (D'egrees)

FIG. 6. Radiation pattern ®&(6,K,# [defined by Egs.
(35) and (36)] at times =0, y~!, and 3y~!, for two atoms
initially excited by a short m/2 pulse. The atomic spac-
ing is iA. The pulse, at frequency w=¢, is directed along
T,y, with polarization along p (1Ty,).
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R =7) therefore has a sinusoidal component, For
712t > 17

®'(8,k, 1)
o3 [1=(y12/ [1a|) coslrry cosh)]e! 712t (38)

which has the same 6, ¢ dependence as the corre-
sponding patterns (19b) and (26) in the 7-pulse
cases,

The oscillation arises because the definite phase
relationship between levels | 1, 0) and | 0,0) (es-
tablished by the exciting pulse) changes periodical-
ly on account of their frequency difference 2Q,,
(see Fig. 1). Similar effects have been discussed
in connection with fine or hyperfine splitting in
single atoms.!” In the case of 7-pulse excitation,
no such phase correlation existed at the outset,
nor can it be created by spontaneous decay from
11,1).

The total emission rate

WK, #)=%+y{A(t)+cosh(y,t) - sinh(y,t) cosk + Ty,
+(y15/7 )[B() - sinh(y,,1) + cosh(y,,¢)cosk- 5]} e"?

(39)
contains no periodic component, For the case
where k7, < 1,

Wk, )~y (G +yt)e??t
in agreement with earlier results,?
Single-Atom Initial Excitation

As a final example, consider the case where
only atom A, is excited initially; i.e.,

[(0) =] +),[-)20), (40)
and therefore

£10,10(0) = Poo,,00(0) = P10,00(0) =Pgo,10(0) = 5 , (41a)

P11,11(0)=p14,14(0)=0 . (41b)

The probability of finding only A, excited at time
¢t is, according to Egs. (9),

1(+|2(— ]p(t)’ +0 | =)=%e7"[cosh(y,,t) +cos(Qy,1)];
similarly, for A,,

1(' ’ 2<+lp(t){ _>1|+>z
=%e "[cosh(y;pt) —cos(f,8)] .

These results agree with those of Hutchinson and
Hameka,® and provide a simple illustration of the
radiation trapping discussed above. The photon
evidently tends to be handed back and forth from
one atom to the other, while the excitation decays
as e 7712 for y,,¢ > 1. Such effects also show
up in the radiation rates

Wi(t)=w L ORGO, 1) , (42)

Ino

where
®(6, t) =coshy, ¢ — sinh(y,,¢) cos(k7,, cosb)
- sin(Qy, ¢) sin(kr 4 cosb), (43)

W (t)=v[1 - (v,2/7)tanh(y,st) cosh(yvy, t)e™7t . (44)

It is interesting to note that Eqs. (42)-(44) are also
obtained for the analogous harmonic-oscillator
model.

III. SPECTRAL PROPERTIES

In this section, we investigate the spectral prop-
erties of the radiation by evaluating expression
(140). If #'=0, then one can calculate this exactly
from atomic operators

((Prm,‘r'm— l(t)>0 = (0 l(p'rm,r'm—l(t)’ O>
by using the identities
ol =27V, 1@ 11,00+ ®10,1-1+ ®oo,1-1) , (452)

T _o-12
03 =27"%(®y 10+ ® 11,00+ Pro,1-1— Poo,1-1)

(45b)
and noting that

(0% ()05 (0)) =Trp(0){og ())0s(0) . (486)
Expression (I140) can then be written as

f(t,0)=27Y2 Trp(0){[{® 10, 1-1(#) ) +{® 11, 10 o]
x[01(0) +05(0)] (¥ +715) + [<<Poo,1-1(t)>o

- <(P11,00(t)>0] [04(0) = 05(0)] (¥ = ¥1p)}. (47)
From (I29), we obtain

<5’11,1o>o: [i(e - Q1) = 3 By +71) (@11, 100 , (48a)

(G.’u,oo>o: [ile + Q) - 3(3y - Y12)] <(Pu,oo>0 , (48b)
(@ 10,1-100= (Y +¥12) Py, 1000
+[i(e +Q45) = 2 (¥ +712)] (P10, 1-1)0 , (48¢)

<‘i’00,1-1>0= -(y- 71z)<@11,00>0
+[i(e = Q42) = 3 (v = 712)]1 {®Pgo,1-1)0 »(48d)

which confirm the location of levels | 1,0) and
| 0,0) in Fig. 1, and yield the general solutions

(@11,10(8)) 0= ®@11,10(0) expli(e - Qy5) — 3 By +715) ]2,
(49a)

<6)11,oo(t)>0 = ®11,00(0) expli(e + Q,,) - 3 (3y - Yi)lt,
(49p)

<(P10, 1-1())o=explile +Q5) = 3(v +71,)] t{P10,1-1(0)

+ ('}’ + 7’12)('}’ + 2i912)—1[1 -e” o+ zmlz)t]Pll,lo(O)},
(49¢)
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(®00,1- 1(t) )0 = expli(€ = Q1) = 5(¥ = ¥12)] t{® gg,1 .1(0)

= (y =)y = 2iQp)[1 —e” 72012 )] @ 11,00 (0}
(494)

As an example, consider the case of m-pulse ex-
citation described by Eqs. (14). Combining (47)
and (49), one obtains

f(t, 0) =C*(¢) expli(e + Q) =5 (v +71,) ]t

+C(t) expli(e — Q) -3y -v)t (50)
where

CH(t)= (& v45)2(y £ 2iQy5) " £ (¥ — 2iQ1,)
X(.),:Fylz)(yq:%ﬂlz)-le- (rFyy9)¢ (51)

is nonperiodic. The system therefore radiates
simultaneously around the frequencies € + 5, an
effect analogous to interaction broadening in multi-
atom systems. 1 The periodic intensity in Sec. II
can then be regarded as a beat note whose (ensem-
ble) average phase is nonzero only if an initial
correlation exists between 11,0) and 10,0). For
Yt and @t <1,

f(t,0)~2yet— W(0) .

t=0

For vyt > 1,

f(ty 0) & exp[i(€ - le) - %(7 - 712)]t ’

which comes entirely from the [0,0)-~ 1, —1)
transition.

So far, we have used no approximation except
those described in I; however, in order to treat
the general case where #' #0 in (I140), one must as-
sume the validity of the fluctuation-regression
theorem. This theorem has been derived else-
where, !® and for the present purposes, can be
written as!?

(oa(t)og (#) ) =¥ (ol (t — ') Yo ¥ 04(t"))

where ¢ >#' >0. To implement it, one simply re-
places all of the time arguments in Eqs. (47) and
(49) according to the prescription

0-t', t-t=t' . (52)
Since the actual calculation can be tedious, it will
be carried out only for the simple case where
1w(0))=1+)1=),10) [Egs. (41)]. The result is
f(t; )= %(7 +7’12) eXp[i(€ + 912) —%('}’4’ Vlz)l(t =)

X exp[- ()/+ le)t'] +%(7 - ')’12)6}(p[7:(€ - 912)

-3y - Y12)](¢ = ) exp[- (v - Y)t'] (53)

which reduces to (44) for #'=+¢.

Defining the spectral distribution of the radiation
by

w(w)=Re{ [ ar [~ at'ft,#)e ="}, (54)
and noting that f(¢', ) =f*(¢, #'), we obtain

}_ Y+712
2 (e+ Q12— w)z +3(y +71a)2

w(w) =

1 Y ~Yi2
+2(€ - le—w)z'*'%(')""ylz)z ) (55)

Except for the shifts + Q;, in the resonant frequen-
cies, this result agrees with that of Lee and Lin®
if the dipole matrix element p is averaged over
all directions.

IV. DISCUSSION

The results shown in Fig. 2 and Eq. (20) seem
puzzling at first, because they appear to contra-
dict the predictions based upon photon correlation
arguments.’ These arguments can be stated as
follows: If I(B,) is the probability per unit time
for finding a photon in direction I;z immediately
after one is observed along %,, then’

I(B,) = Iy(By)[1 + cosk(By - By - Ty ], (56)

where Io(lgz) is the probability rate for a single
atom. The photons therefore tend to “bunch”
around Ez ~£,, an effect that can be attributed to
correlation between the atomic dipole moments.
If this correlation persists throughout the decay
process, then the radiation pattern ®(6, ¢) ob-
served at vf<1 simply becomes more pronounced
at later times. The harmonic-oscillator model
does behave in this fashion (see Fig. 4), but in the
atomic model the initial correlation reverses it-
self, and ®(9, t) changes accordingly. Photon
bunching arguments are therefore unreliable (at
least in the atomic case) for even a qualitative
treatment of the dynamical behavior.

The solutions presented in this paper constitute
only one application of the general formalism de-
rived in I. Future work will concentrate on other
examples, including (a) spontaneous emission from
a multiatom system, and (b) fluorescence and scat-
tering from two or more atoms driven by an ex-
ternal radiation field.

The multiatom case is complicated by the fact
that the transition operators @,,, ,,, do not satisfy
separable equations for N> 2 unless k(7 qg)max << 1.
Thus, it will be necessary to impose additional re-
strictions, such as averaging over a smeared out
distribution of atomic positions, and treating only
the case where all atoms are initially inverted.

One would expect some of the phenomena dis-
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cussed in this paper (e.g., coherent linewidth en-
hancement) to affect the response of a two-atom
system to external radiation. For example, if it
is driven by a weak field of wave vector k=% w /c,
then only the |1, - D==11,0and | 1,- )=10, 0)
transitions will contribute appreciably to the scat-
tering (Fig. 1). Since

|<170’Hem|1» —1)’2051‘!-0081-;-.1"21 ’

(0, 0] B, 1, = 1) |21~ cosk - Fyy

we then expect the total scattering cross section to
have the doubly resonant form

(1+cosk » Toy)(y +745)
(€+ Q45— W)+ 5y +7y,)°

o(w)x<

, _(1-cosk. 2?211)(‘,/ - Y1) .
(€= Q- w) + 5y —7y,)°
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