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Radiation from an N-Atom System. I. General Formalism
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We consider the radiation from a system of N identical two-level atoms coupled to a con-
tinuum of quantized em modes, and possibly, to an external driving field near resonance. The
atoms can be distributed over a region large in comparison to the resonant wavelength, but
smaller than the spontaneous pulse length. Radiation rates and correlation functions are ex-
pressed in terms of expectation values of time-dependent atomic operators, which are shown
to satisfy coupled first-order differential equations involving similar atomic operators and
the initia/ radiation operators. The corresponding equations for the expectation values sim-
plify considerably if no driving field is present. Similar results are derived for a model in
which each atom is replaced by a harmonic oscillator.

I. INTRODUCTION

The development of ultrashort light-pulse tech-
niques has led to renewed interest in a number of
spontaneous radiation effects that are related to
atomic coherence. Examples of such effects in-
clude superradiance and ray-forming properties, '
photon trapping, ' ' and coherent spectral line
broadening.

An appropriate model by which to study these
phenomena consists of N identical two-level atoms
coupled to a continuum of quantized em modes, and
possibly to an external driving field nearresonance.
This model has recently been treated by a nearly
exact operator formalism for the case in which the
atoms are confined to a region small in comparison
to the transition wavelength. ' '" The present for-
malism removes this restriction, and also takes
into account the frequency shifts due to em coupling
between the atoms. ' The only major limitation on
the size of the system, expressed by condition (13),
requires that the atoms be confined to a region
small in comparison to the spontaneous pulselength.
Although this precludes its application to macroscopic
lasing materials, the formalism can still apply to
multiatom systems extending over many wave-
lengths, and therefore capable of developing pro-
nounced directional effects.

The methods and results presented here differ
considerably from those of earlier treatments; in
particular, the emphasis is upon time-dependent
decay rates, intensity patterns, and correlation
functions, rather than upon quantities such as the
probability amplitude for finding a particular set
of photon states. Although these admittedly contain
less information than probability amplitudes, they
are usually the quantities of most direct physical
interest, and are easier to calculate.

In Sec. II, we derive a general equation of mo-
tion for an arbitrary atomic operator [Eq. (23)], and

compare this with earlier results. ' '" Expression
(23) contains only initial radiation operators, or-
dered so that they can be eliminated if vacuum ex-
pectation values are taken; hence, if no photons
are present initially, the equations for the expecta-
tion values simplify considerably [Eq. (29)]. Anal-
ogous results are presented for a model in which
each atom is replaced by an equivalent harmonic
oscillator.

In Sec. III, the average radiation intensity and
correlation function are defined in terms of ex-
pectation values of appropriate atomic operators
[Eqs. (37) and (40)]. They can therefore be evalu-
ated if solutions to (23) or (29) can be found.

In Sec. IV, we discuss the size limitation men-
tioned above, and estimate the decay time for a
many-atom system.

This formalism will be applied in the following
paper to investigate the spontaneous emission prop-
erties of a two-atom and two-oscillator system.

II. EQUATIONS OF MOTION

Consider a collection of N identical nonoverlap-
ping atoms, at positions r„.. . , r„, coupled to a
quantized multimode em field. Each atom A. is
assumed to have only the two states I+), separated
by energy E, = c = e, —& . Using the dipole approx-
imation, one can write for the Hamiltonian' (with
h-=1)

where o, —=
I

—), (+ i is the lowering operator for
g, , and p-=(+

~ ex
~

—) is the dipole matrix element
(assumed real) . The assumption of no atomic over-
lap implies that [o„,oz ]= 0 for n & P.
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Field operators E(r) and B(r) may be conveniently
expanded in terms of transverse plane-wave modes;
i. e. ,

E(r) 2ttto, &~2

where V is the normalization volume, e, the unit

polarization vector (8, e, = 0), and a, the annihila-
tion operator for the qth mode ([a„a,.]= ()„.).
Substituting (2) into (1), and discarding the zero-
point energy, we finally obtain

H = Q cot o +Z to, at a,

—Z-( )
)'" w'ew i eq;Z

where k=k/k, and rg specifies the orthogonal polar-
izations of the kth mode. Substituting (5) and (11)
into (9), then performing the )) „"summation, we
obtain

—i 2 [s, , Q], E,"'(r, , t) p+(p'/4)t'c')

$d&",[1—(k P)'] f'dt' f" did &o'

&&exp [ite)(t' —t+k r t)/c)][s ., Q], s8(t') . (l2)

where

S~:—0'~ +0'~ (4)

Z, -=(2qt(o, /V)'t e, p

The radiation operators satisfy

a, =i[H, a, ]
= —'E(e)pe+i+ Kqsqe- "q' a

~
~

H

Q If (et)tq fqa 'e. e-t)eq . rq a' t) s (2) Although the co integral extends to ~, the dipole
approximation begins to break down as v -&os-=c/
a~, where a& is the Bohr radius. In a more exact
treatment, one would replace p by some function
p(to) that decreases exponentially for to & tot); i. e. ,
the integral effectively cuts off around e —- ~&. For
a given pair of atoms (&, P), the most important
values of t' therefore lie within a region on the
order of te) s) around t —k r„t)/c. Since toe»q:, one
can certainly replace oz(t') by

o'6(t —k r,8/c) exp[-iq(t' t+k r, t)/c-)]+H c. .
hence,

v

a, (t) =a, (O) e '"q'+iZ K e-t"q'~q

x f tdt es (tt)e ieeq(t t ~-)-
0

(7)

in express)on (12). We now impose the restriction
that the time required for a light signal to cross
the system be small in comparison to the time ~t
required for appreciable (secular) changes in the
atomic levels; i.e. ,

If Q(t) is an arbitrary combination of atomic opera-
tors, then (with the definition [A, B],=- [A(t), B(t)]}

Q(t) = i~ Z„[o'„o., Q ],—i Z. Z, Ic,

&&(e'"' [s, Q]ta, (t) —e ' '' qa,'(t)[Q ' ]t).
(8)

Consider the first term within the curly brackets.
According to Eq. (7), its contribution to Q(t) can

be written as

—i P [s, , Q], E', '(r„, t) p+7 Z, e' ' qt)

o (t) e ie(t' t) +ot (t-) eiei-t' t)-(14)

All operators in (12) are now evaluated at times
t; hence, the t' integral can be performed, yield-
ing

—i 2 [s„, Q], E',"(r„t) p+(p'/4))'c') 7 [s„,Q],

(t'mt))m~~~ ctet ~

This assumption has been used explicitly in other
quantum treatments of large systems, ' and will
be discussed in more detail in Sec. IV. If it ap-
plies, we have

where

&& f t dt' e '"q" "[s„, Q ],s, (t'),
0

r &=r —r&,

(9)
~ P

' (:& ~'exp icoa. r., e
"0

X
1 —cos(&e) —e)t sin(te) —e)t

+ o8(t)
t ((e) —6 ) &e)

—e

1/2
~(0)(~ ) g ( q

)
~

(0) i t)eq '5 II) t)q (io)
1 —cos(te) + e)t sin(&e) + e)t

+ +
X(M + E ) te) + q.

To evaluate the second set of terms in (9), we»-
low V- andkq k so that

We are mainly interested in times

et»1, ct» (q.,)
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(however, t may still be &&t), and under these
conditions the expression in the square brackets
can be replaced by

—iP((us&) '+v6((use) (17)

-Z [o', q], E,'"(r, t) p Z f( —iQ-, +-,'y, )

x [o', q], o8(t) —i Q'„8[ o„qj» ot(t)) . (18)

where I' indicates a principal value.
Substituting this result into (15), integrating

over , "
and e, then discarding the high-frequency

operators (such as o, (t)o8(t) and [o„, Q], E,'"(r„ t)
~ pj, we obtain

instead of the normal-ordered combinations. Al-
though this is formally correct, it is not very
useful for obtaining equations for the expectation
values with initial radiation states [e.g. , expres-
sion (29)]because E,' '(r„ t) does not commute
with the atomic operators at time t.

From Eqs. (21) and (22), it follows that Q would
diverge logarithmically were it not for the frequen-
cy cutoff around c/aa. Since it always appears in
the combination & —0, it makes no contribution to
the phenomena of interest here, and will hence-
forth be absorbed into &.

To calculate Q„8, we use (21), (22a), and the
identity F 8( —$)=F,8($) to write

In terms of the normal decay rate of an isolated
atom

'Y =
8 P K, K —= &/C

the constants can be written

ra8 r8a rF a8 (Kra8)~ raa

p

(19)

(2O)

(21)

Evaluating this by contour methods, we obtain

Q, 8
= Q8„=y G 8(Kr, 8)

where

G, ($) =-,'f- [1 —(P r.,)']( os()/$

+ [1 —3(P r 8) ] [(»nk)/h +(cosh)/$'j] (28)
where

F.,(g) -=-,' &[I - (P .r.8)'] sin]/)

+ [1 —3(P r8)'](~ cops/$' —sin)/$')] . (22)

The second term in the curly brackets of (8)
can be written immediately by taking the Hermitean
adjoint of the first one, then replacing Q by Q.
Applying this procedure to (18), we finally obtain

Q = i(e —Q)Z [ot o „,Q]

+ (i&/c)p Z([s„q]E',"(r, t)

—E,""(r„t)[q, s, ])+P iQ„8[o,'o8, q]

+Z r„[o',qo8 —,'(o', o8Q— +qo', o8)], (23)

This is the interaction energy between the nth
and Pth atoms, and agrees with the result derived
by Stephen.

In Fig. 1, G,8(Kr, 8) = Q, 8/y has been plotted,
along with F 8(Kr, 8) =y, 8/y, for the cases where
p is parallel and perpendicular to x z. For xr z

we observe that y z and z tend to be lar-
ger in the perpendicular case. This is under-
standable because the interaction at zx z & r comes
primarily from dipole radiation rather than from
electrostatic or induction fields. (The semiclas-
sical interpretation of y ~ and ~

~ is discussed
by Lyuboshitz. ')

If ax ~«1, then y„z=y, while ~ abecomes
large and strongly dependent upon x,z. In the case
where K(r 8) ~«1, Eq. (23) therefore reduces to

where all atomic operators are evaluated at time
t, and the frequency shifts are defined as

(24a)

Q=i~Z [o'.o. , q]-ip. ([R„Q]E,"&(t)

—E,' ' (t)[Q, R ]]+p iQ, 8[os o8, q]
Q, 8—= —(Q,8+ Q;8), o. e p (24b) +r[R, QR —,'(R,R q+qR. R )—] (27)

The form of (23) depends upon the ordering of
radiation and atomic operators in Eq. (8). If they
had been placed in antinormal order [e.g. , a, (t) to
the left of ot(t)], then (23) would contain terms
such as

E,'"(r„ t) [o', Q],

r 8[o„qo8t -,' (o o'8Q+Qo-„o'8)],

where

R =—P„o, R, =Zo— (28)

Except for the 0 z terms, this yields the same
operator equations of motion as those derived in
earlier work' '"; however, in the following paper,
it will be shown that 0 z terms can, under some
circumstances, have important effects on the radi-
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III. RADIATION PROPERTIES

We now derive general expressions for the radi-
ation rates and spectral properties of the far field;
in particular, let 0 be an observation point (re-
ferred to an arbitrary origin within the atomic
system), and assume that ) 0- r, ]=—R, satisfies

KR~ »1 (30)

1.0
for all a.

The quantities of interest can be obtained from
the correlation functions

0.5 fs(t, t') -=(R'c/2 vs) &F, (K, t) ~ E (0, t')),

f (t, t') = .F d As fs-(t, t'),
(»)
(32)

0.0

-Q.5

rp/r y

t I

277

Kr (Radians)aP

where the average is taken over initial states of
the entire system, and E, (R, t) is thepositive fre-
quency field operator

E. (5, t) =Z, (2v(a, /V)~'e, a,(t)e'"&'" . (33

For t'=t,

FIG. 1. Dependence of the damping constants p&& and
frequency shifts 0&2 on interatomic spacing r2& for dipole
matrix elements p parallel and perpendicular to r2~.
Here, w = e/c = 27I'/X, and p is the damping constant of a
single atom.

f;(t, t) =nfl(t)-=wtt (t)

is the average photon emission rate into solid
angle d Q~, and

f (t, t) = n(t) =- w(t)

(s4)

ation properties of a system.
Returning to the general expression (23), we note

that for the case where the radiation is initially in
the vacuum state ) 0), one can take vacuum expec-
tation values to obtain the simplified form

&Q)o is Q&[-o' o„g]) o

+ ~ i n.o&[o.' oo, q]&o

is the total radiation rate. We note that although
W„-(t) does not correspond exactly to the classical
expression (i. e. , with real fields), it is the actual
intensity that would be measured by an ordinary
photodetector or similar device. '

Substituting Eq. (7) into (33), then applying con-
ditions (13), (16), and (30), we obtain, by arguments
similar to those used before (see the Appendix),

E, (5,, t„)=F,"(R, t„)+ '

xexp[iv(R, —R)]o (t), (s6)

+Z r.o&o.' Coo —2(o.'ooQ+Qo'oo))o,

where ( )o-=&0) ) 0) . This expression will be the

fundamental equation of motion in the theory of
spontaneous emission from an N-atom system.

Consider now the case where each atom A is
replaced by a harmonic oscillator 0 of frequency
s and energy states ( n) . If p is now defined as
&n=1[ ex )n=0), then &n I[ e+x [ n) =(n+1) p.
The radiation interaction is therefore identical to
the last term in expression (3) with s, replaced
by b +b~, where b is the lowering operator
(h ) n) =n~

) n —1),). If Q (t) is an arbitrary
combination of oscillator operators, then we again
obtain Eq. (23) (by the same derivation), with Q- Q~ and o -b . The only difference is that 0
is now defined as 0 +0'

yp(tz, ts) = w't'I'& Rs (t„)Ry (ts ))

where

(37b)

K =-KR,

Ry =—Po, o'ye

and

~(.1& r [1 (P. P)2]
sy
8m

(sa)

(39)

where t„=t+R/c, and E,' '(lT, t) is defined by (10).
The main interest here is in cases where the ini-

tial radiation is either confined to a narrow beam

or absent entirely. If K lies outside any such
beam, and if R» (r,&),„(so that R—R =, —A r, ),
then (31)becomes

fs(ts, ts)=~'„-" ~ e'""""&o'(t)o (t')) (37a)
0t, g
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is the initial radiation rate into d A~ for a single
excited atom. Expression (37b) generalizes a re-
sult first derived by Dicke' for the initial radiation
rate.

Similarly, Eq. (32) becomes

f(f„,f,')=f"'(f„,f,')+ Z y., (o'„(f)o,(f')), (40)

mined by the field amplitude and pulsewidth, and
the problem may be adequately treated by semi-
classical theory. In the absence of external radi-
ation, we obtain b t = 7, where 7 is the duration
of the spontaneous pulse; hence, if only a few at-
oms are present, we then have

f'"(t„fs) -=(8'c/2ve) XdAs

x(f!'&'(0,f, ) K,'"(0, f„')),
and the interference between the incident and scat-
tered radiation is negligible for 8 sufficiently
large. In these expressions thefactor A/c appears
in both tz and t„': thus, it is irrelevant for our
purposes and will be ignored henceforth„

As a check on the methods used here, we note
that Ws(f) can be calculated directly from the re-
lation

Wf, (f) = lim (I/~n;) Z s,'(&)s,(&)+H. c. , (42)
rh, QR~ 0 q(b, Qg)

where the sum extends only over q states lying
within AQg around the St direction. Substituting

Eqs. (6) and (7) into (42), using the relation

1
4 Qz V &&z &~ 2mc

and following the same procedure as the one used
to derive (23), we recover (3'7) with f'=t.

For intensity calculations (f'=f), one can obtain
differential equations for the factors(ot (t)o~(f)) by
taking the expectation values of both sides of Eq,
(23). This is considerably simpler than dealing
with o~(t) or ot (f)oz(f) operators; e. g. , in the case
where no photons are present initially, one can
deal with Eq. (29).

If f'=0, then (ot(t)o~(0)) can be obtained from
the reduced operators (rad (

ot (f) ) rad), where
( rad) is the initial radiation state, Again, there
is a considerable simplification, especially if no

photons are present initially.
In the general case, t & t' & 0 or t'&t & 0, one is

obliged either to solve for states such as os (f') ) rad),
or to approximate (ot (f)gz(t')) by using the fluctu-
ation-regression theorem. "

Finally, we note that expressions (36)-(41) apply
equally well to the harmonic-oscillator model, the
only difference being that all o~(t) are replaced by
5 (t) operators.

IV. DISCUSSION

The most important physical restriction in this
paper is condition (13). For a system driven by
a sufficiently strong resonant pulse, ht is deter-

One can obtain an approximate expression for
6 t in the case where N» 1 from the results of
Eberly and Rehler5:

r =2/(~V'&), (44)

Substituting this into (46), tsking f& —g$& and ap
proximating us'-" by y/4m, we obtain

p, '= 16I/(a D)2

where
d8 p 1—,(sin8 —8 cos8)285 'ga "~4

Hence, we have

~f = = r 10~&/(n, Dy),

X =2~/~ and n, -=6m'/(vD')

is the average number of atoms per cubic wave-
length. For a numerical example, we choose X

=10 cm, a=10 cm, and n& —-10'; then we obtain
y —- 10 sec ' for a dipole transition and ht= 10 '

m

sec. Since (r,z),„=D, we have (r z),„/c = 3.3
x 10 "sec.

APPENDIX: DERIVATION OF EQ. (36)

Substituting expression (7) into (33) and using
definition (10), we obtain

K (It, t„)= ff"(5, t„)+2vi p (1/V) Z, &u, e, e, p

x exp[i k, ~ (0- r„)]j dt'exp[- f (o,(ts f')] s„(f'), -
(AI)

t6
P = dQ exp j gQ k r 2

(46)
k, is the wave vector of a short pulse used to ex-
cite the atoms initially, and so~~-" is the initial radi-
ation rate into dA„" for a single atom. In the case
of v-pulse excitation, &upi" is given by Eq. (39).

To estimate p,
' for a large system, we consider

a model in which the atoms are distributed at ran-
dom throughout a spherical region of diameter D;
l. e, ,

B/2

3 r dr) dQs
Q
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where ts= t +R/c. If relation (11) is applied, and
the g g summation carried out, the second term be-
comes

(i/47/ c')g f &u'd&u. Kd Ag (p —kk p)

xe' '' "~ ' f df' exp[-i(o(t„- t')]s (t'), (A2)

where 0„—= 0- r„.
The largest contributions to the field come from

v = e. Thus, if eR, /c» 1, then exp(iidk 0, /c)
will oscillate rapidly over a range of A, ~ k in
which p —$$ ~ p remains essentially constant. The
only important contributions come from those di-
rections around 5=+R, , where the phase +idR„/c
is stationary; hence, one can replace p —kk ~ p by
p -R R, ~ p, and remove it from the Ag integral.
The result is

fR

iii ~did dt's ~(f')
27t'C

0 0

i~(i& - i - ii/g) [ 'ltd/i
(g /c -iuR /c i

J ~

exp[i(ur + e)R, /c] —exp(-i(&0+ e)[t —(R —R)/c] j
f(Q) ~ e)

(A4)q j6NfM 8)/c

We have already assumed that eR, /c»1, , and
since IR —R[ ((r„ii),„, conditions (16) lead to
e[t —(R —R,)/c]» 1. Therefore, expression (A4)
can be approximated by

27/6 (&v + e ) exp [ie (R —R)/c ],
and (A3) reduces to

!

p —R R„~ p
c) ~ R

x exp[i/i(R, —R)]a, (t), (A6)

where ii —= s/c. Adding the K' '(0, ts) to (As), we
obtain Eil. (36).

It is necessary to consider only the e'""f" ' term.
Since [ R, —Ri (r ii),„ if R lies within the atomic
system, the same arguments that led to (14) also
apply here. Thus, substituting (14) into (A3), then
evaluating the t' integral, one is led to terms of
the form
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