
(8.18). It is clear that according to the argument
advanced at the end of Sec. III, such a nonequilib-
rium D(P& i) will decay just in the same manner
as the D(P„ t) discussed in Sec. III.
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The effects of a transverse mode„degeneracy, overlapping transitions, background
losses, and transverse population variations are included in an analysis of light-pulse ampli-
fication in a system with an inhomogeneously broadened gain profile. Over a wide range of
resonant gain and background loss, the steady-state pulse energy is proportional to the in-
verse cube of the pulse width, in accord with the observations of Frova et a/.

In previous papers, ' which introduce the phe-
nomenon of self-induced transparency, the authors
presented a result which describes the evolution
of the "area" A of a light pulse traveling through
a resonant two-level medium. In the case of a
plane-wave nondegenerate inhomogeneously broad-
ened amplifying system at resonance, the area
theorem states that

= gQ slDA ~ (&)

where e &0 is the linear "Beer's" gain of the reso-
nant amplifying medium and A is equal to the final
Bloch tipping angle &(z) of the fictitious electric
polarization vector Rt, exRct resonance with the fl e-
quency ~ of a light pulse propagating in the z di-
rection. The tipping angle is defined as

e(z)=(ipse/8) f„S(z, i) dt,

where p is the value of the dipole-moment matrix
element and 8 is the pulse envelope of the electric
field parallel to p. When properly generalized
and related to energy gain estimates, the area
theorem leads to a quabtative and quantitative de-
scription of light-pulse amplification in a traveling-
wave laser with an inhomogeneously broadened
gain profile. We will use much of the notation and
some of the results of our previous papers. '
The picture developed here may also be applied to
the description of absorbing media, and I elevant
equations are easily obtained by changing the sign
of a. Mixed systems, in which some, but not all,
state populations are inverted, may be considered
in a similar way, although particular examples in
the analysis to follow are not typical of mixed sys-
tems. A number of workers have investigated re-
lated problems, and extensive bibliographies have
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been compiled. 3 The reader is referred to Ref. 2

for basic ideas concerning Eq. (1). Our purpose
here is to expand and elaborate on that description
as it applies to light-pulse amplification.

A light pulse may be described in a useful ap-
proximation in terms of two quantities, the pulse
energy and pulse width. In the case of light pulses
which rise and fall smoothly and have a constant
instantaneous frequency, an equivalent description
may be obtained in terms of the pulse energy and
pulse area A, where A is proportional to the time
integral of the electric field envelope 8 of the
light pulse. Such a description is necessarily in-
complete, because the shape of a traveling-wave
pulse is not calculated. Indeed, the procedure
outlined here is by itself incapable of yielding com-
plete and exact results. However, the simplicity
of this approach makes it easy to include effects
due to finite transverse-mode diameters, back-
ground losses, and degenerate or overlapping
two-level transitions.

A linear analysis leads to the conclusion that an
unmodulated weak light pulse will often become
modulated if the pulse width v is shorter than, or
even comparable to, the inverse resonant ampli-
fying bandwidth T2. The same result is true in
the nonlinear case, ' at least for pulses of some
shapes and widths shorter than about T2. If 0 &n.

and 7» T&, pulse breakup is expected" to occur
in a nondegenerate plane-wave amplifier because
the electric polarization vector would display a
time modulation of absorbed energy in a manner
similar to that which would occur in the optical
nutation effect. ' Such breakup effects will be seen
to be considerably less effective when transverse-
mode and quantum-level degeneracy effects are
taken into account. In the region of interest here,
when 7 is greater than and nearly equal to T,* and
8 is less than n, but not small, the question of
whether pulse frequency or amplitude modulation
effects occur is quite important. At present, we

have no complete answer to this question. The fol-
lowing analysis has a formal meaning but is of di-
minished relevance to theory and experiment if the
light pulses are highly modulated. The discussion
is, therefore, restricted to cases for which modu-
lation effects are not important. We suspect, with-
out real proof, that modulation effects are not im-
portant for pulses with temporal widths longer
than some time of order T2. That pulses can be
shorter than T~~, and yet the following analysis
apply, is supported by the work of Hopf and Scully
if one merely requires the qualitative prediction
of pulse shortening. Interest has been focused on
the pulse shape formed by a long amplifying medi-
um. However, without knowledge of limiting pulse
shapes in the more general case considered here,

the importance of modulation effects is not easily
estimated.

SINGLE-TRANSVERSE-MODE LIGHT PROPAGATION

The electric field E of a light pulse traveling in

the positive z direction may be expressed' as a
sum over transverse modes:

E(x, y, z, t)=Z 8 (z, t)&„(x,y, z)e"'"' "'+

where 8„is the pulse envelope for the mth mode
described by the generally complex vector mode
function $ (x, y, z), ur and tz denote, respectively,
the central light frequency and wave vector, and
c. c. is the complex conjugate term.

In many situations, a light pulse can be forced
to exist in essentially one mode. For example,
at microwave frequencies, a suitable choice of
waveguide dimensions can result in a broad fre-
quency range over which all transverse modes but
one are highly attenuated. Selective diffraction
losses can restrict otherwise free space-light prop-
agation to single —transverse-mode propagation.
It can be assumed that a structure exists which
forces the electromagnetic field to exist in on1.y
one mode. For a laser operating in a single trans-
verse mode, mode selection is done by the mechan-
ical parts (e. g. , finite aperture plasma tube) which
comprise the laser. The light scattered into other
transverse modes is attenuated in a short distance
because such modes are highly damped or because
the frequency e is below the higher-mode cutoff
frequencies, and light of measureable intensity
can only persist in the operating transverse mode.

The electric field may then be accurately ex-
pressed by

E(x, y, z, t) = 8 (z, t) ((x, y, z) e "'"' ""+c. c. , (4)

where 8 and ( refer to the selected mode and $
varies only slightly for a change of z equal to a
light wavelength A.. The operating mode function

$ is orthogonal to other mode functions'.

f dxdy t (x, y, z) ~ ]*(x,y, z) = 0

and satisfies the transverse equation

(
9 8 p

2 2

z+ z+r $(x, y, z)=0,
Bg 9$

so that tz = n'&u /c —y, where e is the host dielec-
tric constant, n = + v e, c is the v a cuum value of light
velocity, and y is the mode eigenvalue. Boundary
conditions and the value of e, which may depend
on transverse position, are chosen so that $ is
identical with the actual mode of operation. There
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may be transverse or nonlinear effects which modi-

fy the above statements, but the fundamental as-
sumption, upon which the following is based, is
that Eq. (4) is accurate. It may be, because of
unprescribed transverse effects, that ( does not
have precisely some preconceived form (e. g. ,
Gaussian). We assume that Eq. (4) is accurate,
but insist that $ is to be determined by experi-
mental conditions. The above is merely a mathe-
matical device for properly choosing orthogonal
transverse-mode functions.

Assuming that the background refractive index
is dispersionless and that n '»A. , Eq. (4) and
Maxwell's equations prescribe an equation for the
forward-traveling mave:

88 n'co eS
ez kc et

""I, ' dx dyg (x, y, z) ~ ]*(x,y, z)
'gC

—2g'+I, ' dx dy& (x, y, z) ~
e~(x, y, z)

where q = ck/&o and I, = f dxdy 1)*(x,y, z) i . The
electric field 8(z, I) at the mode center is deter-
mined by the summation of source dipoles through-
out the beam cross section because of diffraction.
A loss term 2o'8 is introduced to include the ef-
fect of background broad-band linear loss (e. g. ,
diffraction or conductivity losses). The polariza-
tion P in the laboratory reference frame is given

by

p(x, y, z, t) = (p(x, y, z, t) e ""' '"+ c. c. . (8)

Use of the assumption n '» A. and the condition
that the pulse spectral width is small compared
to ~ allow the neglect of terms involving higher
derivatives of 8 and 6'.

In Eq. (7), the term involving 8$/Bz refers to a
transverse mode mhich changes with distance g.
The tex'IQ 18 included to Rllom R descrlptlon of
amplifiers in which the light is converging or di-
vex'ging. The unlIQportant lIQRglnRx'y pRlt of the
term may be removed from the problem by rede-
fining the phase kz in Eq. (4) to be kz+ 4, where
dC/dz is equal to the imaginary part of the 8$/ez
term. The remaining real part of the term may

be grouped with the background-loss parameter
0' to form an effective-loss parameter g, which,
in general, depends on distance z. It should be
noted that o may be positive, negative, or zero.

With Bloch's equations ' describingthepolariza-
tion 0, the description of the system is formally
complete. Derivations and results recorded in
our earlier work will be recorded as needed.

Results for a nondegenerate two-level system
mill be developed, and the effects of degeneracy or
overlapping transitions mill be included later. The
gain profile is assumed to be symmetrical about
v, so that the analysis is consistent with the as-
sumption that the light pulse is not frequency mod-
ulated. All homogeneous relaxation times are as-
sumed to be long compared to the light-pulse
width.

At a particular point (x, y, z) in the light-pulse
beam, the irradiating electric field $(x, y, z)$(z, t)
causes the macroscopic Bloch vector of dipoles at
exact resonance to tip to a final position at an
angle

~ I&*(x, y, z) J)l(, y, ) i(,(0 0,) -i

away from their original direction. ' The pulse
area A is defined to be equal to the tipping angle
in the beam center x= y = 0, and p is a unit vector
parallel to the vector dipole-moment matrix ele-
ment of the transition involved. The time integral
f'„6'(x, y, z, t) dt of the envelope of the induced
polarization(P(x, y, z, t) at a point x, y, z, is shown
in the proof of Eq. (1) to be proportional to the
sine of the tipping angle 9(x, y, z). It follows that
the contribution to the pulse-area derivative dA/dz
from the region around (x, y, z) is proportional to
sin8(x, y, z). This term is multiplied by the initial
local-population inversion density X~(x, y, z) at fre-
quency u&, and by a factor i $*(x, y, z) p i, which
describes the projection of radiation from
(p(x, y, z, t) at a point (x, y, z) back onto the oper-
ating transverse mode. These comments follow
directly from the application of Eq. {9) to the
time-integrated Maxwell equation {7).

A generalization of Eq. (1) thus follows for the
case of a nondegenerate two-level single-trans-
verse-mode amplifier:

oA o fox(doN(xo, z))('(xo, z) p) )('(o, o, o) ()i . ((*(xo, s) pM}
dz 2 fdxfdy i]*(x,y, z) pi'N, ( y, xz) ~i*(0, 0, z) pi

where c( is a complicated factor involving $, N~, etc. In the limit of small pulse areas, Eq. (10) reduces to
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dU = ~U- o'U,
dg

(12)

where U is the total pulse energy of a weak pulse
of frequency ur and bandwidth hv~«T&

In the case of a linearly polarized mode of con-
stant transverse Gaussian' shape

) ~2
-(x +y &IrO

where xp is the mode radius, with N~ constant
and P parallel to the electric field vector, Eq. (10)
reduces to

dA 1 —cosA= n -2oA. (13)

If each or either level of a two-level system is
degenerate, a suitable representation of the de-
generate states can be chosen so that transitions
occur only within pairs of states, each pair con-
sisting of one ground and one excited state. Ad-
ditionally, a two-level system may have overlap-
ping transitions due to the presence of various
species of amplifying atoms. It is assumed that
the light pulse has a specified time-independent
polarization, either through constraints such as
Brewster windows or because the medium does
not tend to change the light polarization. The
spectral-gain profiles for the various transitions
are each symmetrical and centered about (d, so
that it is consistent to ignore frequency modula-
tion'; an area theorem for such systems will be
derived shortly.

In systems for which the spectral-gain profiles
are not all symmetrical about ~, if the pulse width

v is long compared with the inverse bandwidth of
the most narrow spectral gain curve not symmet-
rical about v, the wings of the resonance only
respond dispersively. There is then no resultant
frequency modulation, and the area theorem to fol-
low may be applied to such systems.

There are systems, e. g. , free atoms with sub-
stantial hyperfine interactions, in which a number
of transitions not independent of one another may
occur. If the hyperfine splitting energy is «8/r,
the hyperfine levels may be considered degenerate.
If the hyperfine splitting energy is» 8/v, then,
for a given atom, only two of the hyperfine levels
will be resonant, each atom may be considered as
having two levels, and the amplifying system may

dA

dg
= -,' (n -o) A,

and a is therefore the resonant Beer's gain con-
stant, which will everywhere in this paper be de-
fined as the experimentally obtained resonant
small signal gain/cm in the operating mode at fre-
quency ~. Equation (11), for a pulse of width
v» T&, is equivalent to

be regarded as being composed of overlapping in-
dependent transitions. If the hyperfine splitting
energy is comparable to h/v, however, there may
develop a nonlinear polarization which frequency
modulates the pulse. In this case, the pulse area
is not defined, and there is no area theorem. It
will therefore be assumed that any near degener-
acies are characterized by an energy splitting
either large or small compared with h/7, or that
the transitions are not coupled together and may
be considered to be independent of each other.
Then a quantum representation can be chosen so
that transitions occur only between separate pairs
of states, and the resonant amplifying system
may be regarded as consisting of a number of in-
dependent amplifying systems, isolated from one
another except for their interactions with the light
pulse.

Defining dipole-moment matrix elements ppPp,
P,P„.. . , where P,P; is the dipole-moment
matrix element of the ith transition and p&

=I5&(x, y, z) is a, unit vector, an area, theorem includ-
ing the effects of degeneracy can be formu-
lated ""

dA = ~ o.', [ g f dx f dy N~ (x, y, z) D; sin(D~A) ]8

&& [Qf dx f dy N; (x, y, z) D& ] ' —2oA. , (14)

where

Ip;(x, y, z) P(x, y, z)I
po I po(0, 0, z) ~ p(0, 0, z) I

and the pulse area A is chosen to be equal to the
tipping angle at the beam center x= y = 0 for atoms
with dipole moment pp:

A=(pj's) g*(O, O, z) p,
~ f .S(z, f) dt.

The presence of the denominator ensures that e
remains the total resonant linear Beer's gain con-
stant. The quantity N, (x, y, z) is proportional to
the local population inversion of the ith transition
at frequency ~. In the case of free particles in a
gas, the prescribed representation results in each
unit vector P& being parallel to the electric field
polarization vector parallel to $. For a J= 1 to
Z'= 2 transition, (e. g. , the 8328-A transition in
Ne) with the initial-state populations differences
N, equal and independent of transverse position,
Eq. (14), using Eq. (13), reduces to

dA, 1 —cosA 1 —cos(—,
'

v 3 A)=50 +2 --,'oA
(18)

in the linearly polarized Gaussian-mode case. The
prescribed representation in this case is that de-
scribed through a quantization axis parallel to g
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so that the transitions obey the selection rule Am
= 0. The first term represents the M~. = 0 to M~
= 0 transition with dipole moment po; the second
term represents the M~.=+1 to M~=+1 transitions
with dipole moments —,'v 3 po. The factor -', assures
that n remains the total resonant gain constant.

A net area theorem always is derived from a
superposition of terms sin0. Consequently, an
area theorem for a given arbitrary system always
takes the form

dA 1

dz
= —,n S(A) ——,oA,

where S(A) =A B3A-3+BSA —~ ~ ~ is an odd func-
tion of A. . The coefficients B„B„etc., are all
positive in unmixed amplifying systems, and de-
pendentondistance z if the form of the transverse-
mode function varies.

The pulse area evolves according to Eq. (1V)
and eventually approaches the value Ao determined
by the smallest nonzero solution of the equation
S(A) = oA/n, as illustrated in Fig. 1. If the mode-
function form or diameter varies with distance,
then the pulse area may be imagined to track the
intercept Ao(z), as Ao(z) changes with variations
of S(A) or the effective-loss parameter o.

ENERGY GAINS IN INHOMOGENEOUSLY
BROADENED SYSTEMS

The second function of interest here is the mode
center pulse energy/cm2 & defined by

~(z) = ",
'

~h(z, f) ~'g(0, O, .) ~'df . (18)

1,5

For finite transverse-mode diameters, the total
pulse energy is

-of(z). (2o)

By definition of n, F = 1 when A and & are small.
The "pulse shape" variable describes time aspects
of the pulse 8 (z, t) except for the pulse area and

energy. A pulse might have, for example, a
"Gaussian" shape. The "mode profile" variable
includes effects due to both a transverse intensity
variation of the single-mode light pulse and over-
lapping or degenerate resonant transitions.

In the case where the light pulse is a plane wave
and there is neither degeneracy nor overlapping
transitions, the corresponding quantity F displays
characteristic oscillations, with nearly zero
values at 2m, 4m, etc. Furthermore, the value
of F for given A or & is reasonably independent
of the pulse shape. This independence carries
over to the more general case above, and the de-
pendence of F on the pulse shape will be neglected.
Let F in the plane-wave nondegenerate case be
denoted by E~(8, 9'), where 8 and & refer to values
at x= y = 0 for the transition with dipole moment

po
Use of Eq. (19) allows (20) to be rewritten in

terms of the total pulse energy U(z):

U(z) = f dx f dy g(x, y, z)
~

'/ t'(0, 0, z)
~

' v'(z) .
(»)

Weak pulses of small bandwidth and small area
are uniformly and linearly amplified according to
the equation

d E(z)/dz = n y(z) '- o &(z) .

If the pulse bandwidth or area is not small, the
energy gain due to resonant interaction will in gen-
eral change, and a factor F is included to take
this into account:

d v(z)
dg

= o.E(A, 9', "pulse shape, " "mode profile")V'(z)

.5

4 Ao 6
A

I

IO

FIG. 1. The curve is S(A) for a J=1 to J=2 transi-
tion with a linearly polarized Gaussian transverse-mode
profile. The densities. .N& vary radially as 1 —2 I(x)/I(0),

-r2lr2 .where I(x) = I(0) e " rp is the mode intensity at radial
distance x and xp is a mode radius. The straight line
has slope 0./&, and the intercept Ap 42 rad is the steady-
state pulse area.

dU(z) = nE(A, l, "mode profile" ) U(z) —o'U(z),
(21)

where g' refers to real losses and not those
changes in (z) due to a distance z, dependent on
mode profile or diameter. In this equation, the
term involving E is the total change/cm of energy
in the resonant atoms. The energy emitted by
an atom involved in the ith transition at position
(x, y, z) will be calculated first and then a subse-
quent summation over transitions and positions
x, y will produce a formula for the total resonant
energy change/cm. Identification of this result
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with the term o.EU(z) above results in an expres-
sion for F.

The quantity F~ involves an average over the
inhomogeneously broadened resonance at x= y = 0
for the transition with dipole moment po. The
dynamics of nondegenerate atoms may be com-
pletely described by a torque equation" which is
derived from an interaction

-p;(x, y, z, t) ~ E(x, y, z, t),

where p;(x, y, z, t) is the dipole-moment operator
for the ith atom at x, y, z at time t. In the case
here, therefore, the torque equation involves the
driving electric field in the form

P~ ~P& ( (» y z)
~

&(z t)

which is proportional to D;$(z, t), apart from the
phase of p, ~ $(x, y, z), which cannot affect a result
for energy change. Consequently, since the en-
ergy change of atoms of dipole-moment matrix
element po at x= y = 0 is proportional to &(z)F~(A,&),
it follows that the energy change of atoms
with dipole-moment matrix element p; at position
x, y, z is proportional to D, F~(D, A, D, I),
since, for a given pulse wi~.h, V' is proportional
to 8, and only D&$ can be involved in the energy-
change expression.

The net energy absorbed is the resultant sum
over transitions and positions so that, upon identi-
fying the total resonant energy change with the
term AFU(z), we have

nE(A, f) U(z)= nf dx J dy+, N;(x, y, z) D;'E(z)
x F&(D,.A, D,. &), (22)

where ~ is a multiplicative factor.
In the limit of small A(z) and 'E(z), E~=E= 1,

and use of Eq. (19) allows 6 to be determined so
that

E= [Kg f dx f dyD,' N, (x, y, z)F~(.D, A, D2T)]

x [Q,.f dxf dy D,'. N, (x, y, z)]-', (23)

where F~ is evaluated according to the indicated
functional dependence and the denominator ensures
that F= 1 in the limit of small pulse area and pulse
bandwidth.

For &» T2, there is no dependence of Fo and
therefore F~ on V', because a change in & for con-
stant pulse area A only results in a larger excita-
tion bandwidth, which is reflected in the factor &
in Eq. (20). As v becomes comparable with T2,
for constant A, the larger bandwidth of excitation
begins to include the wings of the resonance, and
F decreases y '.th increasing g . If the resonant
spectral-gain profiles for various positions and
transitions vary in a way not simply proportional
to N;(x, y, z), Eq. (23) must further be generalized

to take into account this fact through a variation
in the dependence of the various F~ on the effective
interacting pulse energy D; &.

If 7» T2 and the amplifying transition is bell
shaped, F is an even function of A, never exceeds
unity, and approaches the value l as A tends to
0 (except for pulse shapes which undergo 180'
phase reversals and have zero net area). For
r» Ta, it can be shown that E(A) decreases to-
wards zero for increasing A, eventually becoming
proportional to 1/A, possibly with some oscilla-
tions. This limiting case will not be of primary
interest in the analysis to follow.

It is convenient to introduce the pulse-energy
dependence parametrically through the defined
pulse width 7., where

'r(z)=P [J ~(t, z) dt] /f S(t, z) dt, (24)

and P is of order unity. The value of P is formally
arbitrary but may be chosen for convenience, per-
haps so that v' is the time between half-maximum
intensity times for a particular pulse shape. The
nonlinear gain function E(A, 1') appearing in Eq.
(20) may now be regarded a,s a, function of A and v

instead. The numerator and denominator of Eq.
(24) are, respectively, proportional to the pulse
area squared and the pulse energy, so that from
Eqs. (17) and (20) we have

(25)

In the plane-wave nondegenerate case, the en-
ergy change of exactly resonant atoms is propor-
tional' to 1 —cos8 = 1 —cosA. . The total energy
change of all atoms is proportional to the product
of some average energy change and an average
bandwidth of excitation. Choosing 1 —cos8 as a
typical change of energy content and v '~ &/8'
as excitation bandwidth in the limit 7'» T~, an ex-
pression 2(1 —cos8)/8 follows for an estimate of
E~(8, 0). This expression does not, however, in-
clude the effects of power broadening, important
for 0 & 2n. , and consequently does not behave as
1/8 for large 8. For small A, the effects of band-
width can be formulated through a linear calcula-
tion. A Gaussian puIse, interacting with a system
with a Gaussian spectral-gain profile, is associated
with

E(0, ~) =~/(r'+2T,*)'t',

where v' is the time between half-maximum inten-
sity times, and T2 = v 2 (In2)/vnv, where nv is the
frequency width (Hz) between half-maximum gain
frequencies.

A surprisingly good fit to E~(8, &), especially
useful for estimates in the region 0-2n., is
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2(1- cost)) 7'
Fp(e, 7')=

ga a 2Tea7 +2T2
(26)

1.0

where the dependence of E~ on W is introduced
through the appropriately defined pulse width w.

In the region 0-2m, this formula is an excellent
fit to values calculated for a pulse of Gaussian
shape of width v» T&. The bandwidth factor has
the proper limits for v» T2 and 7«T~ and
should describe bandwidth effects to a reasonable
accuracy. Near 2 —,'w, with v'» T~, this formula
yields a value of F~ only about 35% smaller than
the value numerically calculated' for a pulse of
Gaussian shape.

The 2m hyperbolic secant "self-induced trans-
parency" pulse ' has the plane-wave values
F~(2v) =0, S(2z) =0, and o= 0 and applies stably
for n & 0. A m-pulse solution has the plane-wave
va, lues Fa(v) = —,', S(w) = 0, and o = 0 and applies in
the region n &0, v'» T~.

The posed analysis can be usefully performed
graphically. In Fig. 2, a trajectory is drawn on
a graph of curves of F(A, 7') plotted against A for
various pulse widths v'. The propagating pulse
area, for a given input pulse area, is determined
as a function of distance z alone, through Eq. (17).
The solution to the equation for the pulse energy,
Eq. (20), is then specified through the knowledge
of A(z). The final pulse a,rea stabilizes at the
value Aa, where dA/dz=0, so that S(Aa)=oAo/o. .
Finally, with pulse area so stabilized, the pulse
energy continues to change until the gain function
saturates when v' shortens to value v'0, where
d7'/dz= 0, so that F(Aa, va) = a/n.

In Fig. 2, two possible trajectories are shown:
(I) The imput pulse is such that 7 shortens to a time
about equal to T& while A. is still changing towards
Aa, (II) A becomes close to Aa before w becomes
comparable with T,*. A more complicated system
would result in a figure of similar appearance.
The curves of F(A, v) and S(A) may be imagined to
change with distance z if some parameter [e.g. ,
the mode function $(x, y, z) or the total inversionj
depends on distance g. The actual pulse area and
pulse width track the operating point that would
be obtained through setting dA/dz= dv'/dz= 0. If
7' & T„ the descript on above may not apply if
pulse-amplitude modulation is not taken into ac-
count in this analysis.

SMALL" SIGNAL THEORY

If both 8 and Ta/7' a.re small, but nonlinear ef-
fects are nevertheless operative in both Eqs. (17)
and (20), and if furthermore the finite bandwidth
of the amplifying transition is operative in Eq. (20),
we may expand the functions S(A) and F(A, r) in a
Taylor series, keeping Eq. (24) in mind, and re-

.6
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.2

4 Ap

A

10

FIG. 2. Sketched trajectories in the F-A plane of
evolving pulse areas and energies, the pulse energy
defined parametrically through the pulse area A [Eq.
(15)j and pulse width 7' [Eq. (24)]. The time T2 is such
that Eq. (28) applies in the limit A 0, but with 7 /72
merely small. The solid curves represent F(A, 7), with
the adjoining numbers being values of 7/T&. The system
is that described in the caption of Fig. 1. The approxi-
mate formula for E& given by Eq. (26) was used to ob-
tain numerical values of F(A, v). Curves I and II are
trajectories of evolving pulse areas and energies, dis-
cussed in more detail in the text. The steady-state
pulse area Ao is determined in Fig. 1, and the steady-
state pulse width is about 0.7 T 2.

tain only the leading terms. In this approximation

dA 3 1

dg
= an (A —BaA ) —aoA, (27)

dV T= n f' 1 -52~ — ~3 —g T'.
dz 7' (26)

The value of 83 in the case of no degeneracy has
been determined for the plane-wave case to be 6,
and in the Gaussian mode case to be ~2. The
parameter T~, about equal to the inverse ampli-
fying bandwidth, is now precisely defined by Eqs.
(19) and (16), once P is chosen, by the condition
of linear (8 «a) gain saturation in the limit of
large r/Ta.

The value of 5 may be determined by expanding
F~(A, v) to order A and substituting the result
into Eq. (23). A comparison of Eqs. (14) and (23)
reveals that the ratio 6/Ba is independent of the
mode profile and only depends on the pulse shape.
Consequently, 6/Ba may be calculated in the plane-
wave nondegenerate case and 6 then determined
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where A(0) is the input pulse area at z = 0. It is
assumed that n and o do not depend on distance z.
The final stable operating area at very large z is

A, = [(n —(x)/nB, ]"' (30)

Substituting Eq. (24) into Eq. (28) and using Eq.
(2V) leads to the equation, for the changing pulse
width,

(31)

if Tzz/7 &(B~ —5)A', the Pulse width lengthens,
but if (B~ —5)A & Tz* /7, the pulse width shortens.
If a short weak pulse of width v(0) is injected at
z= 0, the nonlinear term may be neglected, and v'

behaves for small z as

v (z) = [v (0)'+ 2nT,*'z]'/', (32)

but if the medium is predominantly nonlinear for
small z, the bandwidth term Tz/r may be ne-
glected, and for some distance z —z',

~(z) = ~(0)[A(z)/A(0)]"' ""'
-(e -a)(1- 6/ B3)8Xe

where A(z) is given by Eq. (29). If A(z) «1 and

Tz/r«l, r(z)=v(0) as expected. If we assume
that A(z') =Ao to good accuracy, then for z & z',
r(z) is given by

(I —c/n)(1 —5/B, )

z ~ ~
~~ ~

~
3

yW2

(' —ir/~)(& —&/& ) )
(33)

and approaches the final operating pulse width v'o

from the particular value of Q for the system of
interest. The square pulse case prescribes the
analytical value 5/Bs = —,', while numerical calcula-
tions' for a Gaussian pulse shape specify a slightly
higher value of 5/Bz. The functional F must be
an even function of A, so that there can be no
terms linear in A in the expansion Eq. (28) of F.
A linear term Tz/r will not be present if the spec-
tral distribution function derivative has no discon-
tinuity. The bandwidth reduction factor Tz*'/7 ' is
equivalent to a factor (&v~/&v)', where &v~ is the
light-pulse bandwidth and ~v the amplifying band-
width.

The solution of Eq. (27) is given through the ex-
ponential decay of the squared-reciprocal pulse
area.

(~())-~= ",((~(o))-'- ").-& ~ -
& (»)

found by setting dA/dz= d7/dz= 0 in (27) and (31),

'(1 —o/n)' (1 —5/B )'

According to Eqs. (15), (18), and (24),

( )
Ph qc It'(ooz)l A

2'() Ig(0, 0, z) .p() I
(35)

Ph r(cTz 1$(0, 0, z) I

2&p', B,(I 5/B—,) I f (o, o, z) p, I' (37)

is independent of the resonant gain n and the back-
ground loss 0. A closely related quantity

[B,(1 —6/B, )]"' (38)

is likewise independent of n and g. Frova et al. '
pointed out that their observations of the output of
a He-Ne laser mode locked" by a Ne absorption
cell are in good agreement with Eq. (37); reason-
able quantative agreement is reached in their case
if one averages over the discharge length as well
as the transverse distance in the evaluation of B3.
The data of Fox and Smith ' are also in accord
with Eq. (37). Both experiments involved the
J=1 to J = 2, 6328-A neon transition. To a de-
gree of approximation largely determined by op-
erating conditions, a mode-locked laser may be
thought of as an unidirectional traveling-wave
laser amplifier with a steady-state pulse. How-

ever, lack of precise knowledge of the longitudinal
and radial dependence of the density of excited
atoms causes an uncertainty in the relevant value
of B,. Furthermore, overlap of the mode-locked
pulse with itself upon reflection from a cavity mir-
ror, atomic memory times comparable to the
transit time of a pulse between mirrors, fre-
quency modulation of the mode-locked pulses, and
other effects are not here taken into account, so
that only qualitative agreement with Eq. (37)
should be expected. The agreement between ex-
periment and Eq. (3V) should be regarded as in-
completely explained. If such mode-locked laser
outputs conform with Eq. (3V) or an analogous
equation taking into account possible frequency
modulation, then nontrivial but direct-measure-
ment mode-locked pulse parameters yield a value
for the dipole moment of the transition.

The region of applicability of the small signal
calculation may be assessed through the alter-
nating power series expansion following Eq. (16).
Keeping one term B,A more than in the small

so that
PR )Vc I $(0, 0, z) I (I-o/n) z(1 —5/Bq)' z

2vp() I $(0, 0, z) p I BSTz*

(36)
It should be noted that
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signal calculation, if the extra term Bg' is small,
a corrected solution Ao to the equation o.(A -BOA

+ BSA)=, oA is given by

Q —O' Bs Q —(T
A.0= — — - +

Q

and the fractional error ln calculating A0 by Eq.
(30) is therefore about B,AO/2BS. In the nonde-
generate plane-wave, Gaussian-, and Lorentzian-
mode cases, withe equal to the beam center tip-
ping angle, respectively, 2

8 = ———1 1 1
3 6r12&18r

B =—1 1 1
5 120r 360r 600r

B3/B5= 20, 30, 334

If B,AO/2B, is required to be less than 10/o, tlln
A. &0.64m, O. 78m, and 0.81m, respectively. The
important parameter B3A.0, which indicates the
amount of nonlinearity, is, for 10/o error, & 3,
2, 0.370, respectively. A similar analysis in-
dicates that the errors in Eqs. (34) and (3V) should
be about twice the error in Eq. (30). As the
transverse mode becomes less "square, " the im-
portance of highex nonlinearities increases. De-
generacy effects will further increase the impor-
tance of higher nonlinearities. But for B3A0 &0.4
(corresponding to o/& &0. 6 and v &2. 3 Ta*), the
small signal calculation should be quite accurate,
and small signal theory applies over a large range
of pulse areas.

CONCLUSIONS

The pulse-area-pulse-energy approach to light-
pulse propagation problems allows a quick and
quantitative estimate of the changing and steady-
state pulse energy, width, and area. The small
signal calculations are reasonably accurate over
a sizable range of pulse areas and pulse widths,
and result in a steady-state &07'0 law, which agrees
with measurements, ' in spite of the fact that the
pulses are frequency modulated.

The point at which a pulse breaks up ' ' ' into
two smaller pulses may be taken as an upper
limit for the region of relevance of the pulse-en-
ergy-pulse-area calculations. However, it is not
presently clear that such breakup effects neces-
sarily occur in systems for which transverse-
mode and degeneracy effects are large. Indeed,
for the subject system (envisioned as approximat-
ing conditions in a He-Ne plasma tube) depicted
by Figs. 1 and 2, the condition S(A) &0 applies for
all A [in contrast to the nondegenerate plane-wave
case for which S(A) = sinA]. We may conclude that
the net emitted energy by atoms with resonant
frequency ~ is a monotically increasing function
of time, for a given pulse of any area, because
the electric field is sufficiently inhomogeneous
over the beam diameter to average out oscilla-
tions. In any event, if the breakup of a pulse in
such systems should occur, it will require a much
larger distance to set in than might be estimated
from plane-wave nondegenerate results.

The region of applicability of the pulse-area-
pulse-energy formalism in this paper is purposely
limited to the region v' & 7."2 in order to avoid the
possibility of severe amplitude modulation effects
for shorter v0. Investigations of the homoge-
neously broadened amplifier indicate that the pulse
formed by a sufficiently long amplifying medium
may be free of severe modulation, even for 7 «T2.
If a similar situation holds in the inhomogeneously
broadened line case, the estimates given here will
be reasonably accurate. At this time, however,
we must regard the large-g description of modula-
tion effects stimulated by short pulses in highly
amplifying media as an open question.
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Nuclear-magnetic-resonance techniques have been used to study vacancy diffusion and the
exchange interaction of Hes in solid Hee-He mixtures between 0. 3 and 2. 0'K for molar vol-
umes between 20 and 22 cc/mole. The concentrations studies are 32. 1, 7. 78, and 1.94% He

in He4. There is good agreement between the diffusion activation energies determined from
the T& measurements and those obtained by measuring the diffusion constant directly using the
field-gradient technique. These activation energies are consistently lower for mixtures than
for pure Hes. The T& data in the Zeeman-exchange plateau region indicate that the exchange
interaction is independent of concentration. The T2 data in the exchange-narrowed region are
not in agreement with the theoretical result obtained by allowing the moments of the line shape
to become concentration dependent. The experimental values of T2 are much lower than the
predicted values. This deviation is qualitatively explained by postulating the existence of two

spin species: those that strongly experience the effects of exchange and those that do not. A

small fraction of the isolated spins can then dominate the T2 relaxation process.

I. INTRODUCTION

The magnetic properties of solid He' have been
the subject of intense experimental and theoretical
investigation for the past ten years. ' 7 The most
interesting feature of this solid is that the van der
Waals binding energy is not much larger than the
kinetic zero-point energy, so that the atoms under-

go large-amplitude zero-point vibrations, and

there is an unusually large amount of overlap be-
tween the wave functions of atoms occupying ad-
jacent lattice sites. As a result of the atomic
overlap and the symmetry requirements for pairs
of fermions, there is a probability that a pair of
atoms will mutually tunnel between adjacent lattice
sites and interchange their positions. This process
leads to an exchange energy in the Hamiltonian

specifying the system. The magnitude of the ex-
change interaction is essentially proportional to
the electrostatic energy developed by the overlap-
ping atoms and the scalar product of the nuclear-

spin orientations. The exchange process appears
to be most probable when the pair of atoms are in

the singlet state. ~

The effects of He impurities in the He' lattice
have also received experimental ' and theoreti-
cal" attention. Recent nuclear resonance experi-
ments seem to indicate that the excess volume
around a He impurity permits the neighboring
pairs of He' atoms to have a greatly "enhanced"
exchange interaction. ' ' In this work, we have
investigated the possibility of such effects from a
different point of view. By studying the nuclear
resonance properties of solid mixtures of He' and
He with He concentrations between 2 and 30%,
we hoped to understand what effects the He would

produce on neighboring He atoms undergoing the
exchange tunneling, and what effects the dilution

process has on the spectral density function re-
sponsible for the relaxation processes.

In Sec. II, the theory of how diffusion and ex-
change affect T, and T~ is reviewed and extended


