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The extent to which the renormalization of critical-point behavior should be visible experi-
mentally is investigated on the basis of detailed numerical calculations for a three-dimensional
soluble model (a mobile-electron Ising ferromagnet) If a dilution parameter x is defined such
that the change in critical temperature from the “pure” or unrenormalized system is | T,(x)

- T2 =xT,/f, where f=0.6—0.9, then we conclude that the effective exponents B¢ (x) and

Y1¢(¥) which will be observed experimentally, vary voughly as By, =B +xABy and gy~ 'Y+
X(1+2x%Avy. Here B and v are the ideal exponents for the order parameter and total fluctua—
tion or susceptibility of the pure system, while ABy =8y — B and AYx =Yy — 7, in which By=8/

(1 -a’) and yx=v/(1 —a) are the fully renormalized exponents, while @ and @’ (assumed posi-
tive) describe the divergence of the specific heats of the pure system. [Theoretically the true
limiting asymptotic behavior at the transition is described by B(x) =By and Y(x) =¥ for all
x>0.] The renormalized specific heats are found to be sensitive to x but their true renormal-
ized behavior is not evident until ¥ 2 0.3. Various techniques of data analysis such as logarith-
mic, semilogarithmic, Heller-Benedek, and Kouvel-Fisher plots have been tested.

I. INTRODUCTION AND SUMMARY and Lipa®) renormalization occurs when an “ideal”

“pure” system possessing a critical point is
perturbed homogeneously by some influence which,
in turn, is subject to a “constraint”. Various
different physical examples of this general situation
were discussed in Ref. 1. A typical one is a gas-

Under a fairly wide range of circumstances the
critical exponents occurring in a natural or a
model system are expected to become “renormal-
ized”.! As shown by Fisher! (see also Buckingham
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liquid transition in a pure single-component fluid
which is perturbed (but not destroyed) by the
presence of impurities. The constraint in this
case would be the requirement of constant over-all
impurity concentration (although as p and T varied
the impurities would redistribute themselves and
come to an internal equilibrium). On the other
hand, impurities in a solid system with a critical
point, such as a ferromagnet, are often “frozen”
into an immobile random configuration. In such a
case renormalization, as described below, is not
expected; rather, the transition is likely to be
rounded or smeared (probably in quite a subtle
way®). Similarly, a gravitational field will “spread
out” a fluid critical point (by inducing large scale
inhomogeneities) and a magnetic field imposed on
a ferromagnet destroys the transition: Specific
heats, etc. will look different (“rounded”) in these
cases but these also are not renormalization
effects. However, the case of an antiferromagnet
in a uniform applied field is one where simple
renormalization is expected. ! The critical (or
Néel) temperature is changed (frequently reduced)
but the transition is not destroyed. A constraint
arises through the demagnetization phenomenon
which implies that the (more fundamental) internal
field varies through the transition when the applied
field is held constant. ! In certain circumstances
the interaction with other degrees of freedom, such
as the elastic modes of a crystal, may also be
regarded as a renormalization effect. !** Again, in
the model described in Sec. 2 an ideal interacting
spin system is renormalized by the constraint of
over-all electroneutrality imposed on the mobile
electrons which couple the ionic spins. (See also
Ref. 1 where other, earlier models are reviewed. )

To describe the effects of critical exponent
renormalization explicitly, suppose that the expo-
nents of the ideal system are, in standard notation,’
@, o' for the specific heat above and below T, B
for the order parameter (spontaneous magnetization,
density discontinuity, etc), ¥,y for the total fluctu-
ation (susceptibility or compressibility). Then the
renormalized exponents governing the true asymp-
totic behavior of the “real” (or renormalized) system
as T - T, are

ax=-a/(l-a), akx=-a/(1-a), (1.1)
Byx=8/(1-a’), (1.2)
vx=v/1-a), ¥x=v/1-da). (1.3)

These relations presuppose that o and a’are posi-
tive so that the ideal specific heat diverges. The
negative values of the renormalized specific-heat
exponents indicate that the specific heats remain
finite'® at the critical point but exhibit cusps there
(with infinite slopes). When the ideal specific-heat

singularities are logarithmic (@ =q’=0) renormal-
ization with finite cusped specific heat again
occurs but the renormalized temperature depen-
dence is not given asymptotically by a pure power
law. (See Ref. 1 for the details in this case.)

A crucial point concerning the renormalization
results (1.1)-(1. 3) is that the exponents a y, By,
Yx ..., while they are the true asymptotic values,
will in general describe the behavior of the system
closely only inside some transition region about
the critical temperature T,. Outside this transition
region, the system may well appear to exhibit a
temperature variation characteristic of the origi-
nal ideal behavior. Furthermore, it was shown
theoretically in Ref. 1 that the transition region
may be rather small. This situation leads to the
following questions, of importance in studying
real physical systems: (a) Under what circum-
stances will critical-exponent renormalization be
experimentally visible when expected on theoreti-
cal grounds ? (b) If renormalization effects are
visible, how close will the “observed” renormal-
ized exponents correspond with the theoretically
predicted values ? (c) When renormalization effects
are only partially observable how will the “observed”
value of the critical temperature compare with the
true value ? (d) More generally what are the main
factors influencing the size of the renormalization
effects ? By their nature these questions can be
answered properly only by a detailed quantitative
numerical analysis. This paper provides answers
based on calculations for a theoretical model dis-
playing renormalization which can, in effect, be
solved exactly.® The model is, naturally, a some-
what special one (see below) but, on the grounds
that many features of equilibrium critical behavior
are known to be fairly insensitive to the system or
the model, * it is believed that the results we have
found will provide a realistic guide to the situation
in more general and realistic cases. Our procedure
has been to calculate from the model a set of
(exact) “data points” such as might be obtained in
an accurate experiment. In terms of the reduced
temperature variable,

t=(T/T,) -1,
t= 1 - (T/Tc)’

T>T,

T< T, (1.4)
we have obtained values of the specific heat, order
parameter, total fluctuation, etc. for values of ¢
spaced roughly equally on a logarithmic scale with
about 10 points per decade over the range 1> >
10-8, The complete set of data for a given value

of the dilution parameter x (or n, see below) have
been examined and analyzed to determine apparent
values of critical exponents and critical tempera-
tures. In the analysis we have employed various
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standard techniques frequently used for handling
real experimental data. The apparent or fitted
values have then been compared with the exact
values known from the theory of the model.

In order to summarize our conclusions we first
define a properly normalized dilution parameter x.
Suppose » is some parameter of the system or
model which measures the density of impurities,
the perturbing field, or other diluting influence.
(In the model studied below it isactually a density
of “electrons” through which spins are coupled.)
Let ny be the value of » for the ideal or pure system
with critical temperature 7. We expect in most
typical circumstances that the diluting influence
will lower the critical temperature linearly with
n for small n-n,. In simple cases T,(r) will
actually go to zero at a critical value of »n, say #,
(e.g., a critical density of nonmagnetic impurities
in a ferromagnet). When this happens, we define
the dilution parameter simply by

X = (n - no)/(nc —"ﬂo), (1. 5)

so that x =0 corresponds to the ideal system,

0<x <1 to the renormalized system, while for

x>1 there is no transition (of the same kind). This
is the parameter we will use in our model. More
generally, however, some other transition may
intervene before T,(n) vanishes or, for experi-
mental reasons, it may be impossible to follow T,
to large values of n —n,. In these circumstances
we may define x by

x=f|T2-T,|/T? (1.6)

or, provided T, (r) varies linearly with » near

n=ng, by o
oT

where the superscript zero denotes the ideal limit
n=ny. These definitions imply

T,n)~T2(1+f'x), as x~0, (1.8)

where f is a factor expected to be in the range, say
0.6-0.9, which allows for the differences from the
definition (1.5). Note that these last two definitions
can be used when no critical value of » exists or
even when the “diluting influence” actually raises
the transition temperature.

With these preliminaries, we may summarize
our conclusions as follows. Firstly, essentially
no renormalization effects are visible unless
x>0.01. The specific heat changes quite sensitive-
ly with the dilution parameter but the nature of the
asymptotic behavior does not change unambiguously
until x is so large (> 0. 3) that the finite height of
the cusp can be seen experimentally. These effects
do appear to have been seen unmistakably in recent
experiments on the A transition in liquid He®-He*

n-"mny

mixtures, 7 which should provide a good example

of the general theory. The changes due to renormal-
ization in the specific heat and in the other thermo-
dynamic variables are much more pronounced
below T, than above T,. Correspondingly, the
changeover or transition temperature is much
closer to T, above the transition than below. These
features are mainly due to the characteristic
asymmetry in the ideal specific heats which, for
equal values of ¢ are typically 2 to 4 times larger
below T, than above.

A second principal conclusion is that even when
renormalization effects are clearly occurring, it
is nonetheless essentially impossible experimentally
tomeasure the fully renormalized critical exponents.
Instead, the fitted or observed exponents B, 7,
¥,... increase smoothly with x, there being very
little if any indication from the fitsthat the apparent
exponent is not asymptotically exact. For the
order-parameter exponent we find that the approx-
imate formula

6“1; (x)gﬁ"'xABx, (Aﬁx=3x"ﬁ) (1-9)

gives a fair account of the situation. We expect
¥'qyito vary according to a similar formula al-
though we have not examined this exponent in detail.
Above T,, on the other hand, the true renormal-
ized exponent is even less accessible to experiment:
We find roughly that

Yur () =Y +5 2 (1+2x9)AY ¢, (Ayx=vx-7)  (1.10)

describes the behavior if x is not too close to unity.
Of course these last two formulas have no theoret-
ical status. They merely summarize what will
appear to be the case experimentally on the basis
of measurements in which the temperature resolu-
tion is not better than 1 in 10 or 10%. At present
these represent realistic if not overoptimistic
limits. An experimental test which bears out the
insensitivity of the exponent ¥ to dilution has been
performed recently by Bak and Goldburg® who
studied the scattering of light near the consolute
point of the binary fluid mixture phenol and water
in the presence of hy»ophosphorous acid (H;PO,) as
an impurity. A small consolation for the difficulty
of measuring the true renormalized exponents is
that use of the observed or fitted exponents leads
to quite reliable estimates of the true critical
temperatures when the data are accurate (i.e.,
bearing in mind the actual resolutionin#available).
The explicit, albeit rough and ready, formulas
(1.9) and (1.10) for the “effective” exponents have
been found, as explained, only for a particular
model. The question, naturally, arises as to how
far they will remain quantitatively valid in other
models and in real systems with, now, the more
general definitions (1.6)~(1.8) of the dilution
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parameter x. By altering the parameters of the
model (see Sec. II) this point may be checked to
some extent: We have not made a full-scale study
but examination of the thermodynamic functions
of the model over a range of parameter values® !
indicates that the above results remain valid to
within factors of 0.7-1.5 in the definition of x.
More generally, consideration of the renormaliza-
tion mechanism reveals that the magnitude of the
specific-heat anomaly is the prime quantitative
determinant. One knows from a variety of model
studies (and to some extent also from experimental
data) that the amplitude of the singularity changes
quite strongly with x. In particular, when T,(x)-~0
the amplitude itself approaches zero. From this
viewpoint the conclusions (1.9) and (1. 10) together
with the definitions (1.6)-(1.8) simply embody a
law of corresponding states. Experience with other
critical properties® suggests that such a law should
be valid to within factors of 0.5-2 on the scaling
variables, provided one considers systems with
simple predominantly short-ranged interactions.
As with the critical exponents themselves, signifi-
cant long-range forces probably lead to appreciable
quantitative differences. (Competing short-range
forces could also give rise to quantitative changes.)
The detailed calculations and graphs leading to
our main conclusions are presented inthe remainder
of the article. The model used is explained briefly
in Sec. II'whileSecs. III-V are devoted, respectively,
to the specific heats, order parameter, and total
fluctuation or susceptibility above T,.

II. MODEL

The model employed in this study is one of a
class of decorated Ising models described by
Fisher!!! which are completely soluble in terms of
the underlyving standard Ising lattice. The particular
model, a “mobile-electron Ising ferromagnet, ” has
been studied in detail by Scesney. ! It consists
generally of a lattice of spin-% ions which interact
with nearest neighbor ions, only via interactions
with one or more “mobile electrons” which may
have moved into association with the ion-ion bond.
The energy associated with the bond and the strength
of the induced spin-spin coupling of Ising charac-
ter depends on the number of electrons present
locally. Although the number of electrons on a
bond may fluctuate, the total number is subject to
the constraint of electroneutrality. As demon-
strated in Ref. 10 the model displays several in-
teresting different modes of behavior depending on
n, the over-all mean number of electrons per bond,
and on two energy parameters b and ¢, which
arise naturally in the analysis. For the present
purposes we have restricted attention to the cases
for which =0, ¢=2. This combination of param-

SCESNEY 2

eter values leads to some mathematical simplifi-
cations but the general behavior is quite typical of
other values and, as indicated in the Introduction,
our results are not very sensitive to the particular
choice (provided the over-all mode of behavior is
not changed, e.g., lower critical points may arise
in the model but are not considered here).

With the choice 5=0, ¢ =2, the model exhibits
only three modes of behavior: At maximum elec-
tron concentration n=ny= 2 all ions are coupled in
an identical fashion with no fluctuations. This is
the ideal or pure state which is ferromagnetically
ordered at low temperatures but disorders above
a unique critical temperature 7°. The critical
exponents in this case are identical with those of
the standard Ising ferromagnet. (We have consid-
ered only an underlying simple cubic lattice al-
though bece and fcc lattices could have been analyz-
ed with equal ease.) Of course, the exact critical
point and exponents are not known for any three-
dimensional Ising lattices. However, there is a
wealth of numerical evidence? which supports the
conclusions

a=a’'~0.1250, pB=~0.3125 v=~1,250. (2.1)

In the present analysis we will accept these values
(and the corresponding numerical estimates of the
critical temperature, the energy, specific heat,
magnetization and susceptibility)!® without further
question. The essential point is that we are inter-
ested only in 7elative effects, namely, the changes
brought about by renormalization. Any errors in
the values of (2.1), etc. will only lead to changes
of a percent or so in the data we calculate; they
will not seriously change orders of magnitude,
general trends, or important qualitative features.
Thus doubts, for example, as to the equality of o
and a’, need not concern us here. (As a matter of
fact, some calculations have been run with the
assumption a’=0. 0625 and these confirm our asser-
tions.)

When the electron concentration » is decreased
below 7, fluctuations of the effective spin-spin
interactions are allowed (we may think of impurity
“holes” being admitted to the lattice) and renormal-
ization effects set in as predicted by the general
theory. ! With the values (2. 1) the exact asympto-
tic renormalized critical exponents of the model
are

ay=a'y~-0.1429, (2.2)

Bx=0.3571, (2.3)

It is from this range of the model that our con-
clusions have been drawn. As n decreases to the
critical value n,~ 0. 2642 the ctitical temperature
Tc(n) falls to zero. For n2 n, there is no transition

vy~ 1.4286.
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FIG. 1. Logarithmic plot of specific heat Cy below
T, versus the reduced temperature ¢ for various values
of the dilution parameter x.

and the system always remains in the magnetically
disordered (paramagnetic) state. (Physically the
number of available electrons is too few to link
together a macroscopic number of the ionic spins
so as to form a single magnetized domain which
can exhibit long-range order. In fact, #n, is fairly
close to the percolation probability for random
occupation of the bonds. !?)

Finally, we recall that the dilution parameter
x is related to the concentration » of mobile elec-
trons via (1. 5).

III. SPECIFIC HEAT

While the specific heat of the pure or ideal
system diverges at T, with exponentsa anda/(equal
to %), the renormalized specific heat sufficiently
close to the critical point varies as!'*

Cu/ksxA+Bt*/ =% ag T~ T, (3.1)

(3.2)

The “constants” A, B,, and B_ depend, of course,
on the degree of dilution x. To see the extent to
which the change from divergent to cusped behavior
is visible in temperature ranges accessible to ex-
periment we present, in Figs. 1 and 2, log-log
plots of specific heat versus ¢ above and below T,
for various values of x. The curves for x=0 in
both plots approach limiting straight lines of slopes
corresponding to @ =a'=}. For large values of x
the cusped behavior [i.e., the finite maximum in
C4(T)]is clearly visible when T < T, although, for
the same value of x it is less obvious above T,.
For small degrees of dilution, however, the

Cu/bs~A+B 270  ag T~T,_.
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FIG. 2. Logarithmic plot of the specific heat above
T, versus ¢ for the various values of x used in Fig. 1.

height of the cusp is so great that there are no
signs of the plots bending over or levelling out,
even for £<10°% or 1077, Instead the plots appear to
be quite closely linear on a scale of 2 to 3 decades
(especially if allowance is made for “experimental
uncertainties” in the values of C; which, in prac-
tice, increase as T approaches T,). The slopes of
these pseudoasymptotic lines decrease smoothly
with increasing x from the maximum value  to
close to zero. Although the full renormalization
effects are not visible unless x is large, we note
that the specific heat is quite sensitive to changes

in x both above and below T,.
In Figs. 3 and 4, the same specific-heat data

T T T Ll

Renormalized
Specific Heats
below T

| L L
5 -4 -3 -2 -1

logio 1aTI/T)

1 O

FIG. 3. Semilogarithmic plot of the specific heat
below T, for the same values of x used in Fig. 1.
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FIG. 4. Semilogarithmic plot of the specific heat
above T, for the same values of x used in the previous
figures.

are plotted linearly versus log,,tas is very often
done in practice. For small x, a clear upward
curvature is visible for low ¢ as is characteristic
of some (low) power-law divergence. For x> 3,
the plots below T, again show evidence of the fi-
nite cusp. (Note that the limiting maxima are indi-
cated on the axis by arrows.) Above T,, however,
the maxima although finite, are so much greater
than the values of the specific heat even at #=10"5,
that there is essentially no visible evidence of
their presence in the curves. On the contrary, for
x> 0. 3 the last 2—-23 decades of the plots can be
fitted quite accurately by straight lines as would
be the case if the specific heats were diverging
logarithmically. A similar linearity is seen below
T, for intermediate values of x from 0. 2 to 0. 6.

As indicated above, the general behavior can be
understood by realizing how the height of the cusp
depends on the degree of dilution. For the present
simple cubic lattice model this is described fairly
accurately by the formula

A(x)=17.50(1 - x)/x. (3.3)

Thus A is rather large even for x=~3. For the

models based on other lattices, a similar form
would hold but with a slightly different (+ 10%) nu-
merical constant.

IV. ORDER PARAMETER

Asymptotically close to the critical point the
order parameter or spontaneous magnetization

My(T) vanishes as
M|T)~D(x)t*?, as T-T,(x)-, (4.1)

with exponent 8=0. 3125 in the ideal limit x=0.

[The normalization chosen is such that My(T)~1
as T—0 when x=0. ] For x>0, the renormalized
value By =0.3571 must be evident sufficiently close
to T,: We will show, however, that this may be
very close indeed.

To study the effects of renormalization the(M,, T)
data were analyzed as if the values of T,(x), B(x),
and D(x) were unknown. In the first instance the
numerical data for a fixed value of x were sepa-
rated into groups with differenttemperature ranges.
Generally two consecutive decades of AT=T_,-T
were selected since this sort of range is typical of
real experiments. Each group of data was then
fitted, using a standard least-squares procedure,
to the logarithmic form

InMy(T) = B1n[1 - (T/T,)]+1nD (4.2)

in order to determine optimal values of T,, B, and
D for the given limited temperature ranges. The

fitted critical temperatures T, ;;; are found to be
slightly lower than the exact critical temperature

T., known by direct calculation, but the magnitude
of the deviations are found to be quite negligible.
Typically, (T,-T,,:.) was a factor of 10 to 100
smaller than the smallest values of |AT|=¢T,
provided in the data. From an experimental view-
point, this high accuracy is somewhat illusory
since it is based on arbitrarily precise and accu-
rate data with no “experimental” uncertainties in
the values of Mj or T. Not withstanding the high
precision, the straight line fits on the log-log plots
are found to be perfect to within graphical accura-
cy. [The maximum deviation of log;o My(T) from
the fitted line is ~ 1073 ] The most interesting
results of the fitting process are displayed in Fig.
5, where B;(x), the optimal fitted value of B in

(4. 2), is plotted versus the dilution parameter x
for various different temperature ranges. [The
curves labeled % to (& +2) describe the results of
fitting about 20 data points in the range of £= |AT|/
T, of 107* to 107*%: The corresponding error in

T, ¢ is about 1 part in 107** as mentioned. | It is
evident from Fig. 5 that By, is an approximately
linear function of x for accessible temperature
ranges. To a rough but useful approximation, the
formula

Beyt(x) = B+xABy, ABx=Byx-B (4.3)

describes the data in the normally best accessible
range £=10"%-10"%. Quite clearly, B;;; only approx-
imates the fully renormalized value By for x rather
close to 1. In fact even at the limit x=1 very small
values of ¢ are needed to obtain a good estimate of
Bx.

Note, incidentally, that the curve for the range
102> ¢ > 10~* underestimates 8 by about 1% at the
ideal limit x=0. Of course, this is just an indica-
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FIG. 5. Apparent value By (x) of the exponent 8 for
the order parameter as a function of the dilution param-
eter x for fits over different temperature ranges (see
text).

tion of the importance of the ever-present higher-
order corrections to the leading asymptotic behav-
ior. As is usually done, these have been neglected
in (4.1) and (4. 2). This observation should, how-
ever, serve as a warning against placing much
confidence in the third decimal place of any real
experimental estimate of 8. Even in the ideal case,
one cannot be sure the corrections are small and
they usually cannot be estimated independently.

In Fig. 6 we show the variation of the apparent
amplitude D(x) as fitted on the log-log plots. The
changes with x are fairly mild until one approaches
close to the limit x =1 where the amplitude rapidly
drops to zero. However, the magnitude of the
amplitude is sensitive to the range of fit. It can be
shown theoretically that as x changes from zero to
nonzero the asymptotic values of both the exponent
B and the amplitude D change discontinuously. The
asymptotic value of D for x>0 is found to be pro-
portional to x~#% and hence, for small x, is greater
than the finite asymptotic value of D for x=0.
The tendency for the curves describing the various
ranges 107%>¢>107%2 to bow upward as % increases
merely reflects their approach to the asymptotic
value.

In order to illustrate further how good the least-
squares log-log fits actually are, a particular set
of data similar to some of the best published data'®

have been singled out for further analysis. The
data selected correspond to

x=0.576, ¢>10" By,=0.3280;

they are denoted by a solid dot on the 2-4 curve in
Fig. 5. As an alternative to the log-log fits the
graphical technique of Heller and Benedek!® was
tried. Values of the spontaneous magnetization
[reduced by some convenient value, such as
M,=M,y(0)] are raised to various powers which it is
hoped will approximate 1/B8, and are plotted linearly
versus T. If the “true” value of B is chosen the
data are expected to lie asymptotically on a straight
line which intersects the T axis at the critical
point T, (which is thereby located by the data). As
can be seen from Fig. 7, the data do indeed lie on
a good straight line if the previously fitted value
B=0. 3280 is adopted. On the other hand if either
the ideal value 8=0. 3125, or the renormalized
value By=0.3571 is employed to make the plot,
the data deviate markedly from a straight line near
T,. (In the figure, T, is a convenient scaling tem-
perature equal to J/kg, where J is a spin-spin
coupling parameter for the model.)

As a further test of the choice of By, and to study

2.5 T T T T T T T T T

20
D(x)

05

L 1 L A | L L i 1
o‘GO.O 0.5 1.0

FIG. 6. Apparent values of the amplitudes D(x) (upper
set of curves) and C(x)/C, (lower set) as a function of
x and for various temperature ranges (see text). C;is
the asymptotic limiting value of C(0).
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FIG. 7. Heller-Benedek plots of M8 versus T (on
conveniently reduced scales) for the case x=0.576
comparing the ideal, best fit, and fully renormalized
exponent values.

the approach of the data to the chosen asymptotic
form, a number of values of 8 bracketing B;;; were
chosen. With these values assigned, two-parameter
least-squares fits were made using the form (4. 2)
again. (The same data over the decades ¢#=10"%-10"*
were employed as previously.) The values T,and
D so determined, together with the corresponding
value of B, describe curves in the (M, T) plane.
Following Heller!® we test the goodness of fit by
calculating the temperature deviation T, (M) -
Tyata(My) of the fitted curve from the exact value
Tyata(My) at the same fixed value M, of magnetiza-
tion. These deviations are normalized by the cor-
responding T, 4 and plotted versus T(Mo)/ T 14
in Fig. 8 (see solid curves). Again, the entire
analysis is carried out as though the exact value of
T, were unknown. This figure does indeed illustrate
that a value of B within 3% of 0. 328 is the best
choice for fitting the data near T,. As T falls below
0.995 T, all the deviations increase (owing again to
the neglected higher-order correction terms) but
the fits are clearly worse for the other assigned
values of B, including the ideal value B=0. 3125 and
the renormalized value B;=0.3571. We may recall,
nonetheless, that =By must be asymptotically
exact.

Finally we remark that there is a certain arbi-
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trariness in plots such as Fig. 8 unless one spec-
ifies an explicit method for estimating the ampli-
tude D (as we did using the log-log fits). The
criteria employed by Heller for the choice of D in
his original applications of the method!® were not
clearly stated. ' By suitably altering our own
choice of D, however, we can mimic the deviation
structure found by Heller; this is illustrated by
the dashed lines for the extreme values of g in
Fig. 8. These values of D reduce the deviations
when £ is in the range 0.970-0. 995, at the cost of
much larger relative deviations when £ is in the
region of 1073 where our fitting was performed. The
arbitrariness does not seem, however, to have a
serious effect on the choice of the optimum value
of Byyye

In conclusion we reiterate that none of the meth-
ods examined (or others known to the authors) will
give good fits to the data for intermediate values
of x which isolate either the correct value of B or
of By.

V. SUSCEPTIBILITY AND TOTAL FLUCTUATION
We now investigate the renormalization of the

susceptibility or total squared fluctuation of the
order parameter above the transition. The suscep-

T
10327
0 \
+10°%
Trit"Tdata
Te,fit O
]
+10 "=
B=0.3280
0
+1073L
B=03250
0 e
3
10 B=0.3125
0 ‘_—.rﬁ—-s——__.___-——-——'—_—_——:ﬂ
-10'3-{
1 L 1
097 0.98 0.99 1.0

Tdata/Te, fit

FIG. 8. Reduced temperature deviations versus tem-
perature for the data with x=0.576 fitted by assuming
various values of 8.



o

1.4286 ———————————T——1— %

1.40|

()

1.35]

1.30

1.25
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for the susceptibility above T, as a function of x for
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denotes a fit made over the two decades 10~* to 10~*2
of reduced temperature t= | AT[/T,.]

tibility x varies asymptotically as
(kpTo/mHX=X~C@) ", (T-T,+)  (5.1)

where in the ideal limit ¥ =0 we have ¥ =1. 250; but
for 0 < x < 1 the renormalized value Yy~ 1. 429 will
apply sufficiently close to T,. Note that the ideal
free spin susceptibility per ion is x=m‘°‘/kT in

this normalization. We will describe the results of
two numerical techniques used to analyze the (x, T)
data. The first one is simple least-squares fitting
to the logarithmic relation

InX=-7Wn[(T/T,) - 1]+InC, (5.2)

as used for the spontaneous magnetization. The
data were again grouped into sets of about 20 points,
each set spanning two decades in £. The critical
temperature T,(x), and ¥(x), and C(x) were fitted
independently. The errors in the estimation of T,
were quite negligible relative to the range of #
studied just as found in the case of the magnetization.
The actual fitted values T, ., however, were
slightly higher than the true values of 7,. Again
the goodness of the fits over the chosen two decades
of the log-log plots was perfect to within graphical
accuracy.

The best values 7,,(x) of the exponent obtained
by this procedure is plotted versus x in Fig. 9. The
effects of the renormalization on X are relatively
much weaker and more subtle then they were on the
magnetization. Whereas B,,,(x) varied fairly lin-
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early with x from B to B,, the variation of y,,(x)
for comparable temperature ranges is linear only
for small x(< 0. 3); as x increases even to 0. 95 the
apparent exponent remains below 1. 37 (compared
with yx=~1.43). In the range x<0.8, the approxi-
mate formula

')’“t(x)d')’ +%x(1+2x2)A‘)’x, A'}’x:‘yx—'}’ (5. 3)
gives a rough description of the behavior when ¢ is
in the range 10°-10%. For larger values of ¢
less renormalization is visible for small x and
indeed when temperatures in the range £~ 0.01 are
utilized the fits actually fall below ¥ even at the
ideal limit. Just as for the spontaneous magnetiza-
tion, this is merely an indication of the neglected
higher-order corrections to (5.1).

The variation of the apparent amplitude C(x) is
shown in Fig. 6 where it is scaled by C,, the
asymptotic limiting value of C(0), ** and plotted as
a function of x for various ranges of {. Note the
divergence of C(x) as x approaches the limit x=1.
As was also the case with the magnetization, the
asymptotic value of the amplitude changes discon-
tinuously when x becomes nonzero. The asymptotic
value of C(x) for x>0 is proportional to x"¥ and for
small x, is less than the asymptotic value of c(0)."
This accounts for the initial downward trend of the
fitted values of C(x) for small x.

As a second method of analysis we try the method
of Kouvel and Fisher!” which is useful for extrapo-
lation when observations very close to T, are not
available. A function T*(T) is defined from the
data by

d -1/ dy -1)-1
* =[— -1 = °
T (T)'(dT Inx ) (X daT

If X is described asymptotically by the power law
(5.1) then as T — T, + the function T%(T) varies
asymptotically as (T - T,)/7, that is, linearly with
T. A linear extrapolation of 7*(T) to the T axis
thus yields an estimate 7] for the critical tem-
perature. Figure 10 shows such a plot of T*(T)
and x"! for the special case x =0. 576 studied in Sec.
IV. Although the T*(T) plot appears highly linear
over a wide range of };’empera’mres, its actual slope
is found to decrease slightly as T approaches T,.
This, of course, indicates the start of the change
from 1/7 to the renormalized value 1/74. Most of
this bending, however, occurs so close to T, even
for x=~ 0.6, that, as before, the error in estimating
T, is quite negligible relative to the closest data
points.

Once a reliable estimate of T, is obtained, the
Kouvel-Fisher method defines an effective exponent

(5.4)



834 M. E. FISHER AND P. E.

0.04} / -o.002
0.001F / -10.0005

0.03}- Vrd

£ e

£ " o
1932 1933 1934

0.0015

* oy f -1
0.02f T (Ty / X m -o.001
0.01f- -o.0005
/ x=0.576
//
//
(o] l/ 1 1 1 [o]
1.92 1.94 1.96 1.98 2.00
/T,

FIG. 10. The inverse susceptibility x~! and the
Kouvel-Fisher function T*(T) versus 7T for x=0.576.

Y¥(T)=(T-T;)/TXT), (5.5)

where T] denotes the estimated critical temperature.

I T! is sufficiently accurate y*(T) will eventually
approach close to the fully renormalized asymptotic
exponent Y. [Indeed when 7! is exact, the limit of
y*(T) as T~ T, can be taken as a definition of the
true exponent.] The behavior of ¥*(T) as a function
of T/ T, for various values of the dilution parameter
x is shown in Fig. 11. The curve for x=0 is read-
ily extrapolated to yield the correct ideal exponent
¥=1.250. The curves for large x lie higher and are
not so linear. They would probably be extrapolated
roughly to values comparable to (or for the same
range of £, somewhat higher than) the values ob-
tained from the log-log fits (see Fig. 9). However,
at the erd of the range close to T, the curves for all
x>0 exhibit rather clearly a sharp “upswing”which
serves as a warning that the exponent is being
underestimated. Nevertheless, even with a gener-
ous allowance for this upswing, it would be quite
impossible to guess a reliable value for vy. Fur-
thermore, .in an experimental situation one must
expect that the curvature might be hidden in the
noise level provided by uncertainties in the value
of ¥*(T); these are necessarily fairly large because
of the numerical differentiation involved in reducing
the data to obtain ¥*(7). '

We conclude then, that it is impossible in prac-
tice to measure the fully renormalized exponent
vx. For sufficiently large values of the dilution
parameter the apparent value of ¥ will increase
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but, as indicated by (5.3), only by a proportionately
rather small fraction of the full difference vx—7.
The recent experimental test by Bak and GoldburgB
which bears out the insensitivity of v to dilution

was mentioned already in the Introduction. Indeed,
we expect our conclusions to remain valid both as
regards other methods of analysis that might be
tried and, as explained in the introduction, for
more general models and for real physical systems.
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