
PHYSICAL REVIEW A VOLUME 2, NUMBER

Graphic Analysis of Perturbed Rydberg Series*

JULY 1970

K. T. Lu and U. Fano
Department of Physics, The University of Chicago, Chicago, Dlinois 60637

(Received 19 January 1970)

A method of analysis of all level positions in multiple strongly perturbed series of
levels is presented and illustrated by examples from the rare gas and Ba spectra. The
method is suggested by Seaton's multichannel quantum defect theory but is presented here
as an empirical approach. It emphasizes the dependence of a perturbation on the periodic-
ity of the perturbing series and aims at extracting significant information from experimen-
tal data in compact form; this goal will be pursued in later works.

Treatments of the configuration interaction of
two (or more) mutually perturbing series currently
utilize the Shenston-Russell-Edlen formula, ' which

derives from a second-order perturbation theory
by Langer. 2 They also utilize plots of the quantum
defect p. =n —n* against term value T„. These plots
show an irregularity, similar to an anomalous dis-
persion curve, wherever a perturbing level of
another series occurs in the spectrum. This for-
malism maintains a clear distinction between a
foreign perturbing level, or series of levels, and
the perturbed series. If the foreign level were
counted among those of the perturbed series, all
higher levels of this series would be assigned a
value of n one unit higher.

However, this distinction between the two series
becomes somewhat artificial when configuration
interaction cannot be adequately described by sec-
ond-order perturbation effects and the wave func-
tion of aperturbing level becomes strongly admixed
into many levels of the perturbed series. More-
over, plotting p, against T„fails to emphasize the
periodicity of the perturbing series and its conver-
gence to a different limit, beyond that of the per-
turbed series.

These limitations of the current treatments are
overcome, in principle, by Seaton's multichannel
quantum defect theory. Efforts have been under-
way for some time to extend the applications of
this theory to extract a maximum of information
from experimental data. At this time, it seems
useful to present here a graphical method of ma-
nipulating data which displays and utilizes simul-
taneously the Rydberg character of different series
and will prove useful for further developments.
These developments will be reported later, ' but
some of their results mill be anticipated here.
This paper presents an empirical approach for
the analysis of experimental data, but postpones
a full explanation of its theoretical basis.

Quantum defect theories express the eigenvalue
equation for the discrete levels of a Rydberg series
by an equation of the type

sinv(v„y p) = 0.
Here v„(often called n*) is the effective quantum
number of a level and p, is the quantum defect,
which is approximately constant for a whole Ryd-
berg series in the absence of perturbation. The
solutions of (1) are, of course,

The Shenstone-Russell- Edl0n formula makes p,

apparently singular at the spectral location of each
separate perturbing level. This paper presents
evidence showing that p, is conveniently plotted as
a monotonically increasing function of energy
which exhibits the Rydberg periodicity of the per-
turbing series. Moreover, this periodicity is
brought out most clearly by plotting together the
p. values of all perturbed series which converge
to the same limit.

It has been known for a long time that the quan-
tum defect of a Rydberg series extrapolates in the
continuum beyond the series limit into the phase
shift of the electron-ion scatteringproblem accord-
ing to the formula

The multichannel theory extends this connection,
6 being an eigenphase shift of the scattering prob-
lem. The plots of p, shown here and in earlier
literature exhibit the series yerturbations in the
form familiar from the theory of resonance scat-
tering. '

As a first illustration we consider a "multi-
channel" system, that is, an atom with several
series, some of which converge to the ground
state and some to an excited state of an ion.
Photoabsorption by Xe in its ground state leads
to P'd or P's, J= 1, odd-parity states belonging
to five series, of which three, called'0 5PS(2P,I,)
ns[1 —,']', 5p ( Psls)nd[2]', 5p ( P313)nd[1&], con-
verge to the first ionization potential T~ and two,
5p ( Pt)3) ns [g]', 5p ( Palm)nd lip]', converge to a
second ionization potential Ta„. It is usually said
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that the first three series are perturbed by mem-
bers of the last two series. Here we do not dis-
tinguish initially between the "perturbed series"
and the "perturbing level, " or even between level
series converging to the same limit. Instead, we

consider equally all experimental levels T, with
J= 1 and odd parity, below the first limit T~; to
each of them we assign t~o alternative effective
quantum numbers v, and v2 defined, respective-
ly, by the equations

T = Tg —R/vg

T = T,„A/v', -,

(4a)

(4b)

where R is the Rydberg constant. These equations

imply the functional relation between v& and vz,
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%e also assign to each level T a single quantum

defect

where n is an integer shown in Fig. 2(a), which

may have the same value for two (or more) levels;
we shall usually plot only the decimal part of p, ,
i.e. , weplot p, nzodulo 1, exceptfor some extrap-
olation to display periodicities.

Values of p, for the 28 levels available for Xe'o

are thus plotted in Fig. 1 against v~ . To em-

phasize the connection with usual practice, the
25 points (p, vz ) usually assigned to series con-

verging to T, are marked by open circles, and

the three points usually assigned to series con-

verging to Tz„are marked by X. The solid and

dashed lines joining the points are interpolated
curves which represent all quantum defects as
points lying on the plot of a multivalued continuous

function IL(v2). In terms of this continuous func-

tion, Eqs. (4a), (4b), and (2) imply together that

the observed levels are determined as the roots
of the equation, analogous to (1),

sinm[v, + y, (v,)j = O. (7),

In this paper p, (vz) is regarded as an empirical
functien. The connection of this equation with
Seato''s theory is outlined in the Appendix. As
shown in Fig. 2(a), Eq. (7) requires each point

(V, , va ) to lie at an intersection of the curve
IJ, (v2) and of a plot nzodulo 1 of the function v&(va)

defined by (5).
Key properties of p, (v2) are apparent by inspec-

tion of Fig. 1, but are brought out more clearly
by constructing the corresponding graph for Ar

[Fig. 2(a)]. This construction has recently been
made possible by extensive new data. ' Most of
the available points are concentrated in the inter-
val 8. 0& v&&8. 4 near the Tq limit. The remaining

FIG. 1. The quantum defect p-versus-v2 plot of Xe.
Open circles (o) are level positions of the three series
p ( P 3/2)ns [12]', p ( P3II2)nd[2 ]', and p ( P3/2) nd[1 2]
Crosses (&&) labeled nl' correspond to level positions of
the two series p ( P&/2)ns'[2]' and p ( P&y2)nd'[12]'. Solid

and dashed lines are interpolated with varying degree of
confidence. A diagonal dot-dash line represents the

equation p(v&) + p2= 1. The curves outside the basic unit

square are the repeated portions of those within the
square.

67 points might not quite suffice to draw the curves
v, (v,) with reasonable assurance, were it not for
the clear pattern of periodicity in v~. (This period-
icity is less clear in Fig. 1, where most data fall
in a unit range of v2. ) The periodicity is utilized
in Fig. 2(b), where the data of Fig. 2(a) are re-
plotted modulo 1, i. e. , with successive unit inter-
vals of va folded onto one another. The points
corresponding to such different intervals are now

seen to interpolate rather smoothly to define a
single multibranched periodic curve g(vz).

Inspection of both Figs. 1 and 2(b) reveals now

the key point of this paper, namely, that p, (va) is
a periodic function of v~. One may also consider
p, (v2) as defined implicitly by an equation E(IJ, , v2)
= 0, where E is a periodic function of both p, and

v2 (see Appendix). Thereby each branch of the
curve which exits from one margin of the basic
unit square of the plot reappears at the corres-
ponding point of the opposite margin. If one re-
gards such corresponding points on opposite mar-
gins as the "same" point, allbranchesof the curve
in each figure are seen to be parts of a single con-
tinuous curve. In our example, where three
"series" converge to T, and two to T,„, any ver-
tical line drawn across the basic unit square
intersects p, (v2) three times and any horizontal line
intersects it two times.

The theory of unperturbed Rydberg series relies
on the possibility of introducing a quantum defect
p, which is nearly constant as the energy of succes-
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FIG. 2. (a) The quantum defect p,-versus-v2 plot of Ar. Open circles and cross marks as in Fig. 1. No interpolated
curves are drawn for v2 &4 because points are too sparse. The function —v~(v2) defined by Eq. (5) is shown in the box
(a) and again, modulo 1, by a dot-dash line. Numerical labels on these curves indicate values of integer m of Eq. (6).
(b) The folded quantum defect p-versus-v2 plot of Ar. The data of (a) with v2 &4.0 are replotted with v2 scale modulo 1,
i.e. , with successive intervals of v2 folded onto one another. Some points with v2 & 4.0 are included (t) to show de-
parture from the interpolated curves.

sive levels varies along tne spectrum. (Minor
variations of p, for the lower levels of a series are
commonly observed and taken for granted. ) Here,
we have introduced the function p(va) which is sim-
ilarly understood to be nearly, but not quite, pe-
riodic along the spectrum. In Fig. 1, three points
lie at v~ & 2; shift of each of these points by one
unit of the abscissas brings each of them close to-
but not quite on —one branch of the curve p, (vz).
Similarly, Fig. 2(a) includes a number of points
with va «; some of these points are those that
appear in Fig. 2(b) at substantial distance from
the curves.

The crosses, which represent levels usually as-
signed to "perturbing" series lie on sharply rising

portions of the curves. Indeed, if all interactions
betmeen series mere very weak, all unperturbed
levels of the "perturbed" series would be repre-
sented by cixcles lying on Qat portions of the
curves, i.e. , with constant p, values. The flat por-
tions would be separated by sharp steps and paix's
of curves would nearly touch each other at the step
corners. Some of the curves in Figs. 1 and 2
actually rise quite sha. rply, leaving small gaps
at the corners, other steps are smoother; in some
instances no reasonably flat, i.e. , unperturbed,
portion of curve is seen. The magnitude of the
gaps between successive curves provides a visual
estimate of the strength of the interaction between
different series.
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Proceeding now to a more detailed analysis of
data, one notes in Fig. 1 a number of points with
nearly the same quantum defect p, j = 0. 0. This
set of points represents the 5p'( Ps/~)ns[l —,']' chan-
nel according to Moore's assignment. Among the
other points one can roughly single out two groups
with quantum defects p, = 0. 5 and 0. 18, respec-
tively. These two sets of points represent levels
labeled'0 5/5(~P», )nd[ —,']' and 5p5(3P~/, )nd[1-,']', re-
spectively. However, they belong neither purely
to nds&~ nor to nd~&3,

' most of them being also ap-
preciably perturbed. Their character remains
to be determined in a separate paper. Since the
level usually labeled p'P, »5d' lies at v3=2. 73,
the appearance of the curves indicates that this
level interacts strongly with P», s. The P'P»37s'
level, which lies at 2. 95, interacts less strongly,
mostly with P3/g d[g] and less so with P,/t,, d[1—,']
and P3/g sg/p (Incidentally, it had been previously
suggested that s' levels would interact mostly
with P~/as»3. ) The pair of steps in the curves be-
tween v~= 2. 6 and 3.0 resembles the steps that
would be observed in scattering-phase plots in the
region of two somewhat overlapping resonances.
In the scattering problem the sum of the phases
of all open channels increases by n at each res-
onance; here the sum of the three p, values in-
creases by unity.

The unperturbed part of thend[1r~]' series of

Ar [Figs. 2(a) and 2(b)] is almost degenerate with

the ns [1~]' series unlike the corresponding series
of Xe. The levels of the "perturbing" series P P& ~3nd

lie at va = 4. 81, 5. 80, 6. 79, and 7. 8, correspond-
ing ton = 5, 6, 7, and 8, respectively. The ap-
pearance of the curves indicates that this series
interacts strongly with the series P3/pcf[Q]', less
strongly with PB/ad[1&]', and very weakly with

P+as[1&]'. The levels of the "perturbing" series

P'P», ns, which lie at v, = 4. 85, 5. 8V, 6. 86, and
7. 85, corresponding ton = 7, 8, 9, and 10, re-
spectively, interact less strongly with P~/as [1&]'
and very weakly with P3/adl. 2]' and P»ad[l~g]'.
The fact that the interaction between the d and s
series is so weak was also noted by Yoshino.

For Kr we have only a limited amount of data, '
which are plotted for purposes of orientation and
comparison in Figs. 3(a) and 3(b). The lower lev-
els are not adequate to construct good interpolated
curves in Fig. 3(a), nor do they fit well the folded
plot in Fig. 3(b). The analysis may be improved
when higher levels become available experimen-
tally. The curve pattern of Kr shows character-
istics intermediate between those of Ar and Xe.
There is no degeneracy among series as in Ar.
The curves also show the two stepwise jumps and
an interaction between d and s series which is
larger than in Ar and smaller than in Xe.

A final illustration, Fig. 4 shows a p, (va) plot
for the single principal series (6smP'P&') of Ba.
As T~ we take, of course, the series limit
6s S,~&, and as T&, we take somewhat arbitrarily
the series limit 5d D,», to which the series
5dmP P& converges. Here the interpolated curve
of the principal series jumps, in essence, by one
unit of p, whenever it passes through one of the
perturbing levels 5d6P P;, 5d8P P &, 5d8P D g, and
5dSP'P &, which are marked bye in the graph.
Note how the points corresponding to 6smp'P'j
with m = 6, 7, 8, and 9 lie rather well, but not
perfectly, along the line determined by higher
m values. In fact the plot serves to call attention
to possibly aberrant data. In particular, the
point corresponding to the level called by Garton
5d4f~P', (/) does not seem to be in the right
place. The levels 5d8p'D

& and 5d8p'P
& actually

belong to series converging to the limit 5d D»3
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FIG. 3. (a) The
quantum defect p,—

versus-v~ plot of Kr.
Because of the sparse
distribution of the
points the interpo-
lated curves are
sketched most tenta-
tively. (b) The
data of (a) with v&

& 2.0 replotted nzod-
ulo 1. The tentative
interpolated curves
are drawn through
the points with v&

&3.0.
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the graphs of this paper have no claim to accuracy.
They have been drawn somewhat sketchily for pur-
poses of illustration; more accurate determina-
tions should follow. Eventually the approach out-
lined here might be utilized by experimenters in-
terested in specific spectra.

APPENDIX: CONNECTION WITH SEATON'S THEORY

The levels T of a discrete spectrum are deter-
mined in Ref. 3 through the roots of the determi-
nant Eq. (7), namely,

~tanvv+R
~

= 0. (Al)

Here R is a reaction matrix which varies slowly
as a function of energy and v is a matrix whose
eigenvalues v = v&, v&, ..., are related to one
another and to the energy E by the equation anal-
ogous to our Eq. (4):

E/hc = 7& —R/v~ = T2„R/v~-. . .
FIG. 4. The quantum defect p-versus-v2 plot of Ba.

Dot numbers indicate the n value of principal series
6snPi~P~ levels. Crosses labeled nl ' L~ correspond to
5dnL' I g.

of Ba', which lies somewhatbelow Tq (5d D»2
of Ba'). The extension of the present paper, to
take into account the occurrence of three or more
series limits, remains to be explored.

We wish, however, to indicate some of the di-
rections of the investigation now in progress.
Line strengths and g factors may be plotted as
periodic functions of v2, showing systematic vari-
ations related to those of g(va). The intensity
plots extrapolate into the Beutler spectra of the
continuum (see, e. g. , Fig. 28 of Ref. 18). A

point of particular interest concerns the intersec-
tions of p, (v2) curves with the p, (v2)+ v2 --1 diagonal
lines shown in Figs. 1 and 2(b). ' States of the
atom represented by points close to these inter-
sections are approximately eigenstates of the scat-
tering problem of one electron colliding with a
ground state or excited ion core with near-zero
energy; the p. values at the intersections repre-
sent, to within a factor of 7I', the eigenphases of
this scattering probl. m.

We emphasize in conclusion that the curves in

/ 2
Tafoo Rf vN ~ ~ ~ (A2)

tanv[v, + iL(v, . v, . . .)] =0,

equivalent to (7).

(As)

the T „being levels of the ion core spectrum
(T,„-Ta - ~ ~ ~ ). Equation (Al) is an eigenvalue
equation because the v are all related to one an-
other. (In the main text of this paper, with ref-
erence to rare gases a single symbol v& has been
used to indicate three degenerate eigenvalues while
v v, has been used for the other two values. }

To connect Seaton's work with the empirical
procedure of this paper we envisage the solution
of (Al) by a two-step parametric procedure. In the
firststepwerePlace in (Al) the elements v~ of the
diagonalized matrix v by aparameter —p. . The
equation thus obtained then def ines p, as an implicit
functions(va. . . v . . .) of allelementsof vwithn &1;
this definition holds for any value of the energy E.
[This paper actually determines the same function
p. by interpolation of experimental data rather than
from implied knowledge of R and solution of the
modified equation (Al). ] The next step of the pro-
cedure consists of seeking those values of v& re-
lated to v2 ~ ~ v, ~ ~ by (A2}, which fulfill with

p(v, ~ ~ v, ~ ~ ) the eigenvalue equation
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Experiments on the 29P State of Helium. II. Measurements of the Zeeman Effect*
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A series of Zeeman resonances has been measured in the 2 P state of He, using the optical-
microwave atomic-beam magnetic-resonance technique. The results were analyzed in terms
of relativistic and motional contributions to the Zeeman effect, and are presented in the form
of corrected g factors: gs =gs —(76.0+2.4) &&10 6, gz, =gl +(3.8+9.0) &&10 6, and an additional
factor g„= (4.0 +25.0) &&10 6. These are compared with theoretical calculations using quasi-
hydrogenic radial wave functions which give gs'=gs- (79.9+3.5) &&10, gl~ ——

gL, + (1.1+1.5) &10
and g„=—(3.2 +4. 4) x10 . The values of the experimental g factors are gs = 2.002 243 2
+0.000 022 4, and gi, =0.999 867+0. 000009. The validity of the theory and the consistency
of the data are discussed. The experimental results were used to reduce the quoted uncer-
tainty in a previously reported fine-structure measurement. The new result is E(2 P&)
—E(23P&) = 2291.196 + 0. 005 MHz.

I. INTRODUCTION

A previous paper' (referred to as O reported a
measurement of the 2 P, —2 P~ fine-structure in-
terval of helium to a precision of 3 ppm. The
most accurate data were taken in a magnetic field
of 500 G, and the evaluation of the fine structure
required some assumptions about the 2 P g factors.
Relativistic and motional contributions to these
g factors were calculated using quasihydrogenic
radial wave functions. The nature of the radial
integrals involved was such that the g-factor cal-
culations contributed a significant portion of the
experimental uncertainty quoted for the fine struc-
ture. For this reason, and because of an intrinsic
interest in the Zeeman effect of the 2'P state of
helium, we decided to measure the g factors di-
rectly.

In this paper, we report measurements of the
2 P g factors (including factors off diagonal in J )
to a precision of about 10 ppm. These g factors
occur in matrix elements of the Zeeman Hamilto-
nian expressed in a (Z, m~ ) representation They.
were expressed in terms of unknown radial inte-

grals arising from relativistic and motional con-

tributions, and their values were deduced from
measurements of a series of magnetic dipole tran-

sitions between Zeeman sublevels. A brief re-
port of this work has been given. a

The relativistic contributions have been derived
theoretically from the Dirac-Breit equation by
Perl and Hughes. ' A generalization for many-elec-
tron atoms was presented by Perl, and by Abra-

gam and van Vleck, ' Several comparisons with ex-
periment have been made utilizing this theory.
The measurementa of g~ (He; 2~S, ) agrees to within

1 ppm with theory, s where most of the relativistic
contributions could be evaluated in terms of known

quantities, and detailed radial wave functions were
not required. In more complicated atoms, the rel-
evant radial integrals are evaluated usually with

Hartree- Fock wave functions. Detailed compari-
sons have been made, for instance, in the Ps~&
state of fluorine7 (agreement to within 1 ppm), and

in the I' states of oxygen' (agreement to 7 ppm).
The present work differs from those above in

that the Zeeman transitions observed had line-


