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The mathematical dilemma of the direct determination of the reduced density matrix for
an N-particle system in a stationary state is examined. An energy eigenvalue equation per-
taining to the statistical Hamiltonian of a subsystem which determines the reduced density
matrix is formulated. It is shown that the construction of this equation represents a classi-
cal, semi-quantum-mechanical attitude. The dilemma, in fact, arises from this attitude.

I. INTRODUCTION

The problem at issue in this paper may be
termed the "Liouville energy eigenvalue problem. "
It is concerned with the direct determination of the
reduced density matrix of a subsystem contained
in a total system which is in a stationary state.

It is an elementary procedure to conceive and

derive such an eigenvalue equation. However, the
hazards involved in correctly setting up the equa-
tion are worth reflection. The attitude adapted in

deriving and applying this equation differs notably
from that used in the Schrodinger energy eigenval-
ue problem. The equation incorporates two en-
tirely irreconcilable physical disciplines: It
makes contact with quantum-theoretic ingredients
on one hand, and on the other, it welds itself into
classical, macroscopic concepts. Due to this

semiquantum classical origin and the well-known
inconsistency between quantum mechanics and
classical mechanics, one can see that the above-
mentioned difficulties are intrinsic.

We believe that the perplexity and the enormous
number of mathematical artifacts generated in the
search of an analytical solution to this problem are
created because the problem is often stated with-
out adequate exposition of its philosophical back-
ground. We do not share the view that the problem
could be approached by analytical devices alone.

II. OPERATOR MEAN VALUE

It is easily shown that the mean value of a quan-
tum-mechanical operator of a system of N identi-
cal particles,



LIOUVILLE ENERGY EIGENVALUE PROBLEM 807

1 N

+ ~ —Q n(i&. . .i ),mf f1oaofm

can be written, purely formally, in the form

where m & N and &t& refers to an arbitrary normal-
ized state. The prime notation on the summation
sign indicates the exclusion of any duplication in
the indices. In Eq. (2), R("' is defined as

N 1R'"'= Z Q(i)+ Q A(i, j)m —1

(N-1) ~ ~ ~ (N-m+ 1)
+ ~ ~ ~ 21' ' '' Sm( y

(m —1) & &1s ~ "&m

(m) t (N -m) (N ) (4)

where

p(N&
~
y)(y

~

(6)

the relation between 9, and 9&

may be called an orthogonality condition. '
By the

so-called method of expansion into orthogonal op-
erators, one may write Eq. (2) as

( fl(N&) (N/~) Q R(m& p(m&

The superscript on tr stands for the order with
which the trace operation is carried out.

To derive this expression, one takes advantage
of three properties: the linearity of the quantum-
mechanical averaging process, the fact that (I& is
symmetrized, and the fact that 0'"' involves only a
sum of operators which is symmetric in each
order. In this formalism the quantity (I/m)
xtr(R' &o( ') may be interpreted as the one-particle
contribution to the mean value of 0(") in the state
P, and hence tr(R{™p( ') as the m-particle con-
tribution. In the case that 0(N) is of such a form
that m & N, both R ' and p

~ are reduced operators
in the sense that the particles involved are part of
the system. p™is the reduced density operator
associated with the m-particle subsystem.

If one defines the scalar product of an operator
9& with respect to 9&

where

R(i& t (R(m&e(m&t)
i

(m& tr( (m&e (m&(')
P&

and Q8'; &} is an arbitrary complete set of linearly
independent m-particle operators. The set may
be non-Hermitian, but one is allowed to make it
Hermitian by suitable transformation. (0")„now
is expressed as the scalar product of R™and
p' ' in a vector space spanned by{eI"&}, R(("&

and p', ' being the respective components in this
vector space. If the 9,' ' are Hermitian, we see
that p' ' is representable over a real field. Fur-
ther, if each of the 9'& ' corresponds to a physical
observable, the representation is in terms of
physical data, i. e. , the mean values of 9,' '. The
characterization of state and observable in this
vector space formalism has been called the Liou-
ville representation of quantum mechanics. 3 Since
the complete set of {pI"&} are experimentally de-
terminable, one can then talk about the determin-
ation of p( ', m & N, by means of Eq. (10) without
reference to the state of the N-particle system.

It is interesting to note that the information in
p' ' is extracted from p'. The passage from the
description of the N-particle p

'"' to the m-particle
p' ' usually does not stand in a unique and recip-
rocal relation. In terms of the matrix elements
of p'"' one has in the formalism of a composite
system the form

(m) ~ (N )
I $j ~Of I je, )e

where the products in and jn denote the eigenval-
ues which label some tensor product representa-
tion of p'. While describing a pure state, p' '

conveys to us the best obtainable, or the maximal,
information about a system. In principle, it sat-
isfies the Schrodinger equation, and the probabil-
ities of finding given events in such a state are
regulated by the uncertainty principle. The term
"irreducible probability" is therefore used by
Margenau in this context. ' On the other hand, un-
less the subsystem is truly isolated and symmetri-
zation of the total system is not effected, p™is
a mixed state (of von Neuman, ' of Landau, 6 and of
Diracv). It contains an imprecise or incomplete
knowledge of a system. The probabilities involved
therein have no direct reference to quantum-me-
chanical laws and cannot be derived from them.
Since they are mixed up with classical origins,
they can be manipulated at will by physical means,
and therefore, are said to be "reducible. "

Owing
to this reason, the treatment of physical phenom-
ena in terms of reduced density matrix exhibits
the nature of macroscopic method in classical
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physics. Quantum precision is diluted or replaced
by classical ignorance. The calculation of the in-
dividual 0( in formula (8) in the case )n &N, evi-
dently does not show an ordinary way of computing
a quantum-mechanical expectation value.

III. ENERGY APPROXIMATION BY REDUCED OPERATOR

TECHNIQUE

The Hamiltonian operator of quantum-mechani-
cal particle system has the form II= Ho+ v, where
Ho is a quadratic operator describing the free-par-
ticle system and v is the interaction operator. In
dealing with the problem of approximating atomic
or molecular energies, the Hamiltonian of the sys-
tem is usually considered to involve only two-body
interactions. Proceeding on this case, expres-
sions (1)-(3) then take the following forms:

N N

H= Q k()(i)+2 Z v(i, j),
)=1

(12)

K = hI)" + k(') '+ (N —1) v (1, 2) (13)

Here, we have denoted the m-particle reduced opera-
tor corresponding to the N-particle Hamiltonian
H by K, which conventionally bears the name "re-
duced Hamiltonian. " By changing the normaliza-
tion covention for p' ' one may write E in different
forms. For convenience, let us choose a complete
set of orthonormal two-particle operators {e(2&)

and expand (12) into

IV. LIOUVILLE ENERGY EIGENVALUE EQUATION

An essential feature of statistical physics is that
one employs theoretical constructs and physical
quantities expressed in terms of a condensed set
of more tractable parameters which serves to re-
place a large number of impractical dynamical
variables. Since the great mass of raw data is or-
ganized into macroscopic terms, analysis and
representation of this data is made in closer cor-
respondence with laboratory results. We are thus
led to a more phenomenological approach.

For convenience of presentation we shall express
the time-independent Schrondinger equation in re-
duced operator language. We shall render explicit
the connection and the philosophical difference be-
tween the approximation of the wave function of an
N-particle system and that of the associated two-
particle reduced density matrix.

To this end, let us apply the Rayleigh-Ritz pro-
cedure to establish a generic form for the approxi-
mate solutions to (H)& by the reduced density ma-
trix method.

Consider the mean value of the N-particle Ham-
iltonian in a finite-dimensional direct-Hilbert sub-
space. Consider the case that the latter is formed
from the subspace E& and E, of the two complemen-
tary subsystems consisting of 2 and N- 2 particles,
respectively. Take the dimensions of each E~ and

E, to be n and m. In the subspace E&3 E, , an ar-
bitrary fictitious wave function P', not necessarily
completely symmetrized, may be written in a bi-
orthonor mal development:

2HQ, k, p,"'= 2H+, e; (14)

where

k( -- tr(If 8((2))

p
(2) tr ( p

(2) e (2))

where C;& is the N-particle amplitude matrix on the
basis I P( q(), and J(p,], (q() are taken separately
symmetrized. The two-particle reduced density
matrix derived from g' related to particles 1, 2 on
the basis (P() then reads

The physical meaning of c, is obvious: It repre-
sents the two-particle contribution to (H ) 2 in the
ith subspace. The problem then passes over the
choosing of an optimal two-particle Liouville space
in which the functional ( H) &

is to be minimized.
Interest in applying the reduced density matrix
technique to the ground-state energy eigenvalue
problem for an atom or molecule has been stimu-
lated by the original work of Lowdin and Mayer.
The question now arises: Is there any fundamental
rule which will enable us to characterize this opti-
mal two-particle space? It is clear that at this
point we are embarking on a statistical treatment.
We do not know nor do we care to know the under-
lying dynamics.

(18)
@=1

Clearly, the inverse mapping of C,
&

to p z is
not unique. A family of C„differing within an
arbitrary phase factor in each column vector of
C;; may yield the same p„z'.

Consider the maximal number of effective in-
dependent parameters in p &'. There are 2n pa-
rameters in these n~ complex elements. Since
p~'& is Hermitian, the hermiticity reduces this
parameter number to n . The normalization re-
duces it to n~ —1. From the many possible choices
of parameters one may take the real valued set
(k,), / = 1, . . . , n, with which to define a fictitious
wave function )I)' such that
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Ctt= Z kt I btt )
l=1

where b;& are totally symmetrized and satisfy the
orthonormality relations

tg)
Q btt btt = 5tt.

The representation of [ ('& and p are then of the

following forms:

Q [tr(K T)'""+Xbt t]k, =0
~*1

1
(27)

ff

Z k' tr(KT)" t«

i=i

and call it the "Liouville energy eigenvalue equa-
tion. " It provides a generic form for approximate
solutions to the determination of p' '. The com-
ponents of p' ' are given from the eigenvector in

(27) as p', '=tr(p T)""=k„corresponding to the
eigenenergy

/=1 f=l g-"1 l~l

Subject to the constraint
n2

(22)

(23)

In this paper we have dealt with the case inwhich
the allowed number of independent parameters in a
fully parametrized I g& is greater than n -1. Let
this number be g -1. We now give attention to the
generic form for approximate solutions to the de-
termination of

~y&= Z k, ~O, &

the minimization of (H&t thus is the satisfaction
of the variational equation obtaining

tf

b&ff&, +) b Q ~~', =0,
f= 1)

(24) Q [2N tr(K T)('"+X6
]t kt0).

~=1
(23)

2

Q [2Ntr(K T) "«+Xbt t]kt-—0,
l=l

where the operator T""is defined by its matrix
elements on (pt}, i =1, . . . , n as

Tt ~ t (p~T(t, l)p)Q«(b(t)b(t)t+b(t)b(l)'t)
g= 1

2
cy, P-1, . . . , n t, l-l, . . . , n (26)

(-,' N) tr(KT)"'" may be considered as the ele-
ments of an N-particle statistical Hamiltonian B,.
That is H, =PHP ' where

2

S =g
~

C, &&4),
~

is the projection operator which projects out the
subspace of E~g E, in which a11 parameters are
statistically effective in p' '. Likewise, one de-
fines a two-particle statistical Hamiltonian k,
whose elements are tr(K T )"", recognizing that
tr(K T)""determines the components of K on the
basis f T""},l =1, . . . , n in the Liouville repre-
sentation. We now construct a new eigenvalue
equation

where X is a Lagrangian undetermined multiplier.
By using Eqs. (21) and (23) and by performing some
elementary algebraic manipulations, the following
eigenvalue equation results immediately from (24):

As g - ~ with n and m, Eq. (28) constitutes the
Schr'odinger energy eigenvalue equation. The ele-
ments —,

' Ntr(K T)('" pertain to the N-particle
dynamical Hamiltonian.

It is instructive to examine the mapping from
(k,}, / = 1, . . . , g, which is a solution to (28), to
the solution of (2V), fkt}, / =1, . . . , n2, nt&g.
An attempt to ascertain p' ' directly by (2V) or by
other means such as the variational technique al-
ways implies a statistical calculation performed
without assurance of dynamical validity. The de-
gree and types of dynamical ignorance are no
longer discernable in p' '. This includes all types
of holonomic N-representability constraints. 10

V. CONCLUDING REMARKS

The formulation and applications of the Liouville
energy eigenvalue equation represent a classical
semi-quantum-mechanical attitude. The dilemma
in evaluating p' ' may be depicted as our inability
to tell in advance the eharaeteristics of the opera-
tor P, or the information about the optimal T
This inability, in fact, is a direct result of the
above-mentioned attitude. Quantum precision can-
not be generated from classical ignorance.
Nevertheless, the equation should have its com-
plementary usage in situations where such pre-
cision is not required or one's good intuition could
pragmatically make up for it.
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The solution to the problem of determining the transition radiation emitted when a charged
particle moves uniformly in a periodically stratified cold, isotropic plasma is obtained. The
electromagnetic field may be expressed in terms of an infinite number of normal modes. The
conditions under which some of these modes are radiative are discussed, and expressions for
the field components and the energy spectral density are obtained. It is found that radiation
may be emitted for arbitrarily small particle velocities and that the strongest emission
takes place in a frequency band just above the average plasma frequency. Numerical results
are presented to illustrate the behavior of the spectra of the various radiative modes as the
frequency and plasma parameters are varied.

I. INTRODUCTION

When a charged particle moves with constant
speed through an inhomogeneous medium, there
are two (macroscopic) mechanisms by which radia-
tion may be emitted. Radiation of the Cerenkov'
type is expected if the particle moves close to or
through a region in which the phase velocity of
light is less than the speed of the particle. For
radiation of this type to occur, the speed of the
particle must be greater than the smallest phase
velocity encountered. Transition radiation, 3 on
the other hand, may be expected to occur at any
particle speed. As the charged particle moves
uniformly in the continuously inhomogeneous
medium, its images will not, in general, be in uni-
form motion, but will be accelerated. Transition
radiation may be thought of as being emitted by
these accelerated image charges. Since the non-
uniform motion of the images will occur even if

the moving charged particle is traveling slowly,
there is no velocity threshold for transition
radiation.

In a previous paper, ' the emission of Cerenkov
and transition radiation by a charged particle mov-
ing uniformly in a periodically stratified nondis-
persive dielectric medium was considered. It was
found that the electromagnetic field excited by the
passage of the charged particle may be expressed
in terms of an infinite number of normal modes.
Each of these normal modes was a modulated cy-
lindrical wave, propagating in the direction of
motion of the particle at a phase speed equal to the
velocity of the particle. Some of these modes
were also propagating in the outward direction,
away from the track of the particle. Furthermore,
the threshold velocity, cutoff frequency, and emis-
sion angles for each mode were also found. How-
ever, these results are not applicable to dispersive
media.


