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stancy of I(k), we suggest the soluble model of two-par-
ticle scattering where both the potential acting between
the two particles and the metric potential are square
wells with the same range R. Choosing gf so that R+q&
= (m+ 1/2) vr, I(k) is the pole expansion of two cotangent
functions I. (cot@)/z]. The constancy of I(k) reflects the
periodicity m of the cotangent function.

9The proof in I is unchanged.

' I. C. Percival, Proc. Phy. Soc. (London) A70, 494
(1957); Phys. Rev. 119, 159 (1960).

~~For previous work on maximum principles for scat-
tering, see I. Arousou, Y. Hahn, P. Henry, C. Klein-
man, and L. Spruch, Phys. Rev. 153 73 (1967).

~~J. Humberston, Nucl. Phys. ~69 291 (1965).
f3See, for example, L. Schiff, Quantum Mechanics

(Mcoraw-Hill, New York, 1955).
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Expressions correlating the transition operators to Faddeev s T ~&'s are given for a three-
body scattering problem. Using the results of Ball, Chen, and Wong, a revised partial-
wave analysis for various transition processes in a three-particle Coulomb system is sug-
gested. Some of the apparent contradictions between the off-shell two-particle partial-wave
T matrix derived by Ball et al. and the full two-particle Coulomb T matrix derived by Nutt
are resolved. In an Appendix, it is shown that T " is related to the transition operators.
This establishes the equivalence between the limiting procedure of Ball et al. and the conven-
tional procedure for obtaining the transition amplitudes.

I. INTRODUCTION

In recent years Faddeev's formulation' of the
three-body problem has stimulated a great amount
of interest in the study of three-particle Coulomb
systems. ' 'In principle, this approach gives a
basically rigorous method for the solution of three-
body problems like electron-hydrogen and proton-
hydrogen scattering. However, some of the recent
papers' on the partial-wave analysis of three-
particle Coulomb systems do not seem to be con-
sistent with the definition of transition amplitudes
for various processes in a three-body problem.
Secondly, there are some difficulties associated
with the off-shell two-particle Coulombpartial-
wave T matrix, which is, aPParently, singular on
the mass shell according to Refs. 3 and 4, in con-
trast with the Nutt's representation of the two-par-
ticle Coulomb T matrix, which is zero on the mass
shell. In addition, in the Coulomb problem, the con-
sistency of the T matrix with the asymptotic Cou-
lomb distorted boundary conditions should always
be retained. ' In this paper, we resolve the above-
mentioned difficulties and indicate a suitable re-
vised partial-wave analysis of the three-particle
Coulomb systems.

In order to appreciate the importance of this
problem a brief survey of the present status of
the three-particle Coulomb problem is desirable.

The Faddeev trick is to express the full three-
body 1' operator satisfying the usual Lippmann-
Schwinger equation as a sum g, T'", T" in turn
obeying a set of coupled integral equations, known
as Faddeev equations. The kernel of this set is
now compact. However, Lovelace' and Newton"
have formulated a rigorous procedure to obtain
the transition operators for various physical pro-
cesses, for example, (1, 2)+3-(1,2)+ 3; (1, 2)
+ 3- (1, 3) +2; etc. Here (i,j) denotes the bound
system of particles i and j. In order to accomplish
this they have adopted the Faddeev trick to construct
their coupled integral equations with a compact
kernel. It is stressed in detail in these works'~
that the matrix element of T = g~ q

T'" between a
given set of initial and final states does not give
the physical amplitude for that process.

In this connection, one notes that the Faddeev
approach to three-particle Coulomb systems has
resulted in two types of investigations: In the
first type" "'methods are suggested to evaluate
the leading terms in the Faddeev-type expansions
for various transition operators. The elegant rep-
resentation, due to Nutt, of the two-body off-shell
Coulomb T matrix between plane-wave states makes
the evaluation of terms up to second order feasi-
ble. "However, these are "Born-type" approaches
and therefore, may not be reliable at lower ener-



gies. On the other hand, partial-wave analyses3~ 4

of transition operators are useful at lower ener-
gi es and also for the evaluati on of bound -state
energies of three -particle systems. 6f. Ball et aE .3

were the first to study the partial-wave analysis
for the three-particle Coulomb systems. In at-
tempting the numerical evaluation of the cross
sections, they suggested a limiting procedure for
specifying the initial and final states and identi-
fied the resulting T' "'s with the amplitudes. While
their method of solution of the integral equations
is novel, their expressions for transition ampli-
tudes must be related to the works of Lovelace
and Newton, be cause apparently their limiting
procedure is not equivalent to taking matrix ele-
ments between the appropriate initial and final
states (see Appendix). However these problems
do not arise in computing the three-body bound

states of systems of three charged particles.
The plan of the paper is as follows: In Sec. II,

we define the various transition operators for
three -particle scattering and show their relation
to Faddeev's II( "'s. We shall also clarify the
interconnections between various T operators used
by Faddeev, Lovelace, and Newton. In Sec. III,
we study the off -shell two -body Coulomb II( matrix
and show that the representations of Nutt and Bal1.
et al . are equivalent. In Sec. IV, we indicate the
partial-wave analysis and point out that in order
to obtain the physical amplitudes one has to carry
out the usual overlay integral between the initial
and final states. In the Appendix, it is shown that
specifying the initial and final states using a limit-
ing procedure as prescribed in Refs. 3 and 4 is
equivalent to the evaluation of the overlap integral.
Section V summarizes the main conclusions ob-
tained.

II. TRANSI TION OPERATORS FOR THREE-PAKTKLE
SYSTEMS

1 + (2, 3)- 1 + (2, 3)

1+(2, 3)-2+(3, 1)

1 + (2, 3)- 3 + (1, 2),
1+(2,3)- 1+ 2+ 3

(2.1a)

(2. Ib)

(2.1c)

Equation (2.1d) denotes the breakup progress;

In this section, a brief outline of the transition
operators given by Newton in his book" and the
relation of these with the Faddeev operators are
given. We begin with a system of three inter-
acting particles 1, 2, and 3 with masses m „m„
and m „respectively. I et V;j denote the potential
between particles i and j and E the total energy
of the system. We consider the fo11owing scattering
processes:

other processes are self -explanatory. By yer-
muting 1, 2, 3 we obtain the rest of the processes.
We denote our three -particle free Hamiltonian by
Ho and define the following operators:

G';= (E -Ho —Vqk+ke) ',
co= (E -ao+ fe) ',

Vjk+V;kG)V, jgjgk, i j,k= 1,2, 3.

(2. 2)

(2. 3)

(2.4)

T, is the two-particle T operator for (j, k) system
with i as spectator.

Fouowing Newton, »» we denote by r»», II(~», and
T» the transition operators for processes (2. 1a)-
(2. lc), respectively. The following relations
hold

T ( =~ ~~k+~ ~gk~( Tu .
kA j kAj

The following alternative relations are also given
by Newton:

T;(= ~3k«k;+6k;)++ &W .
k& j

(2.6)

T(» =T, + T,C',(T("'+T"'), i~j~& (2. 6)

and the sum T= g,'. ,T"' satisfies the i,ippmann-
Schwinger-type equation for the three -particle sys-
tern:

r =Z v„.(1+a,r).
j4j

Now we use a set of auxiliary operators T',j'sat-
isfying

(2. 9)

T(J) T 6 +T g+ QT(k)
k& j

(2.10)

T =P r"' =Jr('
f, j

(2. 11)

Using E(ls. (2. V), (2. 8), and (2. 10) we obtain

j» = ~z + ~3 (2. 12)

r, (= Z (T("-T(")+(&kj+~sg) ~ks ~

jPj
(2. 13)

&k„k= 1, 2, 3 satisfy the following Faddeev-type
coupled integral equations with compact kernel:

kl k( k8+ k3) ~ k 0~i( (2. V)
j&k

It is to be noted that E(I. (2. V) facilitates, at least
in principle, evaluating K» corre ctly, and it can
be used in turn to obtain transition operators II(;»

through E(I. (2.6).
Now we relate IIf;

» to the solutions of conventional
Faddeev equations. The usual Faddeev II( operators
T"' are the solutions of the following set of coupled
integral equations:
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The corresponding operators T»(k =2, 3) for the
rest of the processes can be obtained by a proper
permutation of the indices 1, 2, 3. Equation (2. 13)
establishes the connection between transition op-
erators T» and Faddeev's T ~' and T',~' opera-
tors. "This clearly demonstrates that evaluation
of matrix elements of T'~' 's between given initial
and final states does not correspond to the ampli-
tude for that process. Secondly, one also notes
that in the evaluation of amplitudes for rearrange-
ment collisions, the bare potential V&3 is also to
be taken into account in addition to T operators.
This feature is apparently in contrast with the im-
lications tothe contrary inRefs. 3 and4. Itis also
clear that partial-wave analysis of transition am-
plitudes T» can be carried out once we derive a
partial-wave expansion for the matrix elements
of T'&" 's. This is indicated in Sec. IV.

The S -matrix element for any three-particle
process except ionization is given by"'6

&;.„.(q), q';) = t'g|. ~3(q -ql)
—2wi5(q) —E)„-qg +Ey~) f d 0&fd 0g

x)&,(p&)&&&(p» q& p~ q' e& E& +i&)&& (pA'

(2. 14)

Here g;„and (&„are the bound-state wave functions.
The quantities q&, q', p&, p& are defined in Ref.

10. Equations (2. 13) and (2. 14) establish the
relations between Faddeev's T'~' 's, T'&~' 's, tran-
sition operators T,~, and the S-matrix elements
and thereby demonstrate the correct method for
the evaluation of amplitudes in three-particle
scattering.

III. OFF-SHELL COULOMB T MATRIX

In order to evaluate the transition operators for
three-particle Coulomb systems using the pro-
cedure outlined in Sec. II, an unambiguous defini-
tion of two-particle off-shell T matrix is needed.
Using Schwinger's representation7 for Coulomb
Green's function Nutt, constructed a represen-
tation for off-shell two-body Coulomb T matrix.
Solving the Lippmann-Schwinger equation, Ball
et al. ' obtained an eigenfunction expansion for
the off-shell two-particle partial-wave T matrix
t, (p, p', E). The difficulties in this representation
and its apparent contradictions with the representa-
tion of Nutt can be seen as follows: Consider the
representation used in Refs. 3 and 4 for t, (p, p', E):

&i(p, p', E) =Z ('y ( —1) $„,(P,E)p, (p', E). (3 1)
)t = 1

Here Q„, are the two-particle Coulomb wave func-
tions in the momentum space as defined in Refs.
3 and 4 and can be expressed in terms of Gegen-
bauer polynomials. ~&& are given by ir»v = ~ and

v=me3/k, E=k /2m. Moreover, t, (P, p', E) satis-
fy the partial-wave Lippmann-Schwinger equation.
In Refs. 3 and 4, the physical partial-wave ampli-
tude is related to t, (p, p', E) through the following
equation:

t, (p, p, p'/2m) = —[e"&"'sin5, Q)]/p. (3.2)

This contradicts the subsequent discussion of
the analytical properties of f,Q, P', E) in one of
their papers, s for, on the mass shell each term
in the expansion (S. 1) is singular and therefore
one will not obtain the physical partial-wave ampli-
tude as implied in Eq. (3.2). ' This statement
is further clarified by noting that f, (P, P', E) is the
solution of the Lippmann-Schwinger equation which
has plane-wave boundary conditions built in it&

whereas the physical Coulomb partial-wave ampli-
tude is defined with respect to Coulomb-distorted
asymptotic states. Careful attention is given
to this point in the papers of Schwinger and Nutt.
Nutt's representation for the off-shell two-p3rticle
Coulomb T-matrix has the following form in the
case of an attractive potential:

—e2
T(p, p E)=2 2( Ip

4iv ~ dtt '"
~~ (3 3)

e '" —1)o &0(1 —t~) —4t &

with

e, = (k'-u')(k'-u")/[k'I p-p' I']

The contour C starts at t = 1 slightly above the real
axis, moves to and around the origin andthen moves
to t = 1 slightly below the real axis.

In the works of Schwinger and of Nutt it is clearly
demonstrated that the physical amplitudes can be
obtained from Eq. (S.3) oMy after taking a correct
overlap between the Coulomb-distorted asymptotic
states. As it is, T(p, p', E) is defined only with
respect to plane-wave boundary conditions. Es-
sentially due to this aspect, it was found that
T(p, p', E) is zero on the mass shell. This con-
tradicts the statements of Ball et a/. However,
since both T(p, p', E) and t, (p, p', I ) are defined
with respect to plane-wave boundary conditions,
and are exact solutions, such contradictions can
only be apparent. In fact, in the remaining part
of this section we show that one can obtain
t, (P, P', E) given by Eq. (3.1) from Nutt's
T(P, p', E) which proves that t, (p, p', E) is zero
on the mass shell in spite of the singularity of each
term in the expansion (3.1) at that point. This ~a,ct
indicates the importance of the overlap integral
between the correct asymptotic states in orde"
get the physical scattering amplitude.

In order to prove the equivalence of Eqs. (S.3)
and (3.1) we proceed as follows: Using expres-
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sions'

[1 —2hZ+8'] "=Q C"„(&)k"
n=O

(3.4)

dtt "[1—2t(1+2/eo)+f ]

4e2 1

p p ~
Z Cq, (1+2/qo)/(1 y))- (3 5)

Here y„=y»= -i&/v. The condition Re(iv)& —1 can
be relaxed now, and Eq. (3.6) can be defined for
all values of v (except the points of singularity)
through analytic continuation. Equation (3.5) when
substituted in Eq. (3.3) gives another new repre-
sentation for T(p, p', E):

T(p, p', &)=

e' Ce' r 1."', ,(( 2/c, )
)lp-p'I' Ip —p'l2 & ~ 1 —y,

(3.'7)

Now we make use of the following expressions:

2 00', , = Z ( 2f. 1) ~, ( p,
p') f, ( p)

=P (2l +1)Pr(p) Z y,
'

Q»
E=O

x V, @0»(p' E) (3.S)

and the expansion '

[F(p)]'C"(gg, (Z~ 1)~~3(g', —1)"'cosQ
n

= 1'(2v —1) Z ( —1)'4'1'(n -l +1)
I -"0

x [F(v +i)]'(2v + 2l —1)

x [r(N+ 2v+ l)] '(&' —1)"'(Z,' —1)"'

X C"„',' (Z) (:'„",(Z,)C; "' (t oa( ))

in Eq. (3. 7) and after some simplification arrive
at the result

(3.9)

T(p, p', E) = -, Z (2f +1)r,(p)
27/ l =0

1

i(2sinvn) e"' dpp ~ ~ ~ = dpp ~ ~~ Rec(& —1
C 0

(3.5)

we obtain

IV. PARTIAL-WAVE ANALYSIS

One of the important aspects of the partial-wave
analysis carried out in Refs. 3 and 4 is the re-
duction of the partial-wave elements of T"'s to
the sirgle-zaxiable integral equations which are
suitable for numerical computation. We indicate
a similar partial-wave analysis for T';J's which

can be used to evaluate the partial-wave matrix
elements of T», T„, and T„, through Eq. (2. 13).
However, it should be noted that we differ from
the procedure of Ball et al. in two important as-
pects: First, we are aiming at the partial-wave
analysis of T„'s and not just T'"'s. Secondly, we

believe that evaluation of the overlap integral
given by Eq. (2. 14) between the initial and final
states must be explicitly carried out and that the

limiting procedure suggested in Refs. 3 and 4

also accomplishes this. Details of the mathe-
matical manipulations are described in Refs. 3

and 4 and therefore we give only the equations to
be solved, for the partial-wave reduction of
T(i) ~s

From Eq. (2.13), it is clear that partia, l-wave

amplitudes for any given transition operator T,&

can be obtained in terms of the corresponding
partial-wave projections of T'", T', ", and V23

operators. The partial-wave projections of T "
between any two three-particle states are studied

by Ball etal. Since T' '= g,", the partial-wave
analysis for T'" can be easily adopted for T~" 's.
In analogy with Ref. 3 and 4 we define

(4. 1)'4" = ~( pq~ I
T'."(s)

~
k, k,k,) .

All the symbols are as defined in Ref. 3 and 4.
Then from Eq. (2. 10) one obtains the following

coupled integral equations for 4",:

(p, q, s) = @ (pqs) 5(

-!z z fdic(&', "d(qx 'l(;q;;)
u&JA k

x» 4'„,„(p,.q, s),P')qs (y)

P,.+q, —s

i=1, 2, 3, j=1, 2, 3, p, =1, 2, 3. (4. 2)

1 & JLI. & —1, and therefore it follows that quite gen-
erally t, (p, p ', E) is also zero on the mass shell.
The physical scattering amplitude can only be ob-
tained after the evaluation of the Coulomb T matrix
between the Coulomb-distorted asymptotic states.

'~(1 y.) 'e. (p, E)e„(p'-, E). (3.10)

From (3.10) we get the expansion (3.1) for the

partial-wave off-shell T matrix i, (p, p', E).
But T(p, p', Z) is zero on the mass shell' for all

The function K,'" is given by
1

x 5(q —q.) t( '(p, p(, s q ).
(4. 3)
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A„,
&

is defined in Refs. 3 and 4. Following Ball
et a/. for 4=M=0 case, we define

makes this point still more explicit. To realize
the equivalence explicitly, see the Appendix.

e( „((((qs)= 0 ("(f(qs)5(„

+Z[~",,'(s -q') -1] '

x ei('(u, s -q') &'(" (q&)

and obtain the following integral equation for
(i) .

X)tl v ~

Xx((( (ig(g (qs)+~ ~ fo dq( X(,(x'('(qqj)
)t'l' gW&

x g,.( ~(q(s),(/)

(4.4)

(4. 5)

APPENDIX

In Ref. 4, a limiting procedure for finding the
appropriate transition matrix element is given.
However, the procedures of Lovelace'o and Newton"
commonly adopted here Rnd elsewhere must be
shown to be equivalent to the limiting procedure.
Since such a proof is not given in Ref. 4 and since
it seems to be a source of confusion, we construct
the following arguments for it here (see also the
Appendix in Ref. 10).

We set

CO

n'„'„'=-', ZZ f, dj,'f, dq,'f d „,8,l' j4j

""(((e~(e, e.p( e.;.() ~(q'-q()

Q~( (p(, s —q ) 4'( (P(q(s)~(~ (4.6)

in the Faddeev equations (2. 8) of the text. This
substitution is made only to correlate with the
Eq. (4. 4) of the text (and Ref. 4). The &('s then
satisfy the equations

and &"J' is the same as that given in Ref. 4.
Now, knowing &Pq((~ T'"

I k( 4ks& and &f qo. ~T'~"

x ~k, k(, k3) we can evaluate T(, for any j. How-

ever, we stress here once again that these evalua-
tions give only the T;, in the integrand of Eq. (2. 14)
given by Lovelace, Rnd to obtain the amplitude
from these an additional integration is to be car-
ried out between the correct initial and final states.
This procedure may prove to be more amenable
to practical calculations involving iterative series
for T and the like.

V. CONCLUSIONS

We draw the following conclusions from the pres-
ent analysis: (i) The physical transition operators
are related to Faddeev's T'" 's through Eq. (2. 13)
and the prescription of Ball et a/. is equivalent to
the calculation of the physical amplitudes. (ii)
Representations given by Ball et a/. for the off-
shell Coulomb two-particle partial-wave T matrix
are equivalent to Nutt's representation for the off-
shell Coulomb T matrix. (iii) In order to evaluate
the amplitudes for various processes an additional
overlay integral between initial and final states
given by Eq. (2. 14) is necessary, as shown by
Lovelace' and illustrated in Refs. 8 and 9. The
evaluation of this overlap integral is not apparently
equivalent to the limiting procedure suggested by
Ball et a/. For, consider T» to the leading order:

T» = T2+Ts+ ~ ~ ~

Neither T2 nor T, has the bound system (2, 3).
Therefore, the limiting procedure of Ball et a/.
does not seem to specify the initial and final states.
The presence of V23 in the expansion for Ta& and T3&

provided T~GO's are not null. It must be shown
that the suitable matrix elements of the transition
operators T», T» for the typical processes
1(23) l(23), 1(23) 2(31), respectively, are ob-
tained when the limiting procedure of Ref. 4 is
employed on T and T, respectively. It suffices
for our purposes to show this equivalence for the
usual series development of these operators. The
series development corresponds to an iterative
solution of the Faddeev equations or its equivalent
[Eq. (2. 1)]. Since our initial state is 1(23), only
the terms with T& 'in the rightmost of each term of
the series for &, and ~z and hence in T'and T sur-
vive (T, has in it this bound state). '~ Thus,

T = T(+ T(Go[Ta+ T, + T(GOT(

+TSGOT~+ ' ''] GOT(,

= TOGO[(GO) + TS+ T(GO 2

+ T(GOTS+ TqGtTg+ ] GtT(. (A4)

The terms in the square brackets in (A3) and (A4)
indeed correspond to the appropriate series for
the transition operators T» and T», respectively.
The lnltlRl - Rnd the flnRl" stRte speelflcRtlon then
gives directly the matrix elements of these opera-
tors with respect to the appropriate initial and
final states because llmfg„gy st~t, TSGO Rnd

lim(&(((L( 8(a(s GoT( give &2(13) I and I l(23)), respec-
tively. lim hei e ls as given ln Ref. 4 In T, the
term T& vanishes when the final-state limit is taken;
'. .(e term (Go)

' in T simply becomes the potential
V& or equivalently V~3.

We have presented this "proof" because all the
arguments given in the text and Ref. 14 give one
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a strong suspicion as to the validity of the limiting
procedure. While a single T operator does not
exist which gives the appropriate transition matrix
element for a given process, ' the limiting proce-

dure shows that from the total T (= g &7') operator,
one could obtain all the transition amplitudes. "

%e thank Dr. C. K. Majumdar for insisting on

a proof of the equivalence of the two procedures.

*On leave from Tata Institute of Fundamental Re-
search, Colaba, Bombav 5, India.

L. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459
(1960) [Soviet Phys. JETP 12, 1014 (1960)]; Dokl. Akad.
Nauk SSSR 138, 565 (1961); 145, 301 (1963) [Soviet Phys.
Doklady 6, 384 (1961); 7, 600 (1963)]; see also Mathe-
matical Aspects of the Three Body Problem in the Quantum
Scattering Theory, translated by Ch. Gutfraund, Israel
Program for Scientific Translation, Jerusalem, 1965
(unpublished) .

2I. H. Sloan and E. J. Moore, J. Phys. B1, 414
(1968).

3J. S. Ball, J. C. Y. Chen, and D. Y. Wong, Phys.
Rev. 173, 202 (1968).

4J. C. Y. Chen, K. T. Chung, and P. J. Kramer,
Phys. Rev. 184, 64 (1969).

E. O. Alt, P. Grassberger, and W. Sandhas, Nucl.
Phys. B2, 167 (1967).

6(a) C. K. Majumbar and A. K. Rajagopal, Phys. Rev.
184, 144 (1969); (b) A. K. Rajagopal and C. K. Majum-
dar, Phys. Letters 30A, 429 (1969); (c) S. Radhakant,
C. S. Shastry, and A. K. Rajagopal (unpublished).

J. Schwinger, J. Math. Phys. 5, 1606, (1964).
G. L. Nutt, J. Math. Phys. 9, 796 (1968).
C. S. Shastry, L. Kumar, and J. Callaway, Phys.

Rev. A 1 1137 (1970).
C. Lovelace, Phys. Rev. 135, 81225 (1964).

"R. G. Newton, Scattering Theory of Waves and
Particles (McGraw-Hill, New York, 1966), p. 557.

~ See Ref. 11, pp. 484, 485.

'3L. Kumar, C. S. Shastry, and J. Callaway
(unpublished) .

'4The transition operator for any rearrangement pro-
cess begins with a bare potential as the leading term;
see, for example, T2f of Newton (Ref. 11) or Shastry
et al. (Ref. 9). This is not apparently obtained when the
prescription of Ball et al. (Ref. 4) is used. The seeming
nonequivalence of the usual procedure of taking matrix
elements of appropriate T operator between the initial
and final states and the limiting procedure of Ball et al.
(Befs. 3 and 4) may be seen by a glance at T~~ of Newton,
the calculation of the leading term in T&& by Nutt (Ref. 8),
and the corresponding expression of Ball et al. (Ref. 3).

Lovelace's U ~& are the same as T& used in this pa-
per (see Ref. 11). Faddeev's book denotes T&~~ of the
present paper by M &. All these developments are
equivalent.

' The expression for S matrix for ionization process
may be found for example in Ref. 10 and 11.

Apparently because of the logarithmic singularity in
Born term V& (p, p' E), in Ref. 3 it is also stated that

t& (p, p' E) is singular for p= p' for all E; which does
not seem to be true.

A. Erdelyi, Bateman Manlscript Proj ect (McGraw-
Hill, New York, 1953), Vol. 1, p, 176,

~9It may be shown quite generally that

T'=T, +T, G', [T;,G;T;+T, G', T&+T; G', T ],
i& j&k,

where T;; are the transition operators defined in the text.


