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Elastic differential cross sections for proton-helium scattering are calculated in the semi-
classical approximation for two assumed interaction potentials. Both potentials are of the
form

V(y; A, g, C) = (2/y') e " [1+x/A+ ~ax (1/A —U/g) ] —U[1+x/g+ (y/C) 2+ 2Uy4/n

where U is the difference between the ground-state energies of He and Li' (4,373 ll hartree)
and n is the polarizability of He (1.3835 bohr ). The first potential V~ =—V{r;0.423, 0.483,
0.441) fits the He-H' ground-state energies which Michels has calculated. The second,
Vg

=—V{x;0.442, 0.50~, 0.451), is similar to Vg except that its minimum is decreased by 10%
to agree with the value obtained by %olniewicz. The cross sections for these two potentials
are shown for protons incident at energies T of 7, 19, 58, and 116 eV in the laboratory
frame and for scattering angles, at each energy, out to the rainbow angle 8+. 8z is given
in center-of-mass coordinates by the expression 0&T=—0.1 radhartree. As the collision
energy decreases, the cross sections develop oscillatory structure not present in the clas-
sical cross sections. This structure and the rainbow angle are sensitive to the choice of
potential, which suggests that measurements of H'-He cross sections may be used to test
the suitability of, e.g. , the Born-Oppenheimer potential for scattering phenomena. It is
also suggested that many-body calculations of these cross sections would allow, by com-
parison with the present results, an evaluation of the potential scattering model.

INTRODUCTION

While the potential scattering model has proved
effective for describing collisions between com-
posite systems, a complete understanding of its
utility must await comparison between its pre-
dictions and those of an ab initio many-body calcu-
lation. The proton-helium-atom collision has
many advantages as the site for such a comparison.
It involves four particles whose interactions are
well understood and, through the Born-Oppen-
heimer' approximation, lends itself to a fairly
straightforward potential scattering analysis. (The
O'-H system, in addition to its experimental
difficulties, possesses a degenerate ground-state
energy at large internuclear separations, thus
requiring a two-state description at all collision
energies. There is evidence that a single state
is adequate to describe the O'-He collision at
energies below 1 keV. )

Within the context of the potential scattering
model itself, it is of interest to determine the
relevance of the quasistatic Born-Oppenheimer po-
tential energy to scattering situations. Low-ener-
gy proton-helium scattering affords a comparison
between relatively simple measurements and clean-
cut theoretical predictions involving a single (well-
studied) Born-Oppenheimer energy curve.

Apart from its archetypal qualities, the proton-
helium collision is interesting in its own right, a
not surprising result for the interaction between

the two most prevalent atoms in the universe.
Michels gives an excellent review of recent areas
of concern.

Previous calculations of the differential scat-
tering cross section for O'-He date back to the
work of Massey and Smith who used classical scat-
tering theory and the Hartree' field of the helium
atom to represent the interaction. Their results
differed from the measurements of Ramsauer and
Kollath in a way which was in qualitative agree-
ment with their oversimplification of the interac-
tion. Everhart, Stone, and Carbone presented
results of a classical calculation of the differential
cross section for scattering from a screened Cou-
lomb potential which might be applied to the H'-He
collision. Helbig and Everhart' gave the results
of a classical calculation of the deflection function
for O'-He, from which high-energy differential
scattering cross sections might be derived. Green
and Johnson' obtained the differential cross section
for scattering from the ground- and first-excited
state potentials of He-H' which were computed by
Michels' and Wo)niewicz. Their attention was
limited, however, to the region of large angles and
high energies, where quantum effects in the elastic
cross section are unimportant.

In this paper it is shown that the interaction po-
tential reveals its structure most clearly in the
region where quantum effects begin to emerge.
In particular, small changes in the assumed po-
tential energy function are shown to produce sig-
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nificant differences in the resulting cross sections.
It is hoped that the present results, besides

providing workaday cross sections for this system,
will stimulate further progress, both theoretical
and experimental, toward tests of the potential
scattering model and of the application of Born-
Oppenheimer energies to scattering interactions.

Atomic units (If=a, =m, =l) are used unless other-
wise indicated.
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CALCULATION

The calculation procedure described by Bern-
stein' was used. " In brief outline, the scattering
amplitude f (0) wa, s obtained by replacing the

Rayleigh- Faxen-Holtsmark" sum over partial
waves of angular momentum l with an integral
which was then evaluated by the method of station-
ary phase. "

Phase Shifts

IO
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The required phase shifts q(f), where l is the

angular momentum, were calculated in the JWKB
approximation. ' To check the accuracy of this
approximation, a few of the q's were compared
with exact' values. Approximately constant dif-
ferences of about 0. 1% were found. To find the
effect of these inaccuracies in q, all of the cross
sections were recomputed from phase shifts con-
taining an artificial systematic" error of 5%, i. e.,
50 times the error we estimate for the JWKB
phases. A typical recomputed cross section
(marked X) is shown at the bottom of Fig. 1 along
with the corresponding cross section computed
from JWKB phase shifts. From such results we

conclude that the JWKB approximation introduces
no more than a 1/o inaccuracy in the present cross-
section calculations.

where I, =-I+~/w+~'(-,'x'- /Ua zz, )

P2-= I+&"/8+(~/C) +2' /o. ,

to represent the potential energy of He-H'. In this
expression A. , B, and C are adjustable parameters,
U is the difference between the ground-state elec-
tronic eigenenergy of the united atom (Li', in the

present case) and the separated atoms, and n is
the polarizability of the target atom. The other
symbols have their customary connotations. With

U = 4. 373 11 hartree and o& = 1.3835 bohr', V„(r)
—= V(~; 0. 423, 0. 483, 0. 441)'6 fits the Born-Oppen-
heimer energies calculated by Michels' within

0.001 hartree (except at 0.1 bohr, the inner limit

Interaction Potentials

We found it convenient to use the analytic func-
tion

v(~; x, a, c)= (z,z,/~) e "'"p, U/p„-—
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FIG. 1. Differential cross sections, marked with the
potentials from which they are derived, are plotted ver-
sus the product 8T of c.m. scattering angle and c.m.
impact energy. The upper curves show that measurable
differences may be distinguished between two rea-
sonable choices of interaction potential. In the lower
pair, the curve marked X shows the consequences of a
systematic 5% error in the phase shifts which produced
its companion.

RESULTS

Differential cross sections o(8) for center-of-
ma, ss (c.m. ) collision energies of 3.404, 1.702,
0. 567, and 0. 213 hartree are shown in Fig. 2 for
calculations based on semiclassical and classical

of Micheis's ca]culation). With the same values
for U and o, V«, (&) = V(r~ 0 442~ 0 505~ 0 451)
deepened so as to pass through the value —0. 075
hartree at its minimum in accord with the accurate
variational calculation of Wolniewicz. ' Except for
the increase in well depth from —0. 067 to —0. 075
hartree, V~ is quite similar to V„.

While the necessary interpolations between
Michels's values for the interaction energy could
be obtained in other ways, a reasonable potential
function has obvious utility for coordinating the
single energy value of Wolniewicz with Michels's
work on the general shape of the energy function.
In addition, other variations of V(r; A, B, C) may
be made easily should experimental measurementp
indicate the need for yet a different potential. Fi-
nally, this form of the potential function may be
useful for representing similar interactions, such
as those between protons and other noble gases. '
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FIG. 2. Proton-helium differential cross sections,
calculated from the potential VII', are plotted versus OT
for several incident energies. 8 is the c.m. scattering
angle; T the c.m. impact energy.

methods. The energies were chosen to be in the
center of the efficient scattering region. " (In
both Figs. 1 and 2, the cross sections are plotted
versus the product BT of c.m. scattering angle
and c.m. collision energy to counteract the com-
pression of the scattering pattern into the forward
direction at increasing energies. )

The development of nonclassical effects with
decreasing energy (increasing proton wavelength)
is evident in Fig. 2, which shows the cross sections
determined from the potential VII, . The classical
cross sections (marked C) are shown for compari-
son. The possibility for collision spectroscopy, so
aptly named by Smith et al. ' is c].ear.

The abrupt rise in each of the cross sections
which occurs just outside 8 T = 0. 09 rad hartree is

an artifact of both the classical and semiclassical
5

analyses. By utilizing a simple correction in
terms of the Airy function, it can be shown that
some remnant of this rainbow effect would survive
a full wave treatment of the collision. Indeed,
when the Airy correction is applied at the rainbow
angle Hs (the position of the classical pole in o),
one finds that the cross sections have values lying
between the tops of the semiclassical curves and
their continuations at the right-hand edge of Fig.
2. The indication, then, is that the rainbow effect
will be marked, in fact, by a relatively abrupt
change in the slope of the cross section in the
vicinity of 6~. Unfortunately, the Airy correction
is valid only very near 0~ for the present calcula-
tions and therefore cannot be used to delineate the
transition between the left- and right-hand portions
of the cross-section curves. 21,22

The possibility of utilizing the rainbow effect to
decide between the assumed interaction potentials
is indicated at the top of Fig. 1. Here predicted
cross sections for the scattering of 115.8-eV
protons from helium atoms at rest in the laboratory
frame are shown, based on each of the two poten-
tials V„and V~. The outward shift of the rainbow
angle for the deeper potential (V~) is evident.
Calculations with potentials of equal depth but dif-
ferent minimum locations show little change in the
rainbow position, as has been pointed out by Mason 23

for an "exp-six" potential. Thus an experimental
determination of 8~ should allow the potential-well
depth to be found rather accurately. This is of
particular interest in the case of He-H' for which
no dissociation-energy measurements exist.

In summary, it appears that the proton-helium
collision is unusually well suited for testing at
least two basic aspects of scattering theory. Since
the potential scattering model proves to yield cross
sections which are quite sensitive to the assumed
potential function, its predictions can be compared
with experimental measurements to determine the
relevance of, e. g. , the Born-Oppenheimer energy
to scattering problems. The simplicity of the
system makes it a likely candidate for many-body
studies which will allow assessment of the potential
scattering model itself. '

Note added in proof: Recently we have succeeded
in computing the 0. 567 hartree H - He differen-
tial scattering cross section by summation of the
Rayleigh-Faxen-Holtsmark (RFH) equation. The
result agrees with the present calculation inside
the rainbow angle and shows considerable struc-
ture beyond the rainbow region before running
parallel to the classical result at larger angles.
Phase shifts out to / = 4000 (JB approximation after
l = 140) were required for three-place convergence
in a.. With the phase shifts in hand, it required
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about 6 min to compute the stationary-phase cross
section and about 66 min for the HFH sum.
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