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s-„-„.= f e'&««' " «-«'«dXf(K K„')C(K,- K,')

=5(K +k —K«) 5 (K —Kr)5 (K —Kg)

= v(K- K'),

since k is much smaller than Kx. This result
merely states there will be essentially no change
in the momentum of the center of mass, and what-

ever change there is will be in the X component of
the momentum. The second operator gives

—f"e '«-&z —e'gzzdZ~(K +k-K ')f(K -IfKKg ~Z x

=(AKz/M)5 (Kg Kg) 5 (K«+k K«) 5 (Kr Kr)

= vga(K- K )

since SKz is the momentum in the Z direction.
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The power spectrum of the radiation emitted by a driven collision-damped two-level system
is evaluated. The driving field, which is treated classically, is assumed to oscillate harmon-
ically near the atomic resonance frequency, and its intensity is allowed to assume arbitrary
values. The collisions are assumed to be strong, i.e. , to instantaneously thermalize the state
of the atom. The limiting forms of the power spectrum of the radiated field are discussed for
the cases of low and high excitation of the atomic system.

I. INTRODUCTION

The effect of collisions on the response of a col-
lection of atoms to a monochromatic incident elec-
tromagnetic field has been extensively studied, in

both classical and quantum-mechanical contexts.
For the most part, previous analyses have been

devoted to the evaluation of quantities which de-
pend only upon the mean values of atomic opera-
tors, such as the electromagnetic susceptibilities
or the absorption line-shape function, i.e. , the

rate of attenuation of the incident field as a func-
tion of its frequency. It has been found, in par-
ticular, that the widths of the peaks (centered at

the atomic resonance frequencies) in the line-.

shape function are proportional to the collision
rate for relatively weak incident fields, but that

they are proportional to the intensity of the inci-
dent field when it is great enough to lead to an

appreciable degree of saturation.
In the present paper our interest lies in de-

scribing the spectral properties of the field ra-
diated by the driven atoms, and hence in evaluat-

ing the correlation function which represents the
product of atomic dipole moments at two different
times. We assume that the incident field oscil-
lates at a fixed frequency co which lies near an
atomic resonance frequency (do, and allow the.
field intensity to be arbitrarily great. Our anal-
ysis is carried out within the context of a simple
model consisting of a single two-level atom driven
by a classical electric field and subject to strong
random collisions which abruptly thermalize its
state. We assume that the collision rate g is
much greater than all other relaxation rates, in
particular, that it is much greater than the ra-
diative decay rate, the effect of which has been
analyzed in a previous paper. '

The results we find for the case of collisional
relaxation differ markedly in the limit of weak
driving fields from those for the case of radiative
relaxation. A principal difference is that in the
collisional case the radiated field contains, in
addition to a coherent monochromatic spectral
component oscillating at the driving frequency or,
incoherent components oscillating within an in-
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terval g of the resonance frequency coo. The in-
coherent components are appreciable even at low

temperatures, and in fact they are equal in inten-
sity to that of the coherent component in the zero-
temperature limit. In the limit of strong driving
fields, ~~ on the other hand, the solutions for the
radiative and collisional cases resemble each
other quite strongly, each case being characterized
by three spectral components in the radiated field,
one centered at the driving frequency {d, and one
at each of the displaced frequencies ro + 0, where
0 is the frequency of field-induced atomic transi-
tions.

The basic strong-collision model is introduced
in Sec. H, and the equilibrium expectation values
of the atomic dipole moment and excitation prob-
ability are evaluated. The equations of motion
for the atomic density operator are expressed in
a form suitable for use in the analysis of Sec. IH,
where the two-time dipole moment correlation
function, which specifies the power spectrum of
the radiated field, is evaluated by means of a
Markov-type approximation.

II. STRONG&OLLISION MODEL OF ATOMIC RELAXATION

Let us consider a two-level atom with energy
eigenstates ( 0), and ) 1), and corresponding eigen-
values 0 and Neo, respectively. In the presence
of a prescribed classical field

&,(t) = (1/W2) [8(t)+8*(t)]so, (2. 1)

with spectral components near the resonance fre-
quency +0, the Hamiltonian for the atom may be
approximated by the expression

H(t)=a~, a'a -a~8(t)a'-tt~+b+(t)a, (2. 2)

where a~ and a are the atomic raising and lower-
ing operators

then we may represent the effect of the collision
process on the atomic density operator p, (t) by
adding to the equation for its time derivative a
term equal to h; times its change (p z, —p, (t)}during
a collision. Ne have then'

p.(t)- [»p.(t)]p, .
We must therefore change Eq. (2. 7) to the more
general relatj. on

(2. 8)

st p( )t=,.
@

[H(t), p.{t)]+~((»p.{t)& pr -p.{t)},
(2. 9)

in order to carry out our evaluation of the two-
time atomic correlation function.

When the relation (2. 2) for the Hamiltonian H(t)
is substituted into Eq. (2.9), it is found that the
atomic expectation values

p, (t) =.
@

[H(t), p, (t)]+~(pr -p, (t)}, (2. V)

where H(t) is the Hamiltonian {2.2) for the driven
atom in the absence of collisions.

In order to carry out our evaluation of the two-
time dipole moment correlation function in Sec.
III, it will be necessary to express the time ev-
olution of the atomic density operator in a form
which does not depend upon its being a Hermitian
operator with unit trace, but which remains con-
sistent when it is allowed, in a formal sense, to
be a general operator in the state space of the
atom. To accomplish this, it is sufficient to note
that the collisional process must be represented
by a transformation on a general atomic operator
p, (t) which preserves its trace, is linear, and
transforms it into pz if it is Hermitian and has
unit trace. It is not difficult to show that the only
transformation which satisfies these requirements
is

(a) a~=- 1), ,{0I, (b) a-=~0), .{1, (2 3)

pr =nr a'a+(1-nr)aa', (2. 5)

and the coupli. ng parameter X is related to the di-
pole matrix element p, by means of the expression

X=(p, e,)/au 2. (2. 4)

I et us now assume that the atom suffers random
strong collisions" which abruptly thermalize its
state. It is thus described immediately after a
collision by the density operator'

n(t) = Tr (p, (t)a-'a},

a(t)-=Tr(p, {t)a},
n+(t)-=Tr(p. (t)a'},
m(t)-=Tr(p, (t) aalu},

obey the equations

N
—n(t) =tag(t)o. +(t) -t~+8+(t)a(t)

-g(1 -n, )n{t) + ~ n, m(t),

(2. 1Oa)

(2. 1Ob)

(2. 10c)

{2.1Od)

(2. 11a)

where nz is the thermal-equilibrium probability
of finding the atom in its excited state

1/(1 +eh(u0/hT) (2. 6)

If we assume that the probability that a collision
takes place between the times t and I;+dt is 1{.dt,

—, c {t)= -t~S(t) [n(t) -m(t)] -(~+t~,)n(t),
(2. lib)

—n*(t) = y. '8+(t)[n(t) -m(t)] —(h i(uo) n*(t), -
(2. llc)
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d
dt dt
—m(t) = ——n(t) . (2. 11d)

In the case in which the incident field is the
harmonic function

and (2. 10b) are taken to be the familia. r oscillator
lowering and raising operators, and n~ is taken to
be the thermal expectation value of a~a. For the
case of zero temperature, the expectation values
in Eqs. (2. 16) satisfy the relation

$ (t) = 8 pe
'"' (2. i2)

(2. 1V)
the excitation probability n(t) and the dipole mo-
ment amplitude n(t) have the equilibrium values'

n„=g 0'+n, [x'+ ((o -(op)'])/ [&'+x'+ ((u —~p)'],
(2. 13a)

n„(t) =e '"'"~P,~'+'(~ —~P)], (i —2n, ), (2. iSb)
0 +g + ((d —(dp)

and the oscillating atomic dipole moment is thus
the sum of a coherent and a fluctuating or inco-
herent component, each with the same mean inten-

ty I p l2 lz I'
~

III. FOYER ER SPECTRUM OF THE RADIATED FIELD

in which the parameter 0 is defined as

(2. i4)

The power spectrum of the field radiated by a
two-level atom may be shown to be equal (in the
dipole approximation) to some simple factors
times the function

The excitation produced by the driving field is
given by the expression g(v) = f dve„'"'g(v), (3. i)

&n„=n„—nr = [2 t-l (1 —2nr)]/[&'+~'+((o -~p)']
(2. iS)

where g(v) is the atomic correlation function

g(v) =(a'(t')a(t'+v)), (3. 2)

n„=nr+ —ti / [K + (& —&p) ]

and n„(t)=e '"'ikhp/[x -i(v -&op)]

for 0 «x +(&o -&op) and nr«1.

(2. i6a)

(2. 16b)

which is essentially the absorption line-shape
function for our model, since the mean rate at
which the atom absorbs energy from the incident
field is equal to the collision rate K times the
mean loss in internal energy hcop~n„of the atom
during a collision. It should be noted in this con-
nection that since by assumption the collision rate
is much greater than the natural decay rate Kp

tug /sr 5 c', the mean total power gpss &op &n„
of the scattered field (which is equal to total ra-
diated power KpS~pn„minus thermally radiated
power xpk&upnr) represents only a very small frac-
tion of the energy loss of the incident beam. The
contribution of the scattering process to the atten-
uation of the incident beam has been omitted from
our analysis, which does not include terms repre-
senting radiative damping in the equations of mo-
tion for the atomic density operator.

In the limit in which the driving field is weak
enough [0 «x + (ur —u&p) ] and the temperature
low enough (nr«1) so that saturation effects are
unimportant (n„«1), the response of the atom to
the driving field is essentially linear, and the
equilibrium expectation values of n and n are giv-
en by the relations

(r; t')=Z', (v)e-' ' (s. 6)

The functions %,„(v) and&' (v) may be found
directly for the model we are considering by
solving the linear Eqs. (2. 11) for the case $(t)
=Spe '"', and identifying the coefficients of
n(t') and e '"' m(t'), respectively, in the solu-
tion for n(t' +r) It is conve. nient to introduce
complex parameters z, s, and s by means of the
definitions

which in equilibrium is independent of t . In Ref.
10 it is shown that the functiong(v) may be ob-
tained by first solving the coupled equations for
the atomic expectation values defined by Eqs.
(2. 10) in terms of their values at some initial time
t', and expressing the solution for n(t '+v) in the
form

n(t'+v) =m„„(v; t')n(t ')+'a„, (v; t')n(t ')

+~„,*(v; t')o. *(t')+e (v.; t')m (t'),

(3. 3)
where v & 0. The function g(v) may then be ex-
pressed (in equilibrium) as

g(v) =& „„(v)n„+e.', (v)e '"' n*„(t'), (3.4)

where use has been made of the fact that for a
harmonically oscillating driving field, M„(v; t )
is independent of t', while %L, (v; t') has the
form

It is worth noting that these expressions are valid
for arbitrary temperatures and field strengths in
the case in which the atoms in question are har-
monic oscillators rather than two-level systems,
if the operators a and av in the definitions (2. 10a)

8=K+2~(0 p

S, =- —K+20',
where ~v is the frequency difference

p

(3.6a)

(3.6b)

(3 7)
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and 0' is the Rabi" frequency of population inver-
sion

n' = [n'+ (~~)']"' (3.8)

We find that the Laplace transform functions

~, (s)-=f, dr e " ~ (r), (S.9a)

(s)-=f dre *' g' (r), (3.9b)

may be expressed in terms of these parameters
as

(s+K) (s+z)+~ nw

(s+K) (s-s,) (s-s ) '

(s+z) [s+K(1 —2n„)]
s(s+K) (s —s+) (s —s )

(3. 10b)

By making use of.these relations and Eq. (2. 13b)
in Eq. (3.4), we find that the Laplace transform
of the atomic correlation function

g(s)=- f, dre "g(r)
is given by

.
(

. (s+K) (s+z)+-,' n'
(s +K) (s -s,) (s —s )

(s+z) [s+K(1 —2nr) ]
S (S + K ) (S —S ) (S —S )

(s. 11)

in which n„and nn„are given by Eqs. (2. 13a) and

(2. 15), respectively. The time-dependent cor-
relation function g(r) may be evaluated directly by
inverting the Laplace transform (3. 12) to find its
value for v & 0, and then using the Hermiticity re-
lationg(-7) =g*(r) to evaluate it at negative times.
We find

g(r) I
+

I
ss i(d1' +c - itd'f -)()'+c 8- i(l)t +8 „1'

(3. 13) represents the coherent harmonically oscil-
lating component of the atomic dipole moment. It
is convenient to separate out the remaining inco-
herent component by means of the definition

g(r)-=l~-I's ""+gi..(r) . (3. 16)

M+ —(v —&() + n' )N, M —(v —i() —n' )N

(v —i()+ n ) +K (v —(() —n ) +K
(s. 19)

in which the parameters Mo, No, M„and N, are
defined by the relations

M, =«n„n'/n' '+2« ~g„n,(n~)'/n",

No= 2« hn„nzb&o/n',
0' + ~& 0' + ~w

(S. 2Oa)

(s. 2ob)

(3. 2Oc}

--', g 6S„RK (ll' s Aa ) (0 ' Lto + v
))n) (n~)2) n)

The Laplace transform of g,„,(7) is then

gi-(s) =g(s) —
I &-I /(s+&(d) (3 17)

and the spectral correlation function defined by
Eq. (3. 1) is given by the relation

g(v) = 2wI (w„I '5(v -(o) +g,„,(v)

= 2wI(w„I 5(v -(d)+ 2Retg, „,(-iv)], (3. 18)

where g,„,(s) is defined by Eqs. (3. ].7) and (3. 1.2).
Either by making use of these relations or by di-
rectly evaluating the Fourier transform of Eqs.
(3. 13) we find that g(v) may be expressed in the
form

g(v) =2wIn. I'5(v-~). ' ~(v-(d) +«

- &N'P +S
7

for v& 0 (S. 1Sa) (s. 2od)

g(r) I
&

I

I -i(l))'
C~

- i(l)) +)() Cl(l -(Ml'-s w

» f40T -S for 7 +0 (3. 13b)

(3.15)

The first term on the right-hand side of Eqs.

where I n„l is the modulus of the right-hand side
of Eq. (2. 13b), and the coefficients Co, C„and
C are defined as

C, =-,'iT„n'/n" +~n„n,s+z ~~/n' ', (S. 14)

and

The spectral atomic correlation function g(v),
which is proportional to the power spectrum of the
field radiated by the atom, is thus given by Eqs.
(3.19) and (3. 20), in terms of the collision rate K,
the mean thermal excitation probability nz, and
the parameters defined by Eqs. (2. 13) —(2. 15)
and (3. 6) —(3.8).

The expression (3. 19) for the spectral density
g(v) resembles the result which has been found'
for the case in which the atomic relaxation mech-
anism is radiative rather than collisional. An
important difference between the two cases is that
for radiative damping No=0, M, =M, and N, = -N
and hence g(v) is a symmetric function centered
at the driving frequency v, i.e. , g((() + v) =g ((d —v).
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g(v)= a s
~ 2a6(v-u))40

(Ql —co s) + K

(CO —(Oa) +K (v —(ds) +K
(8. 22)

for 0« ~zi and nr«1,

which, like Egs. (2. 16), may be shown ln the case
of harmonic oscillators to be valid for arbitrary
field strengths and temperatures. In addition to
the thermal spontaneous emission field propor-
tional to n&, the spectral density given by Eq.
(S. 22) consists of two components of equal inte-
grated intensity, one a coherent component at the
driving frequency w, and the other a Lorentzian
function of width I(;, centered at the atomic reso-

No such symmetry relation is satisfied in the case
of collisional relaxation.

In the absence of a driving field (0 = 0} we have
0' = 4(d =- + —(d&, and the only nonvanishing term
among theparameters definedby Egs. (2. 18b) and

(3. 20) is M, =2znr. The spectral density is then

simply the Lorentzian function

g(v) = 2~nr/[(v-(os)a+as], (II =0) (3.21)

which is the familiar thermal spontaneous emis-
sion field.

In the low-excitation limit described by Eqs.
(2. 16), we find with the aid of Egs. (8.19), (S.20),
and (2. 16), that the function g(v} is well approxi-
mated by the expression

1 +(gt g+)s/gi s
+

( Ilg )s s for sr

while in the limit of very intense driving fields,
O'-0, and me find

(S. 28)

1
p K 4K 4&

g(v)= s s+ s a+ a s
(v &) +K (v —(@+II) +K (v —(0 —II) +K

for IIs» ((o -(oa)a+x (S.24)

a result which depends upon temperature only
through the temperature dependence of the col-
lision rate x.
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of width ~, one centered at the driving frequency
v, and one at each of the displaced frequencies
&+0' and + —O'. In the high temperature limit,
me find

1
~ g s//Ilia l (gs +~ )s//gts

(v —(8) + K (v —(0 + 0 ) + K
s+'
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