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The matrix elements of a c.m. transformed molecular Hamiltonian for a wave function
constructed from a symmetrized product of one-particle orthonormal spin functions ar'e given
in terms of the integrals over the coordinates of the particles. These matrix elements are
necessary to study the structure of deuterated molecules such as D20, ND3, CD4, etc. The
integrals are the same as those found for antisymmetric wave functions withthe exceptionof
the two-partiole integrals of the form J gi~(l)g&*(2) (r&2) g& (l) g, (2) dV, when two bosons
occupy the same spin function. There are, however, significant differences in the matrix
elements.

single-particle functions.

%e have discussed the protonic structure of
rnolecules in several papers. ' A natural extension
of that work is the investigation of the structure of
deuterons in rnolecules. Deuterons, however, give
rise to different matrix elements than those found

for electrons or protons, since they are bosons.
In this paper, we give the matrix elements for

symmetric wave functions made from products of

The wave functions which we will use will be a
sum of products of orthonorrnal spin functions
such as

gt(n&)e's(ns) g, (n.)

The n s represent occupation numbers, or the
number of bosons ing, , and g;n&=N, where N is
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the total number of particles. The wave function
is the sum of all permutations of the N bosons, or

g = (N!) "'Z!..P'[g, (n, ) g, (n, ) ~ g„(n„)],
but the permutations which interchange bosons
within a function do not change g. There are
n&.' na.' ~ ~ n„ f such permutations. Our normalized
function is, therefore,

$=(n, !n,! n„!N!) '"Zp P'

[gi(ni)g2( 2)" g.(.)]
III. OVERLAPS

We will consider first the overlap of G, with it-
self. This integral is

S..=(II !n! NI) ' f Z; e'[g!(I) g~(n ) ~ ~ ~

xg„(N -n„+ 1) ~ ~ g„(N)5 p P' [g,(l) ~ ~ ~

xg&(n&) g„(N -n„+ 1) ~ ~ ~ g„(N)] dV,

but all permutations Q
' and P' which exchange bo-

sons within a function do not change either G, or
G&, hence, these permutations do not change S„.
There will be II& n~ t such permutations among the
Q

' and II&n, ! among the P', which when carried
out leave

S„=(II,n, !/N!) f Z, q [g,(1) ~ ~ g„(N) ]"
x&,P[g,(1)" g„(N)]«,

where Q and P are the permutations which exchange
bosons between different functions. Now we can
perform the inverse of each Q which does not affect
G~, since it contains all permutations already or
the integral because we are in effect just relabeling
the variables of integration to get

S = f g*,(1) ~ ~ ~ g*, (n,)" g„*(N -n„+1) ~ ~ ~

xg (N)Z p [Pg(1!) ~ ~ ~ g!(nq) ~ ~ ~ g„(N —n„+ 1) ~ ~ ~

xg„(N) ]dV,

since there remain ¹!/LI;n;! Q permutations.
Any permutation P, except for the identity per-

mutation, will lead to overlap between orthogonal
functions, which will make S„vanish. Therefore,
our integral becomes

s, =II; [f *, (1);(1)dv, ] "*,

but, of course, each integral in this equation is
equal to 1, thus we find S„=1.

A symmetric function G, may differ from and be
orthogonal to another symmetric function G, in the
following ways: (i) The functions G, and G, may
have the same basis functions g& but different oc-
cupation numbers; (ii) G, and G!, may differ in
basis functions but not in occupation numbers;
(iii) G, and G!, may differ in both basis functions

and occupation numbers; (iv) G, and G, may differ
in the number of basis functions that each has; (v)
G, may differ in the number and type of basis func-
tions. We will now show that S„=0 for all the
cases described above.

Case 1. In this case the basis functions are the
same, but all or some of the n& of G, are unequal
to the m& of G&. The overlap integral S„is

S„= (II,n, !II,m, !) "'(N!)-'j 2, , q [g,(1)~"

xg, (n, ) ~ g,(N n;+-1) ~ ~ g, (N) ]

xQp. P' [g,(1) ~ ~ ~ g, (m, ) g, (N-m, +1)

x g, (N)]dV

When we carry out the Q' and P' permutations
which permute bosons within a function, we get

S,!!= (II!n! !II!m!!)' (N! )
'

g gg 1 ~ ~ ~ g N

xp ~P [g,(1) ~ "g, (N)]dV .'

That becomes

S., = (1I,m,. !/II,.n, !)"'jg ", (1) g *, (N)

x~aP[gi(1) "g.(N)]dV

when we perform the N! /g&n; inverse Q opera-
tions. From this expression, we get our final re-
sult. We have already shown that any P' other
than the identity leads to a vanishing integral even
when all n&=m~. If some of the n; are different
from the m;, then even the identity operation gives
a vanishing integral. Suppose that n„&m„, which
necessarily means that some n, &m, and further-
more, that n„=m, and n, =m„; then the integral is

f&r, s

x[fg,*(1)g,(1)«, ]""[fg.*(1)g,(1)«, ]" -"

x[f g. (1)g,(1)dV&]

since the overlap between g, and g„ is zero.
Case 2. In this case, the occupation numbers

are the same, but the basis functions are different.
Suppose that g, i~ in G, occupied by n; bosons, and
g'; is in G, occupied by n; bosons. One can easily
see that S,& is 0 by looking at the development of
S„and noting that regardless of the permutation
P' there will always be overlaps either between a
g; and a g', and/or between a g; and a g;. For the
same reason, the integral vanishes when G, and G,
differ by more than one basis function.

Case 3. This case leads to S„=O for the same
reasons that were given for case 1 or case 2.

Case 4. Suppose that G, has x basis functions
and G

& has y basis functions, and that x = y + 1, and
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The integral involving the Hamiltonian are more
complicated but just as straightforward as the
overlap integral. We will begin with the one-deu-
teron integrals. These are

U, »= f G,*Z „u„G»dV,
whel e,

u„= —(1/2!L„)v '„+ (Z/~„),
and where

(mm„/-m +m„),
where m& is the mass of the deuteron, Z is the
charge of the atom chosen as the origin of the rela-
tive coordinate system, and x& is the distance from
the deuteron to that atom. The simplest integral
is the one with G, = Gb. After we perform all the
trivial Q

' and P ' permutations and the inverse Q
permntations which do not affect /au„(since this
is a symmetric operator), this integra, l will be

U, = f g *, (1) ~ g „*(N) Z „u„
x Z P[g (1) g (N) Jdv

Any permutation P other than the identity leads to
overlaps over orthogonal functions. For the iden-
tity, we find that for each A we will get one integral
of the form

f g„*(A)u„g„(A)dV„,

and since there are nr such integrals for

A = 1+7. n; through
r-1

A=n„+ Z n, ,

we will, in fact, get nr such integrals, but this is
true for all n;. Therefore, we have

U, =Z;n; f g *;(1)u,g;(1)dV, .
Each of the five cases which we have considered

all g; for i = 1 to y are the same for both G, and
G,. Thenwe find that at leastone ni &m, . We can
relabel the variables of integration such that it is
n, &m, . It is also true that n, +n„=m, . We know
that all permutations P ' which exchange bosons
among the g; of G, will lead to a vanishing integral
except for the identity, and that leads to

S,»= (m, !/n, !n, !) H [f g*;(1)g;(l)dvq]"'

x[f g,*(1)g,(1)dV ]"'[fg.*(1)g,(1)dV ]"";
but the overlap between g„and g, is 0; therefore,
we have S,b

= 0.
Case 5. In this case, G, and Gb differ in the

number and in the type of basis functions. Here,
S„=0 for one or all of the reasons previously
given.

IV. MATRIX ELEMENTS OF HAMILTOMAN

for the overlap integrals gives a different result.
Case 1. We will suppose that G, differs from Gb

because two of the n s are different. Say that nr
&m„; hence, we find that some n, &m, such that
nr = nz, and n, = m„. In this case, only the permuta-
tions P which place the deuterons of G, into coinci-
dence with those of G, for all gi i &x or s will lead
to nonvanishing integrals. Furthermore, any u&
other than an A labeling a deuteron in gr or g, will
lead to a vanishing integral, because for any of
those u&'s there will always be at least one overlap
between a g„and a g, . Our integral is, therefore,

U, = II [f g*;(1)g;(l)dV, ]"'
i~ r, s

x f g„*(1) g„*(n„)g,*(n„+1)~ g,*(N)Z„u„
xQr P [g„(1)~ ~ ~ g„(m„)g, (m„ i 1) ~ ~ ~ g, (N) ]dV,

where the permutations P are only those which af-
fect the nr+n, deuterons. A runs from 1 to N
= nr+ns = ~r+~st and dV =dV$ ' ' 'dVns+nr' The
overlaps, of course, equal unity. Consider the
case n„=m„+1. Any P which affects the last I,—1

deuterons will lead to a vanishing integral, because
for these permutations we will have more than one
integral involving the orthogonal orbitals gr and

g„at lease one of which will be an overlap for any
A. For example, consider the permutation leading
to

U„(P)= f g „*(1) g„*(n„)g,*(n„+1) g,*(N)

xZ&uzg, (l) ~ g„(m„)g,(m„+1) ~ g„(N) dV .
For A=1, we get

U„(P) = f g „*(1)ugg, (1)dvg f g„"(n„)g,(m„+ 1)dV„„

x f g,*(N)g„(N)dV„=O .
The result is the same for any A, and any other

P of this type mill give a similar result. There-
fore, me only need to consider the mr permutations
which exchange the m„+1 deuteron in g, with the

mr deuterons in gr plus the identity. Each one of
these nr permutations will give one nonvanishing
'ntegral. Let us see how this happens:

U. (A)=f g, (1) g„'(A) g,*(n,)g*,

x(n„~ 1) . . g,*(N)u„p, P[g„(1) g„(m„)

xg, (m„+ 1) ~ ~ g, (N) ] d V,
where A ~ nr.

There is one P which places A ings and mr+1 in
g„such that

U. (A)=[f g,*(1)g,(1)dV ]"" '

x[ f g, (1)g,(1)dV, ] "& f g„*(A)u„g,(A)dV„

= fg„*(1)u, g,(1)dV, ,

but we will get a similar result for each A~ n„.
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For A &m„, we will get for any P at least one
overlap between g„and g,. Therefore, we have

U„=n„fg*„(l)u,g,(l)dV, .
If n„&m„+1, then U, i, =0 because, regardless of

the permutation P or the UA, there will always be
at least one overlap integral between a g„and a g,
orbital. Now, if more than two of the ni are dif-
ferent from the m i, U, &= 0, because for any A there
is no way to avoid overlap integrals over orthogonal
orbitals. Therefox e,

U„=n„j g „*(1)u, g, (1)dV, 5(n„, m„+ 1)

xg(n„m, -l) g g(n„m, ).
i~ tqs

Case 2. Suppose that g„ is in G, and orthogonal
to g'„which is in G& and that n; = m; for all i. The
result for this case is

U,„=n,f g„*(l)u,g'„(1)dV, &(n„, m„)

x II 5(n„m,.),
i&r, s

x Z S [g,(1)" g„(.V)]dV„dV, .
Now A and 8 can be in one gi or A. can be in gi and
8 can be in g~. For the first possibility, we find
that only the identity permutation gives a non-
vanishing contribution. This contribution is

Q ( [~ n ((n, —1) ]I, ,

where

I&= f g f(1)g*,(2) wiag & (1)g&(2)dV, dva .
Note that this integral cannot occur for fermions.

For the second possibility, we find that for each
A. and B there are two permutations which give non-
vanishing contributions. These ar e the identity
and the one which exchanges A and B. This con-
tr lbutlon ls

Z Z n, [Z„+Z,, ],
ini

where

J„=f g f(1)g,*.(2)w„g,(1)g,(2) dV, dV, ,

since only the identity permutation gives a contri-
bution. If G, differs from G& by more than one
function, then U„=0.

Case 3. This case is the same as case 2 but not
all of the ni=m;. Here we have U,~=O.

Case 4. In this case, G, has y basis functions
and G& has x basis functions. Suppose that y =x+ 1,
ni =m; for all i = 1, x —1, and n„+n~ = m„. Then, if
we have arranged the g; such that we have x =y —1
= x„we find that any permutation involving the
deuterons labeled 1 through P, , n, will give zero
contribution. Therefore we have

U.,=(m„!/n„! n, !)'"fg „*(1)" g „'(n„)g,*

x(n, +1) "g,*(X)Z„u„g„(1). . g„(m„)dV .
For A = 1 through A = n„, we get zero contribution
because of overlaps between g, andg„. If n, & 1,
we find that U,~ =0; but for n, =-1, we get

U,,=m~ 2 f g~~(1)u~g„(1)dv( &(n„, m„—1)

x II 5(n„m;) .
i4x or y

Case 5. For this case, we have U,&=0.
We will now consider the development of the in-

tegrals involving the two-particle operator

w~a =(1/~~a) —(1/m) &~ &a .
We will begin again with the G, = G~ case. The

integral is

W, = f G*, Z, P w„e G,dv„de
A B&A.

= f g f(1) "g.*(&)Z Z,
A B&A

K;J = f g *;(1)g,*(2)w, g, (2)g;(1)d V, d V

thus, we have

W, -Z [, n, (n; —1)]I,+n, Z' n, (t;,+K„) .
We will now proceed with cases 1 —5 as before.

Case 1. Suppose that ni=mi for all i except x
and s and that n„&m„,which implies that n, &m„
n„=m„and n, =m„. We will arrange the variables
of integration so that g„and g, are the last two or-
bitals. Our integral is

w., =f g*, (1) "g*,(,) g„*(iv„+ „)" g„*

x (N„+n),g(N„+ n+ 1) ~ ~ g,*(N)

~ ~ [g,(1)".g,(,)

x ~ ~ ~ g„(M„+1) ~ ~ ~ g„(M„+m„)

xg,(M„+n„+1.) ~ g,(~) ]dV,
where

~ 1 g-1
n; and M„=Q m,

i =i

Any permutation which exchanges a deuteron in g„
or g wjth one jn any g . j g y s gives zero con
tribution to W,&, because regardless of u» there
will always be an overlap between orthogonal or-
bitals. Furthermore, any integral involving zv AB

for A and B not in g„or gs mill give zero contribu-
tion for the same reason. Therefore, we have

W.~= f g( )1"g,*(m,)g.*(m, 1) "g,*(~)
xZ Z w Z P[g„(1) g„(m„)

A B&A P
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&«(m +1) g (Z)]dV

where now N=n„+n, =m„+m„A and 8 range fxom
1 to N, and the permutations P involve only the
n„+n, deuterons. Now suppose that n„=m„+ 2 and

n, = m, —2. If A Rnd 8 are both in g„on the left-
hand side of the operator, only the permutation
which exchanges A and 8 with m„+ 1 and m„+2 will
g1ve R contllbutloQ to Wgy. But th18 18 tx'ue fol Rll
A and 8~ n„. Therefoxe, we have

W.,= —.
' n, (n, —1) f g,*(1)g,*(2)~,.g,(1)

xg, (2) dV, dV, 6(n„, m„+ 2) 6(n„m, —2)

&(n(, m,),
tlp~s

since for allA and 8 &n„we get zero contribution
and similarly for A ~ n„and 8 &n„.

If we hRve n~= m~+ 1 RQd ns=m~ ™"Ilp %'6 find RgR1Q

that A Rnd B~ m„ for the nonzero contributions;
but we now have two permutations for each A and
8 that give nonzero contributions. These are the
identity and the permutation which exchanges A and

B. Since this is true for allA and 8&n„, we get

W.~= ln, (n, —1)f g,*(1)g,*(2)~»g, (1)

&&g,(2)dv, dva+ fg„*(1)g„*(2)

x svqa g„(2)g,(1)dvqd V2 5(n„m„y 1)

«( .. .-1) II ~(;, ;) ~

14/gs

If n„=m„+ 1, ns = ms —1, n~ = m)+ 1, and ng = m„
—1, our integral becomes

W, &
= fg „*(1)~ ~ ~ g„*(n„)g,* (n„+ 1) ~ ~ ~ g,*(n„+n,)

xg,*(n„+n,+ 1) ~ g,*(n„+n,+ n, ) g„*(n„+n,

+n +1) ~ ~ ~ g*(N)Z Z. aogg
g &A.

&&2 S[g„(1) "g,(X)]dV.

g „'; all n
&
= m &. If n„&2, the integral vanishes be-

CRuse there 18 Do wRy to Rvold RD ovellRp integral
over orthogonal functions. If n„= 2, then only uzi
with A and 8 in g„of G, will make a, contx ibution;
but this means that only the identity permutation
can make a contribution. Therefore, we have

W„=fg„*(l)g„*(2)sv»g'„(1)g'„(2)dV,dV2

«(n„, 2) II, ~(n„m,.) .
If G, differs from G& by two functions, e.g. , g„&g„'
andgs&g, ', whereg„andg, are in G, andg„'and
g,' are in G~, then we have n„=m„=1 and n, = m,
= 1 for the integral not to vanish, and only so&~

with A in g„and 8 in g, will make a. contribution.
Therefore, we have

w„=[fg,*(1)g~(2) ~„g'„(1)g,'(2) dV, dv,

+ fg~(l)g„*(2)zo„g'„(2)g',(1)dV, dV, ]

&&II, &(n„m,) .
If G, differs from G& by three basis functions, then

W,~= O.
Case 3. In this case G, and G& differ by having

different basis functions and diffex'ent occupation
numbers. The integral is 0 unless G, and G& differ

by only one basis function. If it is the xth function

that is different, two relations between the n& and

m
&

lead to a Qonvanishing integral. The first is
n„=m „+1 = 2, n, = m, —1, and n

&
= m

&
for all i & x or

s, which leads to

W.&= (l m.)"'Efg,*(»g,(2)g!(1)g.(»d VidV3

+ fg,*(1)g,*(2)~i2g!(2)g,(1)dvandva

&& ~(m„, 2) ~(m„, m„+1)~(m„m, - 1)

x II s(n„m, ) .

18nw mr 1& ns ms ~~ n

=m, +1 and n&=m, for alii &x, s, t, which leads to

Qfe find that we get nonzero contributions only when

4 is in g„and 8 is in g, on the left of the operator.
For these A and 8, two permutations, the identity

Rnd tile one whlcI1 exchRnges A Rnd 8 give Qonzero

contributions. The result is that

W.,= n„n, fg „*(1)g t (2) av „g,(1)g „(2)d V, d Vg

+ fg,*(1)g ~ (2) n iag. (2)g.(1)dvidv2

«(n„, m„+1) &( „n,n—1) 5(n„m, +1)

&«~(n„, m„- 1) II &(n„m,).
i &t', s, t, Q

If the n; differ from the m; in any other way, then

&a~= O

Case 2. Suppose that G, differs from G& by one

basis function. That is, G, has g„where G& has

W„= (m, n, )"'[fg „*(1)g+(2)~„g'„(1)g,(2)

xdv, dv, +fg, (1)g,*(2)w»g„'(2)g, (l)dV, dV, ]

&& &(n„, 1) &(n„, m„) &(n„m, —1) &(n„m, +1)

x II 5(n„m,.) .
k&r, s, t

Cas8 4 IQ t1118 ca86) Gg Rnd Gy d1ffex' 1Q the

Dumber of functions. Let G, have x basis functions

and G& have y basis functions such that x &y. If
x= y+3, then the integral vanishes. If y =x+2,
then we must have some g„ in G, with n„deuterons,
Rnd g~~ gs, gg 1D Gy with m„deuterons~ such thRt

n„=m„+2 and n, =m, =1, if the integral is not to
vanish. The Donvanishing contributions to the in-

tegx al are
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!V =(m, '/. ,!)'"fg,*(1)" g,*(n,)Z Z ~..
A 3&A,

x Q ~[g„(l) ~ ~ ~ g„{m„)g,(m„+l)g,(n„)]

=a [n, (n, —1)]"'[fg,*(1)g,*(2)~iag, (1)

xg&(2)dVidV2+ fg,*(1)g,*(2)~»gs{2)g~(1)

xdv, dv, ] ~(n„, m„+2) II &(n„m,) .

If x = y +1, then we will get a nonvanishing integral
if some g„ in G, has n„deuterons and some g„and
gs in G~ have m„and ms deuterons, such that n„

+2 and ms=2 or nr=~r+1 and ms=1. For the
first possibility, we get

W„=[-.' n„(n„-1)]"fg „*(1)g „*(2)~»g, (1)

xg, (2) dV~dV25(n„, m„+2) 5(m„2)
x !1 6(n„m,.),

and for the second possibility, we get

W, &
= 2n„' (n„—1) [g„(l)g„*(2)m» g(l) g( )2

xdV, dV, + fg„*(l)g„*(2)n»g„(2)g,{1)dV,dV, ]
x 5( „,m„+ 1)5(m„ 1) II &(n„m ) .

far, s

Case 5. In this case G, and G& differ both in kind
and in number of basis functions. Suppose that G,
has g„where G& has g „', and G has x basis functions
while G, has y basis functions with x& y, then

W„={m,! m„!/n, ! ~ n„!)'"fg*, (1) ~ ~ ~

xg &(n&) ~ ~ g„*(~„+1)~ ~ g~~(~„+n„) ~ ~ g„*(iV)

x& ~ ~~a»[g~(1)
A S&A, I'

xg„'{~„+1)."g„'(I„+m„) "g,(~) dV .
We know from case 2 that 8',&= 0 unless n„=m„= 2
and all other n~ = rn &. Since we cannot satisfy the
second condition, we know that n„cannot equal 2
and be equal to I„. However, if we look at the
first relation between the n's and m's of case 3 and
set n, =0, we will get a nonzero contribution. That
is, if n„=m„+1=2, andes=1, wheregs is the
basis function in G&, which does not appear in G„
we will get

W, =2 [Jg„*(1)g„*(2)gg)g„'(1.)g (2)dV)dv

+ fg .*{1)g,'(2) ~»g !(2)'g.{1)de «3]&(n„2)
x 6(n„, m„+1) a(m„ 1) II s(n„m, ) .

f &r, s

The second relation, again with n, = 0, will lead to

!V„,=n g"[Jg„*(1)g,*(2)u „g„'(1)g,(2) dV, dV,

+ fg ~(l)g,*(2)~»g „'(2)g,(l) d V, d V, ]

x!!(m„,1) 6(m „, m„) g(m„ 1) g(n„m, —1)

x II
kWt', s, t

If G, differs from G& by two functions, and G~ has
more basis functions than G„ then 8'„=0, since
we cannot have all n& =I

&
as was shown to be nec-

essary in ease 2. If G, differs from G~ by three or
more functions, then 8',~=0.
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