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The matrix elements of a ¢, m. transformed molecular Hamiltonian for a wave function
constructed from a symmetrized product of one-particle orthonormal spin functions are given
in terms of the integrals over the coordinates of the particles. These matrix elements are
necessary to study the structure of deuterated molecules such as D,0, ND;, CD,, etc. The
integrals are the same as those found for antisymmetric wave functions with the exception of
the two-particle integrals of the form [g;*(1)g;*(2) (rp) 'g; (1) g; (2) AV, when two bosons

occupy the same spin function.
elements.

I. INTRODUCTION

We have discussed the protonic structure of
molecules in several papers.! A natural extension
of that work is the investigation of the structure of
deuterons in molecules. Deuterons, however, give
rise to different matrix elements than those found
for electrons or protons, since they are bosons.

In this paper, we give the matrix elements for
symmetric wave functions made from products of

There are, however, significant differences in the matrix

single-particle functions.
II. SYMMETRIC WAVE FUNCTION

The wave functions which we will use will be a
sum of products of orthonormal spin functions
such as

&1 £2(n) - g.ny)

The n;’s represent occupation numbers, or the
number of bosons in g;, and };»n;=N, where N is
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the total number of particles. The wave function
is the sum of all permutations of the N bosons, or

b= (N!)_I/Z EP'P,[gl(nl)gz(nZ) e gx(nx) ] ’

but the permutations which interchange bosons
within a function do not change . There are
ny!nyle ++ n,! such permutations. Our normalized
function is, therefore,

b=(nyglmglee - n INI)Y2 200, P’
X[ g1ny) galns) -+ g.(n,) ] .
III. OVERLAPS

We will consider first the overlap of G, with it-
self. This integral is

Saa= [T ! ND™ [ Z 0 @ [£1(1):++ g1(n) ++ -
xgx(N"nx+1)' v gx(N)EP‘P'[gl(l)' .
Xgl(nl)' * 'gx(N_nx+1)' e gx(N)} av,

but all permutations @’ and P’ which exchange bo-
sons within a function do not change either G, or
Gp; hence, these permutations do not change S,,.
There will be II;7,;! such permutations among the
@' and Il;n,;! among the P’, which when carried
out leave

Sga= (Hini!/NI)f ZQQ[&(I)‘ . gx(N)J*
X2, pPlgy(1)+ - g,(N)]aV ,

where @ and P are the permutations which exchange
bosons between different functions. Now we can
perform the inverse of each @ which does not affect
G,, since it contains all permutations already or
the integral because we are in effect just relabeling
the variables of integration to get

Sw=J 51 g¥ny) o g (N =ny+1). ..

Xg:(N)ZPP[&(l)' <o g1lng) - g (N=ny+1)...
Xg{N)]dV ,

since there remain N! /T];»;!Q permutations.

Any permutation P, except for the identity per-
mutation, will lead to overlap between orthogonal
functions, which will make S,, vanish. Therefore,
our integral becomes

Su=IL[ [ ¥V g(Dav,]™ ;

but, of course, each integral in this equation is
equal to 1, thus we find S, =1.

A symmetric function G, may differ from and be
orthogonal to another symmetric function G, in the
following ways: (i) The functions G, and G, may
have the same basis functions g; but different oc-
cupation numbers; (ii) G, and G, may differ in
basis functions but not in occupation numbers;
(iii) G, and G, may differ in both basis functions

and occupation numbers; (iv) G, and G, may differ
in the number of basis functions that each has; (v)
G, may differ in the number and type of basis func-
tions. We will now show that S,,=0 for all the
cases described above.,

Case 1. In this case the basis functions are the
same, but all or some of the n; of G, are unequal
to the m; of G,. The overlap integral S, is

Sap= TLin L DV2WD™ [ 20 Q" [g4(1) - -
Xgilny) - gi(N=n;+1). .. g,(N)]*
i XEP’ P’ [gy1)-«- gylmy)+ -+ gi(N=m;+1)--
x &4{N)]dv

When we carry out the @ and P’ permutations
which permute bosons within a function, we get

Sao=[Lin; ITym  DV2 (N1)7!

% [Do0lait)-- gdM]*
x2 pPlgi1): - gi(N)]av .
That becomes
Sw=@Lm;! Min )2 [ g¥(1)++- g T(N)
X2 pP[g,(1)++ g{(N)]dV ,

when we perform the N! /II;n; inverse @ opera-
tions. From this expression, we get our final re-
sult. We have already shown that any P’ other
than the identity leads to a vanishing integral even
when all n;=m ;. If some of the n; are different
from the m;, then even the identity operation gives
a vanishing integral. Suppose that n, >m,, which
necessarily means that some »n, <m ¢ and further-
more, that n,=m g and ny=m,; then the integral is

Sw= II [ [ gt g1)av,]™
itr,s

<[ [gXV)e,)av, ™[ [ g*1)g, (1) av,]rm

<[ [ g¥()g()av,]™ =0,

since the overlap between g, and g, is zero.

Case 2. In this case, the occupation numbers
are the same, but the basis functions are different.
Suppose that g; is in G, occupied by »; bosons, and
g is in G, occupied by »; bosons. One can easily
see that S,; is 0 by looking at the development of
S.e and noting that regardless of the permutation
P’ there will always be overlaps either between a
giand a g and/or between a g; and a g;. For the
same reason, the integral vanishes when G, and G,
differ by more than one basis function.

Case 3. This case leads to S,,=0 for the same
reasons that were given for case 1 or case 2.

Case 4. Suppose that G, has x basis functions
and G, has y basis functions, and that x=y+1, and
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all g; for ¢=1 to y are the same for both G, and
G,. Thenwefind that at leastone n; <m;. We can
relabel the variables of integration such that it is
ny<m,. It is also true that n,+n,=m,. We know
that all permutations P’ which exchange bosons
among the g; of G, will lead to a vanishing integral
except for the identity, and that leads to

Sap= (my ! /! n, )12 _{I [[e¥)g;(av,]™

<[ [ g¥Wg,av, ][ [ g*¥)g,(1)av,]™ ;

but the overlap between g, and g, is 0; therefore,
we have S,,=0.

Case 5. In this case, G, and G, differ in the
number and in the type of basis functions. Here,
S.5=0 for one or all of the reasons previously
given.

IV. MATRIX ELEMENTS OF HAMILTONIAN

The integral involving the Hamiltonian are more
complicated but just as straightforward as the
overlap integral. We will begin with the one-deu-
teron integrals. These are

Uab:f G:Z AU AGydV
where,

us=-1/2u)v4+(Z/rs),
and where

Bq= (mmg/m +my)

where m, is the mass of the deuteron, Z is the
charge of the atom chosen as the origin of the rela-
tive coordinate system, and 7, is the distance from
the deuteron to that atom. The simplest integral
is the one with G,=G,. After we perform all the
trivial @ " and P’ permutations and the inverse @

permutations which do not affect 3,u, (since this
is a symmetric operator), this integral will be

Up=[g¥0) -+ g XN 4uy
X2 pPlgy(1)- - gN)]av .

Any permutation P other than the identity leads to
overlaps over orthogonal functions. For the iden-
tity, we find that for each A we will get one integral
of the form

[ e¥ (A usg,A)av,,

and since there are », such integrals for

r-1 r-1
A=1+2 n;  through A=n,+ 2 n,

i=1 i=1
we will, in fact, get n, such integrals, but this is
true for all ;. Therefore, we have

Ua:Zinif%’f(l)”lgi(l)dvl .

Each of the five cases which we have considered
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for the overlap integrals gives a different result.

Case 1. We will suppose that G, differs from G,
because two of the »n;’s are different. Say that »n,
>m,; hence, we find that some n <m, such that
n,=mg and ng=m,. In this case, only the permuta-
tions P which place the deuterons of G, into coinci-
dence with those of G, for all g; i#% or s will lead
to nonvanishing integrals. Furthermore, any u,
other than an A labeling a deuteron in g, or g, will
lead to a vanishing integral, because for any of
those u 4’s there will always be at least one overlap
between a g, and a g;. Our integral is, therefore,
Up=II [[g1(0)gi1)av,]™

itr,s

X[ g¥1) g¥n)g X, +1) - g X(N) 2D 4uy
><EPP[gr(l)’ b gr(mr)gs(mr+ 1)' e gs(N)]dV )

where the permutations P are only those which af-
fect the n, +ng deuterons. A runs from 1to N

=N, +Ng=M,+M,, and dV =4V, -+dV, ,,. The
overlaps, of course, equal unity. Consider the
case n,=m,+1. Any P which affects the last m —1
deuterons will lead to a vanishing integral, because
for these permutations we will have more than one
integral involving the orthogonal orbitals g, and

g, at lease one of which will be an overlap for any
A. For example, consider the permutation leading
to

Up(P)= [ g¥(1)- - g¥0n) g ¥n, +1) - - g ¥(N)
X2iatuags(1)e - glm,) g m,+1). .. g (N)av .
For A=1, we get
Un(P)= [ g¥Vusg(0)avy [ g¥w,) g m,+1)av,,
x [ g¥(N)g,(N)aVy=0 .

The result is the same for any A, and any other
P of this type will give a similar result. There-
fore, we only need to consider the m, permutations
which exchange the m, +1 deuteron in g, with the
m, deuterons in g, plus the identity. Each one of
these n, permutations will give one nonvanishing
integral. Let us see how this happens:

UnlA)=[ g¥(1)- - gX(A)+-- g¥n,) g
X (1 + 1) e g:(N)uAZPP[gf(l) e gymy)
Xgsm,+1) - g(N)]av,

where A < n,.
There is one P which places A in ggand m,+1 in
&, such that

Un(A)=[ [ g¥) g, (1)av,]™?
X[ [ gs(V)gs(1)avy]"s [ g¥(A)usg(A)dV,

= JeFDusg1)av,,
but we will get a similar result for each A< n,.
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For A >m,, we will get for any P at least one
overlap between g, and g,. Therefore, we have

U=, [ g¥Vug,)dv, .

If n,>m,+1, then U,,=0 because, regardless of
the permutation P or the U,, there will always be
at least one overlap integral between a g, and a g,
orbital. Now, if more than two of the »n; are dif-
ferent from the m;, U,,=0, because for any A there
is no way to avoid overlap integrals over orthogonal
orbitals. Therefore,

Uab:nrfg:(l)ulgs(l)dvl 6("r’ mr+1)

Xﬁ(ns, ms_l) H 6(7’“, mi)-
itr,s

Case 2. Suppose that g, is in G, and orfhogonal
to g, which is in G, and that n;=m; for alli. The
result for this case is

Uab = nrf g :(1) g ;(1) dVl 5(12,., m,)

X H 5(715: mi),
itr,s
since only the identity permutation gives a contri-
bution. If G, differs from G, by more than one
function, then U,,=0.

Case 3. This case is the same as case 2 but not
all of the n;=m;. Here we have U, =0.

Case 4. In this case, G, has y basis functions
and G, has x basis functions. Suppose that y=x+1,
n;=m; for all i=1, x -1, and n, +n,=m,. Then, if
we have arranged the g; such that we have =y -1
=x, we find that any permutation involving the
deuterons labeled 1 through 332%n; will give zero
contribution, Therefore we have

Up=0m,! /un, DV [gX(1) o g ¥ ) g X
X (g +1)e e gX(N)2 qupg, (1) . glm)av .

For A=1 through A:#n,, we get zero contribution
because of overlaps between g, and g,. I n, >1,
we find that U, =0; but for n, =1, we get

Uab:maltlzf g;‘(l)ulgx(l)dvl 6(%,,, My = 1)
x I

i¥x ory

6(7’1“ mi) °

Case 5. For this case, we have U,,=0.
We will now consider the development of the in-
tegrals involving the two-particle operator
wap=(1/74p) = (1/m) V4. Vg .
We will begin again with the G,=G, case. The
integral is
Wo=f YL T wspG,adV,dV,
A B>A
=fg’1“(1). 23400 IS Wap

A B>A
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X é; P[gy(1)--+ g,(N)]dV dV ;.

Now A and B can be in one g; or A can be in g; and
B can be in g;. For the first possibility, we find
that only the identity permutation gives a non-
vanishing contribution. This contribution is

2ilznin, -1 115,
where
Ii= fg}"(l)g )ik(z) w28 (1) g4(2)dV,dV, .

Note that this integral cannot occur for fermions.

For the second possibility, we find that for each
A and B there are two permutations which give non-
vanishing contributions. These are the identity
and the one which exchanges A and B. This con-
tribution is

2 X omldy+Ky],
ini i>i

where

Jij= f i) g ¥(wyp2,(1)g,(2)dV dV,

K= f g¥() g ¥2)wy,g42)g,(1)av,av, ;
thus, we have

Wa=Zi) [3nin; = 1) |1 +n; gz nJ+Ky,)
We will now proceed with cases 1 -5 as before.
Case 1. Suppose that n;=m; for all i except »
and s and that », >, ,which implies that ng<mg,
n,=mg, and ng=m,. We will arrange the variables
of integration so that g, and g, are the last two or-
bitals. Our integral is

Wab:f gr(l)'”gl*(nl)"'gr*(Nr"'nr)"'g:
X(N,+n,)g ¥(N,+n,+1)--+ g ¥(N)
X2 L wABZP[g1(1)---g1(m1)

A BA P
Xoeas gr(Mr+1)' M gr(Mr+mr)

where Xg(M,+n,+1)- -+ g(N)]av ,
r=1 r=1
N,=23 n;and M,=2, m;.
i=i i=i
Any permutation which exchanges a deuteron in g,
or g with one in any g;, ¢#7, s gives zero con-
tribution to W,,, because regardless of w45 there
will always be an overlap between orthogonal or-
bitals. Furthermore, any integral involving w 4z
for A and B not in g, or g, will give zero contribu-
tion for the same reason. Therefore, we have

Wo=J g¥(1)- - g¥im,) g Hm,+1)- . g¥(N)
X7, Z}A wABZP) Plg,(1)-:- g,(m,)

A B>
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Xgm,+1)... g(N)]dv ,

where now N=n, +ngs=m,+m, A and B range from
1 to N, and the permutations P involve only the

n, +n ¢ deuterons. Now suppose that n,=m, +2 and
ng=mgz—2. If A and B are both in g, on the left-
hand side of the operator, only the permutation
which exchanges A and B withm, +1 and m, +2 will
give a contribution to W,,. But this is true for all
A and B<n,. Therefore, we have

Wab= %nr(nr - 1) f g:(l)g:‘(z)wlzgs(l)
Xg4(2)dVdV,0n,, m,+2) bng, ms—2)
X H 5(%;, mi) )

itr,s

since for all A and B >n, we get zero contribution
and similarly for A<n, and B >p,.
If we have n,=m,+1 and ng=m, — 1, we find again
that A and B< m, for the nonzero contributions;
but we now have two permutations for each A and
B that give nonzero contributions. These are the
identity and the permutation which exchanges A and
B. Since this is true for all A and B<n,, we get
Woo= 51,0, = 1) [ g ¥(1) g ¥(2) wy28,(1)
Xg2)dV1dVy+ [ g7 (1)g¥(2)

X w158,(2)gs(1) dV1dV, 8(n,, m, +1)

X 8(ng, mg—1) II 66y, m)) .

itr,s

If n,=m,+1, ng=mg -1, n;=m;+1, and n,=m,
-1, our integral becomes

Wap=JgX1) -+ g¥n,)g¥ (n,+1): - g ¥, +ny)
Xg ¥, +ng+1) e+ gfln, +ng+ng) - g uln,+ng

tng+1)eee gXNZ 2 was
A B>A

xé: P[g,(1)++ gy (N)]av.

We find that we get nonzero contributions only when
A is in g, and B is in g; on the left of the operator.
For these A and B, two permutations, the identity
and the one which exchanges A and B, give nonzero
contributions. The result is that

Wep=nyne [ g¥(1) g H2) w1,(1)g.(2)AV,dV,
+ [g¥1) g ¥ @) wipg,(2)g,(1)dAV1dV,
X 8(ny, m,+1) 8(ng, ng —1) 8(ng, my+1)

X 6(n,, my—1) 11

itr,s,t,u

5(1’1,;, mi)'

If the #; differ from the m; in any other way, then
Wa=0.

Case 2. Suppose that G, differs from G, by one
basis function. That is, G, has g, where G, has

L. THOMAS 2

gls all m;=m;. Ifn,>2, the integral vanishes be-
cause there is no way to avoid an overlap integral
over orthogonal functions. If #,=2, then only w,p
with A and B in g, of G, will make a contribution;
but this means that only the identity permutation
can make a contribution. Therefore, we have

Wao= [ ¥(1) g ¥(2) w2 1(1) g 1(2)dV,dV,
X G(nr: 2) Hi 5("5: mi) .

If G, differs from G, by two functions, e.g., g,#&,
and g,#g 7, where g, and g, are in G, and g and

g lare in G,, then we have n,=m,=1 and n,=m;
=1 for the integral not to vanish, and only w ,p
with A in g, and B in g, will make a contribution.
Therefore, we have

Wo=[[2X(1)g 3@ g (1)g(2)aV,aV,
+[g¥1)g @) wyog(2) g (1) dV1dV, ]
xI1;8(n;, m)) .

If G, differs from G, by three basis functions, then
Wab= Oo

Case 3. In this case G, and G, differ by having
different basis functions and different occupation
numbers. The integral is 0 unless G, and G, differ
by only one basis function. If it is the #th function
that is different, two relations between the n; and
m; lead to a nonvanishing integral. The first is
np=m,+1=2, ng=my—1, and n;=m; for all i{#7 or
s, which leads to

Wa=GEm) 2] [g¥(1)g,(2)g (1) g,(2)dV,dV,
+[g¥1) g F (@) wipgh(2)g,(1)dV,dV,
X 6(m.,, 2)(m,, m,+1)8(mg, mg—1)

x II

i#r,s

8(n;y, my) -

The second relation is n,=m,=1, ng=ms-1, n;
=m,+1 and n;=m, for all ¢ #7, s, ¢, which leads to

W= (myny) 2 [ g¥(1) g ¥(2) wipg (1) 24(2)
XAV dVy+ [ g¥(1) g ¥(2) wipg [2)g,(1)dVydV, ]
xd(n,, 1) 8(n,, m,) dng, mg — 1) 8(ny, my +1)

x I

i#7r,s,t

6(7[4, mi) .

Case 4. In this case, G, and G, differ in the
number of functions. Let G, have x basis functions
and G, have y basis functions such that x <y. If
x=9 +3, then the integral vanishes. If y=x+2,
then we must have some g, in G, with =, deuterons,
and g,, &, &: in G, with m, deuterons, such that
n,=m,+2 andng=m,=1, if the integral is not to
vanish. The nonvanishing contributions to the in-
tegral are
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Wa=(m,! /n, )2 [g¥(1) - g¥u) T T wyp
A B>A
X ZP; P[gr(l) e gr(my)gs(mr+ l)gt(nr)]

=3 [n,(n, = 1)]V3[ fg’f(l)g,’!‘(Z) wy285(1)
Xg:(2)dV,dV, +fg:(1)g,:(2) w158 {2)g4(1)

XdVydVy] 8, m,+2) I 6, m)) .
i#7,8,t

If x=y+1, then we will get a nonvanishing integral
if some g, in G, has n, deuterons and some g, and
g5 in G, have m, and m¢ deuterons, such that n,
=m,+2 and my=2 or n,=m,+1 and m,=1. For the
first possibility, we get

Was =[5m0, = 1]Y2 [ g ¥(1) g ¥(2) w1p8,(1)
Xg(2)dV,dV,bn,, m,+2)5(m,, 2)

X I 6(72‘, m‘) N
it7r,s

and for the second possibility, we get
Wep = %nyl'lz(nr -1) [g:‘(l)g:‘(z)wlzgr(l)gs(z)
XdVydVy+ [g¥(1) g ¥(2) wip8,(2) g,(1)dV1dV,]
X8(n,, m,+1)6(mg, 1) II 8(nyy my) .
itr,s
Case 5. In this case G, and G, differ both in kind
and in number of basis functions. Suppose that G,

has g, where G, has g/, and G has x basis functions
while G, has y basis functions with x <y, then

W= (myls s omyl /ngle oo n,DY2 [ ¥(1). 0
Xg¥ny) oo gF (N, +1) e g KN, +m,) - g ¥(N)

X2 20 wap2 Pgy(1) - gylmy) - -
A B>A P

Xg M, +1)ece g (M, +m,)- - g,(N)AV .

We know from case 2 that W,,=0 unless n,=m,=2
and all other #;=m;. Since we cannot satisfy the
second condition, we know that », cannot equal 2
and be equal to m,. However, if we look at the
first relation between the »n’s and m’s of case 3 and
set ng=0, we will get a nonzero contribution. That
is, if n,=m,+1=2, and m¢ =1, where g, is the
basis function in G,, which does not appear in G,
we will get

Wap=2"2[ [ X(1) g ¥(2) w8 A1) g (2)dV,aV,
+ [g H1)g K@) wypg U2)g,(1) AV dV, ] 6n,, 2)
X8, m,+1)60mg, 1) II 66y, m,) .
i

#7,8

The second relation, again with n =0, will lead to

Wa=n}?[[gX1)g H2) wipg M1)g,(2)aVyav,
+ [2 KD g HR)wyg [(2)g,(1)aV,av, ]
X8(m,, 1)8(m,, m,) 8(mg, 1) 60, m,—1)

X H 6(”;, m,) °
t#r,s,t

If G, differs from G, by two functions, and G, has
more basis functions than G, then W, =0, since
we cannot have all #n;=m; as was shown to be nec-
essary in case 2. If G, differs from G, by three or
more functions, then W,,=0.
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