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some power is lost by doubling the frequency to
the green, the stimulated Raman effect can often
be obtained by the green pulses. The combination
of frequency broadening and dispersion becomes
more favorable for the green pulse train. '

Experiments, both with the Nd +-glass laser
and a ruby laser, are now in progress. More
detailed information could be obtained with the

use of a second cell as a picosecond pulse ampli-
fier. The influence of a variable delay time be-
tween the laser and Stokes pulse and the influence
of phase distortion caused by dispersion could
then be made more quantitative.
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Recently, we have reported variational solutions to Schrodinger's equation for CH4, NH3,

H20, and HF, using a Hamiltonian which included the kinetic-energy operators of the protons.
The results of these calculations implied the existence of protonic spectra similar to the
electronic spectra. We show here that the selection rules which apply to electrons also apply
to the protons. Furthermore, we find a two-particle-transition operator which allows an
electron and a proton or two protons to be simultaneously excited with intensities proportional
to the square of km&/M, where k is the wave number of the light, m& is the mass of the proton,
and M is the total mass of the molecule. For completeness, the effects of the radiation field
on the coordinates of the c.m. are given also.

I. INTRODUCTION

Recently we have reported variational solutions
to Schrodinger's equation for CH4, NH3, H20, and
HF using a Hamiltonian which included the kinetic

energies of the protons. ' The trial wave function
was an expansion of the form

0 =G ~.«.+~&"

where for n electrons and m protons, we have
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, detIfi(i) "f.(tt)la

and G=,det Iz&(i)" I (I) I
.

The f's represent one-electron functions and the
g's represent one-proton functions. The energy
speetxum which me got fox the protons mas simi-
lar to the usual electronic spectrum. Hence, we
mould expect that there should exist electric di-
pole, electric quadrupole, magnetic dipole, and

higher-order transitions involving only protons in
the same may as they exist for electrons. It is the

purpose of this paper to show that these transi-
tions are allowed for the protons and that their in-
tensities are comparable to those found for elec-
trons.

II. SELECTION RULES

The Hamiltonian for a molecule in a classical
radiation field is

I ~
~g~J t AJ +~J~J +V~

~ 218» l C

where q» is the charge of the jth particle, A» and

Qt are the vector and scalar potentials, snd V is
the potential representing the interaction among
the particles in the molecule. In the Coulomb

gauge ~ A=O, and the Hamiltonian becomes

p zg'»5 ~ ~ Q'»A»S 3 3
H =Et Vt+ (At ~ Vt)+ +qtPt) + V .

262» Bl »C 2kB»

The scalar potential may be omitted because the
radiation field can be described by the vector po-
tential. The square of the vector potential may
be neglected because it is small when compared
mith A» V» for the radiation fields which we will
consider. Therefore, the Hamiltonian which we
mill use is

3where HO=Et Vt + V,
2m»

p iq»SH=Z, W, V, .
Sl»C

We mill solve Schrodinger's equation using Ho

only to get the unperturbed solutions by transform-
ing Ho to c.m. coordinates defined by the relations

where the x's represent position vectors in the
laboratory coordinate system. Particle a (usu-
ally the most massive) has been selected as the

origin of the relative coordinate system. The
transformed IIO is

Ha- —
M

V -+~
2 VtI — ZZ Vt,

' Vt +V,2M» (2p»»j m~

where nom the sums over j or k exclude j =a or
0 =Qq M =tttg+gttttt, and p, t =Bttmg/(tBt+Bzg).
The set of unperturbed eigenfunetions will be rep-
resented by

e„=e(a)y„(a„.. . , R, ) . (4)

A perturbation calculation leads to the following
111tegx'al

"'m»
In what follows, me mill assume that the size of
the molecule is much smaller than the wavelength
of the radiation. %'e will consider a plane wave
traveling in the x direction with A in the z direc-
tion. Thus,

$ (kx-Itt) g &
-$ (Ax-vt)' c

where )'t is the wave number. With this A„Etl. (5)
becomes

t~~t [g t the„vt)-

8

+gee tue& ~tt] ez 4' dVN

This integral ean be rewritten

e f @Lit
g@r 8

Bgr

Since our wave function is in c.m. coordinates, me
need to transform the operator in e„ to the same
coordinates. We mill make use of the following
relations:

%'ith these relations, me find that

sax—"e""~ =exp ik l- —"X„+X- Q —'X,

m„eg„' M ~g
and

—e o =exp ik X-Q„qa the

~8~ "M
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Qg s qa

Therefore, a, ~ becomes

a'„=Z, ~e„"exp E'9 x —Z ' x)sPr

xN ~ exp [ik(1 —m 'M)XJ
mr

intensities which are proportional to the square of
e„will be roughly the same for both types of
transitions.

When the product f*„P is even, the integral in-
volving the Z„(or any odd operator) will vanish.
When this happens, we can consider the second
terms in the expansions (7) and (8) and the first
term of expansion (9) to get

——' exp [-ik(rn„/M) X„] Bg

+ [exp[ik(l —m„/M) X„]—exp[ —fk(~„/M) X„]j

x—"—
) @„dRdR~. . .dR, , (8)

exp[fk{m,/M) X„]= 1 —fk{m„/M)X„,

exp[- ik L(m, /M) X,]= 1 —ikg, (mgM)X, .
(8)

(9)

Note that m„/M will be essentially zero for elec-
trons, but for the protons its value will not be neg-
ligible in general. If we take the first term of each
of the power series and use Eq. (4), we get

Q„''m 4+ R e' 4H, dR

x g„y*„;k q

mr

8 f dR& ~ ~ .dR, .
r

The integral over the coordinates of the c.m. is
the same for all transitions, so we may as mell
define n„ to be n divided by that integral. Then

&nm=- &&nm p, Z QdR ~ ~ ~ dR
r a

where kv„=E„-E„and p„=rn„m, /(~, +~„). When

we add and subtract q„/m, to the expression in
parenthesis, we get

where we have made use of the relation q, = —g, q„.
Since kX„«1 and m„/M & 1, we can use the follow-

ing approximations for the exponentials:

exp[ik(1 —m, /M) X„]=1+zk(1 —m„/M) X„, (V)

&nm = —&&nm *„(Z„p,„lf;X„Z„)4 dR, ~ ~ dR,

for electric quadrupole radiation, and

*„(Q„Z„I. )4.dR, "dR,

for magnetic dipole radiation, where K„ is the fac-
tor in parenthesis in Eg. (11)and I„ is the angu-
lar momentum operator.

We will now consider the second term of expan-
sion (9) using the first terms of expansions (7) and

(8). The integral is

X P~dR& ~ .
The term involving &/&Z in Eq. (6) vanishes be-
cause the integral J 4'„X„0 dR& ~ ~ ~ dR, vanishes,
since we said that 4*„4'~ is even. We can neglect
all the terms in the square brackets except for
q,/m„ for electrons. Since the charge of most nu-
clei is about one-half their atomic number, q,/m,
= 2 m ~, where m~ is the mass of the proton.
Therefore, for protons we find that the last two
terms are approximately equal to- & M. In the
molecu1. es that we considered M =15 m&, there-
fore, for protons the term in square brackets is
approximately (1.0- 0.3)/m~= 0.9V/m~. We see
that for protons the effect of the additional terms
is small, but not negligible. Note that for any
molecule where q„=q, and m„=m„ the term in
square brackets reduces to q„/m„. The integral
given by Eq. (11) will give the quadrupole moment
operator and the magnetic dipole operator in the
usual way. That is,

xf dR~ ~ ~ ~ dR, .
For electrons p„/m, =0, so, the operator reduces
to the usual ~„Z„; however, for protons, the
same ratio is not negligible. For example, in am-
monia m, =25000 and p, „=1700, so p. ,/m, =O.OV

and q, p„/q~, =0.49. Therefore, the factor in the
parentheses is about 0. 4. However, the average
value of Zr for the protons is about 2.0 bohr which
when multiplied by 0.4 gives 0.8. The value of this
product is close to the average value of Z„ for the
electrons, which is about 0.5. It appears that the

We can safely neglect all the terms in the sum
over s where s refers to an, electron. Therefore,
from now on the sum over s is restricted to pro-
tons only, and

&nm = —&&nm&
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» '„(Z, E Q, Z, X)»,dR, . dR, ,
sAr

(12)

where Q„=q„ 1 ——"- (13)
ma ~Ma

We have said that mgM =0.07. Therefore, the in-
tensities of these transitions are roughly I as
intense as the electric-quadrupole or magnetic-
dipole transitions. The Z„X, operator is a two-
particle operator which involves two protons or a
proton and an electron.

We will now substitute for k„and 4 functions
of the form defined by Eq. (1) into Eq. (10). Let

D, =D,»+D„, where D,»=Ed» Qd» Zd»

and D„=Q,Q,Z, ,

and where Qz and Qz are defined by Eq. (13) and
Z„and ZI are the Z coordinates of the Ath proton
and the 1th electron in the c.m. system. We want
to find the allowed transitions for electric dipole
radiation between 4 and 4, where

O'=Q;Q, C;,F;G, and 4 =Q»Q, C;,F; G, .
Therefore, we need to know the conditions under
which

P, = f %D% d V40,

=Z»LZ»Z»c*», C»» f F*(G*,D,F»G»dv,

=Z»Z, Z»Z»C*», CJ»( f Ff'D», F»dv,

&&fG "dG»dV~+ f F*,F»dv, f G*,D,»G»dV»),

but F
&

is orthogonal to F& and G, is orthogonal to
G„ therefore,

p.=g, g, g.c+,c,'. f F[D„F,dv,

+L+»~» C*».C»» f Gd*D»PG»d V» .

Z„Z Q„Z„X,=Z,Z, Q, Z, X„+Q„Q q„z„x, ,s4r BAA

where I refers to the electrons and A and 8 refer
to protons. The integral in equation (12) becomes

Since D„and D,~ are odd operators, F*;F& and
G*a G~ must also be odd if the integrals are not to
vanish. This requirement gives the usual selec-
tion rules for dipole moment transitions. Note
that we can have transitions which involve only
electrons, only protons, or both protons and elec-
trons. A similar development can be made for the
electric quadrupole moment and the magnetic di-
pole moment simply by substituting the corre-
sponding operators. Equation (12), however, leads
to a different result as we shall now show. Let

Q»Q, Q;Q»C*; c;»df F*;G*,(Z&Q&q»Z&x&)FG»d»v, dv»+Z, Z»Q»C», C;» f G*, (Z~Q Q~z&X»»)G»dv».
B 8A

The first integral in expression (14) becomes

Qr Qs f F*»Z»F»dv, ) (Zg f G*,xd»G, dv»).

Each of these integrals are nonvanishing only when
the selection rules for electric dipole radiation
are satisfied by at least one electron and at least
one proton. Their polarizations are in different
directions. The same result is obtained for the
second integral in expression (14), but in this
case two protons simultaneously are excited
subject to the selection rules of electric dipole
transitions.

We can make some general remarks on the de-
pendence of

Qr =qr -—.—,n K„=———+~aP r Q'r Q'r Q'a VE r
TEE a Q'r tB a m„M m, M

on I, and I, which apply to protons. ; if m, =m„
and q, = q». Q„= 0 and K„=q, /m„. As m, increases,
Q„ tends to q„; and K„ tends to q„/m„. If M in-

creases while m, remains the same, Q„remains
the same and K„becomes again q„/m„.

The intensities of the transitions allowed by the
two particle operator in Eq. (12) decrease as M
increases. For example, these transitions in
NH3 would be 300 times more intense than they
would be for UH3.

So far we have avoided looking at the effects of
the radiation field on the coordinates of the c.m.
We will now do so. Let C»»(R) =exp(iK R). The
effect of an operator on C is A@x = px,
where P„=f a„"„.C»». dK';

then f 4»». .A 4„"dv= f 4*-„"f aRR C"„.dK'dV

= f a-„it f 4-„"C„".dvdK
1J= f a»»»». 5(K —K )dK=a"„K".

The two operators which involve the coordinates
of the center of mass are e' and (h/iM) e' &/&Z.
For the first of these operators we have
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s-„-„.= f e'&««' " «-«'«dXf(K K„')C(K,- K,')

=5(K +k —K«) 5 (K —Kr)5 (K —Kg)

= v(K- K'),

since k is much smaller than Kx. This result
merely states there will be essentially no change
in the momentum of the center of mass, and what-

ever change there is will be in the X component of
the momentum. The second operator gives

—f"e '«-&z —e'gzzdZ~(K +k-K ')f(K -IfKKg ~Z x

=(AKz/M)5 (Kg Kg) 5 (K«+k K«) 5 (Kr Kr)

= vga(K- K )

since SKz is the momentum in the Z direction.
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The power spectrum of the radiation emitted by a driven collision-damped two-level system
is evaluated. The driving field, which is treated classically, is assumed to oscillate harmon-
ically near the atomic resonance frequency, and its intensity is allowed to assume arbitrary
values. The collisions are assumed to be strong, i.e. , to instantaneously thermalize the state
of the atom. The limiting forms of the power spectrum of the radiated field are discussed for
the cases of low and high excitation of the atomic system.

I. INTRODUCTION

The effect of collisions on the response of a col-
lection of atoms to a monochromatic incident elec-
tromagnetic field has been extensively studied, in

both classical and quantum-mechanical contexts.
For the most part, previous analyses have been

devoted to the evaluation of quantities which de-
pend only upon the mean values of atomic opera-
tors, such as the electromagnetic susceptibilities
or the absorption line-shape function, i.e. , the

rate of attenuation of the incident field as a func-
tion of its frequency. It has been found, in par-
ticular, that the widths of the peaks (centered at

the atomic resonance frequencies) in the line-.

shape function are proportional to the collision
rate for relatively weak incident fields, but that

they are proportional to the intensity of the inci-
dent field when it is great enough to lead to an

appreciable degree of saturation.
In the present paper our interest lies in de-

scribing the spectral properties of the field ra-
diated by the driven atoms, and hence in evaluat-

ing the correlation function which represents the
product of atomic dipole moments at two different
times. We assume that the incident field oscil-
lates at a fixed frequency co which lies near an
atomic resonance frequency (do, and allow the.
field intensity to be arbitrarily great. Our anal-
ysis is carried out within the context of a simple
model consisting of a single two-level atom driven
by a classical electric field and subject to strong
random collisions which abruptly thermalize its
state. We assume that the collision rate g is
much greater than all other relaxation rates, in
particular, that it is much greater than the ra-
diative decay rate, the effect of which has been
analyzed in a previous paper. '

The results we find for the case of collisional
relaxation differ markedly in the limit of weak
driving fields from those for the case of radiative
relaxation. A principal difference is that in the
collisional case the radiated field contains, in
addition to a coherent monochromatic spectral
component oscillating at the driving frequency or,
incoherent components oscillating within an in-


