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The magnetic quadrupole polarizability tensor determines the quadrupole moment induced
in an atomic system by a nonuniform external magnetic field. From the analogy to the cor-
responding electric field case, this quantity is defined and simplified for a spherically sym-
metric system in an axially symmetric external field. Expressions are presented for the
magnetic vector potential corresponding to the first three terms of a Taylor-series expansion
for the magnetic field vector, and the Hamiltonian operator is obtained for a many-electron
atom in an axially symmetric magnetic field with first-order gradients. Calculations are pre-
sented for the magnetic quadrupole polarizability for closed-shell atoms and ions with two to
eighteen electrons. These calculations employ the fully coupled Hartree-Fock variation-
perturbation procedure. The magnetic quadrupole polarizability shows a rapid decrease with
atomic number within each isoelectronic series. Positive values are obtained for all atoms
and ions except Li, Be, and Na .

I. INTRODUCTION

Of late, much interest has centered on the elec-
tric and magnetic properties of atoms and mole-
cules in external fields. For example, calcula-
tions have recently been made of the electric di-
pole, quadrupole, and octupole polarizabilities,
the magneto-electric susceptibility, and the elec-
tric dipole hyperpolarizability' of atomic sys-
tems. Furthermore, calculations of the magnetic
susceptibility (magnetic dipole polarizability) have

been made from the early days of quantum me-
chanics. ' The work reported in this paper rep-
resents a logical extension of efforts to under-
stand the influence of large external fields on the

electric and magnetic properties of atoms. Spe-
cifically considered is the response of an atom to
a nonuniform magnetic field.

The advent of very high magnetic fields, e.g. ,
10 0, makes possible the intentional generation
of field gradients large enough to cause a signifi-
cant variation in the magnetic field within the di-
mensions of an atom or molecule. Thus, the
effect of a gradient in the external magnetic field
on the energy of a molecule may be measureable.
Furthermore, very large magnetic field gradients
exist between paramagnetic ions within a crystal,
so that the energy of an impurity ion is strongly
affected by the gradient. Mattis also suggests
that the attraction of noble gases to the surface of
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ferromagnetic material and the Knight shift in
superconductors could be partially explained by
the perturbation of the energy of a closed-shell
system by an inhomogeneous magnetic field.

In the following sections we present the mag-
netic multipole expansion, define the magnetic
quadrupole polarizability tensor, and simplify it
for a spherically symmetric atomic system in an
axially symmetric field. The magnetic vector
potential and Hamiltonian operator are then ob-
tained and the Hartree-Pock variation-perturba-
tion procedure is described for calculating the
second-order energy of an atomic system in a
magnetic field gradient. Vfe then describe the
method of computation of the magnetic quadrupole
polarizability in more detail and present and dis-
cuss the calculated values.

II. MAGNETIC MULTIPOLE EXPANSION

The expansion of the energy of a localized dis-
tribution of moving charges or currents in an ex-
ternal magnetic field. H is given in terms of the
current-density distribution j by

lV= W + W' + W' + ' ' 'lt

where

Wo=- H()'M,

~v«~= (1 &2)«;«&g)+ |;i&„),
8H;

&(~=vs ' (o),
~xy

(lo)

(11)

to the gradient. Thus, one may define the mag-
netic quadrupole polarizability tensor y;,» so that
the quadrupole moment is given by

r, = Z r,, », (o), (s)
k, l Xl

or so that the magnetic quadrupole energy term
(3) is

w'=-~ Z y, „, '(o) *(o).
k ~

'"' ex' Bx

The magnetic quadrupole polarizability tensor
can be simplified (i.e. , reduced to fewer com-
ponents) for the case of spherically symmetric
systems by considering the most general form for
a fourth-order isotropic tensor:

& y («=(& & u& «)+&(& «&»+ & )&»)

+)'(& «&g~
—|'

(&g«)

and noting that neither A. nor v contribute to T,&

or the energy W'. Hence, taking y=2p, , one ob-
tains

w'=-~ Z '(o)&;„6

Bx 8xk

In (2) M is the total magnetic dipole moment:

M -=1/2c f r && ]d x, (5)

while in (3) the magnetic quadrupole moment ten-
sor T;, is defined as

r, ,= Ze„, -( —3,x. x-«r 6„)j,d x,
1 3 3 (6)

k, l

where x& is the jth component of the position vec-
tor r, and x is its magnitude. In addition, the
tensor T,&

is traceless, i.e. ,

Similarly, in (4) the magnetic octupole moment
tensor B&,k is defined as

6 3ft,.„-=—Q e,g„x,x,x«j„d x (7)
C ~,m

III. MAGNETIC QUADRUPOLE POLARIZABILITY FOR
SPHERICALLY SYMMETRIC SYSTEMS

%hen a nonuniform external magnetic field is
applied to an atomic system, the gradient in the
magnetic field polarizes the system so as to gen-
erate a magnetic quadrupole moment proportional

j. I
Hj =- —,H x, =- —,H x,

(13)

The nonvanishing components of T;z are

&33=- 2~&~ = - 2&33=yH,

W' =- ~yH'3.

In order to determine y from calculations on an
atomic system we equate W from (15) to the term
in H' in the quantum-mechanical perturbation ex-
pansion for the energy

+H E + ooo

and find that

In (16) the first-order energy term H'E& yanishes
as explained in a later section.

Therefore, for the spherically symmetric sys-
tem, the fourth-order tensor y;,» is determined
in terms of a single parameter y, henceforth called
the magnetic quadrupole pola~izability.

The calculation of y can be further simplified,
without loss of generality, by assuming an ex-
ternal field which is axially symmetric about the
z axis. In this case
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V2B,.=O, i=1, 2, 3 . (18)

IV. VECTOR POTENTIAL

The external magnetic field is generated by cur-
rent distributions, but the atomic system under
consideration is far removed from these distribu-
tions. Hence, the Cartesian components of H

satisfy Laplace's equation:

II"= e, (- ,' pz—H")+ e.(-,'(z' ——,'p')H"),

Ao= e „(-,'pH),
A'= e „(,'pzH-')

A" = e, f-,'p(z' —,'p')H—"]

(sl)

(32)

(33)

(34)

where e„e„, and e, are unit vectors in the p, p,
and z directions, respectively, and

(19)

where

We expand the magnetic field in a Taylor series
about the origin, retaining only the first three
terms,

H = Ho+ H'+ H"

H =H,(o),

H'=, '(o),
~HHll «(0)882

(s6)

(36)

(37)

H, =H,.(o), (2o)
V. HAMILTONIAN FOR THE lYlANY-ELECTRON ATOM

H,'. =Q

H,". = Q

and where

&H;
, * (o)x, ,~xj

1 BB
(O)x, x, ,

~ Xj Xp

(21)

(22)

The nonrelativistic Hamiltonian operator for an
N-electron atom in an external magnetic field is
given by'

N 21X= Q —BV;+—A; +- (s; H, ) +V,
1 i 2m C SSC

where
(ss)

are the field, first gradient, and second partial
derivatives, respectively, all evaluated at the or-
igin. The magnetic vector potential is also taken
as a sum of terms

A=A0+A'+A "+~ ~ .
so that

(23)

H = )7xA0 H = 7XA H = gxA
(24)

Solutions of (24) for the vector potentials, given
the magnetic field components f(20)-(22) j, are not

unique. Therefore, solutions are selected first,
to satisfy the Lorentz condition

v ~ A=O (»)

(39)

N
2

2

V; + (
—O'' L;)

2&l

e 2 2

«; (s,. «,.)) +«
2szc 2mc

(4o)

Substituting from (30) and (33) and employing the
following r elations,

z =x cose, p =xsin8

I)'= -Ze Q —+e Q pairs (i,j)2

i.j
and A, is given by (23) and (26)-(28). In what fol-
lows we retainonlythegradientterm H', however,
extension to combined magnetic and electric fields
and their first-order gradients is presented in
Ref. 5. Since A satisfies the Lorentz condition

and second to simplify the Hamiltonian for the
atomic system. Thus, we choose

1Ap- 2 Hpxr (26)

II' L = H'(«, —
op& p), II' s = H'(zs, ——,'ps,),

L,= —cote L, , s, = —,'(e "s,+e"s ), s,=s„+is„

A'= 3H'xr

A"= -'H" xr

(27)

(2s)

Hp= e,II
II'=e, (--', pH')+e, (zH')

(29)

It, can easily be verified that (26)-(28) satisfy
(24) and (25).

In cylindrica. l polar coordinates (p, p, z) fo»n
axially symmetric field, the magnetic field and

vector potentials take the form

yields
(41)

(42)

«= Z —l«',. +l «'(-,'~)'", , («„)I...«.')
i =1

2

+
2

Y„s . —
2

y, gs, . — H (4m)
1 Q I2 1(2 4

K5
40 20 12 ~0012

where the F, are spherical harmonics and are
understood to ha, ve arguments e„)p, In (42) we
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have introduced atomic units according to Har-
tree wherein the magnetic field is measured in
units of e/ao or 3.2412&&10-12 Oe/cm. ao is the
radius of the first Bohr orbit of the hydrogen
atom and o( is the fine-structure constant e /hc.

VI. HARTREE-FOCK FORMALISM —ELIMINATION OF
SPIN VARIABLES

The Hartree-Pock formalism "yields the fol-
lowing integrodifferential equations for the spin
orbitals Q«'.

where we have made use of the definitions

4
V = — — xYio(L, +I)

U = —— ——rY,

v = ~ &4«IQ«2I4«&

u. = L &x;IQ„lx;&,

(55)

(se)

(sv)

(se)

(h;+ v)(t);(I) +Z «X «; P;(I) = 0

where

h] = ho+H'V +H S',
h, = --', v' —Z/z,

(43)

(44)

(4s)

(s9)

(60)

2

(4s) r ~ s
—

12
Yss- is Y»)

1/2 4 LY

.= 2 &y;(2) IQ le«(»&.

(4v)

(48)

For brevity we have defined the operator

Q12 (1 P12)/F12 (4S)

where P» has the effect of interchanging the ar-
guments of the two functions which follow, that is,

& 0 «(I) 0 «(2) I P12/~12 I e,(2)0 «(I) )

= &g«(l)g«(2) II/412IP«(2)g;(I)& . (so)

The spin variables may be eliminated, leaving
only orbital functions, by letting

and the operators v, V, and W are here defined as

n 4 1V=, ' r Y»(L..2s,)s (Y»s F, ,s,)),
(46)

(61)

u2= 2 &0;IQ;;It«& . (62)

In u and u2 the operator Q„has a different effect
than the operator Q12. While Q12 causes subtraction
of a term with the arguments of the orbitals in-
terchanged (i.e. , electron exchange terms), the
operator Q;«causes subtraction of a term with the
orbital numbers exchanged. Specifically, u and
uz are defined, such that

s Vs= + ((Xi
)

Xi) Vi (Xi Xi) Vs)

ssXi= Z ((4; «i) X (2; 2)X,)
(64)

The Hartree-Pock ener gy is given by

z =g, &y, I h, +H'v+H" wig, .
&

4; =4«(~, e, V) a+x«(~, e, e)P . (sl) (es)

It is noted that the operator V in (46) has the effect
of mixing the two coordinate functions )I) «and X, in
the following manner:

c~ '" 1
V4s=

2 2
r Yis(L+1)il'; —

2
Fi iXi),»

1
+ Y~o L, g

—1 X)+—Y)(, . 52

Substituting (51) into (43) and premultiplying
first by and then by JTI~ yields two simultaneous
integrodifferential equations for g«and X;

[ho+H'V„+H"W+v +u„] (I), +H'U X«+Q. , X,, q, =0, . .

(s3)
H'U«)f;+[ho+H'V2+H W+v2+uo] X«+Q;X««X;=0

(s4)

Substitution for Q« in terms of (C)«and X; and intro-
duction of the orthonormal property of the spin
functions yield, after some simplification,

H=-r(x« -'&y;I .- .Iq & -'&x
I "Ix &»

(66)
where use has been made of (53), (54), and the
orthogonality relations

&0 «ld «&
= &4«lp«& + &X«Ix«& = 5«« ~

(ev)

VII. HARTREE-FOCK PERTURBATION THEORY

We now obtain perturbation equations for the
first- and second-order energies, starting from
the Hartree-Fock equations (53) and (54). First,
we expand («, X;, and X«« in perturbation series
in H, assuming the zero-order matrix of Lag-
range multipliers to be diagonal, that is,
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(ss)

Thus, we have

g;=g, +H g, +H g, + ~ ~ .0 I 1 4 2

0 s 1 4 2
Xi —Xi+H Xi+H

~; = —Ei5ij+H A. ij+H0 1 I22

(69)

(vo)

(71)

Q(„=Q~+H Q~ +H Q~+'' '

Qg= QI3+H Qt3+H Qg+' ' '0 I 1 I2 2

(73)

(V3)

(v4)

Substituting these series into the expressions for
Q„Q&, v, and vz yields

[a,+(v'. +u'„) e-', ]y', +. (V +v'„+u.') y',

+U. X',.+ Q,. XI,.y,'. =p (ss)

[@s+(vs+us) e', ]XI+(Vs+ ve gus) X'

+ U, y',.+Q,.x', X,'.= p (so)

Pe+(v. +u.) -e&]g';+(&.+v'. +u'. )y', +(W+v. +ue)yo,

(9o)

[&e+ (vs+us) —e (]X';+ (Ve+ v,'+u', ) X',

+(W+v'e+ue) X~+ Ueg;+Z&(X&&XJ+X',p', )=0 . (91)

The Hartree-Fock energy from (66) is also ex-
panded in a perturbation series:

and
E = E0+H'E1+H E2+ ~ ~ ~ (93)

V8 = Vg+H Vg+H Vg+ '0 r 1 s2 2

where

& &c', lq,.l~', & ,

~ (Qll Q»lt~&+&0,'I@»IP~&)

(v5)

(76)

where, after simplification, one finds that

E1 L «(ll U. Ixl&+ &xll Usl&l&+ Ill &-I&l&

+ &x~ I
i'el x( && (93)

(vo)

& (&x,'Ie„lx,'& &xllq, Ix', &), (so)

~ (&elle»Ill&+&(';Iq»lel& +&(JIB»lel &)

(78)

Es=Z;(&xll g
I xl&+ &all ii'I cl&+ &xll 1'sl xl&

&all&. lel& &XII Usl&l& &&llU. IXI&) &94&

Furthermore, the first two terms of (93) vanish
because Xs and ge, cannot simultaneously be non-
zero, and, since V~ and V have odd parity, the
remaining terms also vanish, leaving

-p
us = Q (&XII Q(~lxs~&+(XII g(~IX(~& +&xslg, , lxe&), This result is expected because, to first order in

(81)
E = E0+H'E1

vs- ~ &x~lq»lx, &, (83)

ve= ~ «JIQislxl&+(x, 'l@islx';&), (83)

vs = ~ «xl I @ s I xl &+ hl I @is I xl &+ &x;'I @» I x~&),

(84)

and a change in the direction of the field, that is,
a change in sign of H' cannot change the energy.

The Hartree-Fock perturbation Eqs. (8V) and
(89) are not in a particularly convenient form for
calculation of the first-order wave functions be-
cause they do not account for the fact that zero-
order spin orbitals occur in orbital pairs. That
is,

us= (s5)

(86)

e&=t~«r x&0

and the coordinate functions g, and X, are equal for
an orbital pair. Thus, we write the zero- and
first-order spin orbitals in pairs:

us= ~ (&&ll@ul&l&+el l@ul&l&+e&l@(~l&&»

(sv)
v&n=4&~~ p~u=4(a~+xtnP i

0 0 1 1 1

9'&s= 0& & i 0're= Its»+X&sP
0 0 I 1 1

(95)

Next, substitution of the perturbation series
(69)-(V4) into the Hartree-Fock orbital Eqs. (53)
and (54) yields the following perturbation equa-
tions:

where the second subscript & denotes that the corre-
sponding zero-order function has an & spin func-
tion and the subscript P denotes that the zero-or-
der function has a I3 spin function.

Use of (95) leads directly to the following four
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simultaneous integrodifferential equations for the first-order functions of each orbital pair:

ar/'2

(ls-e»)4». + 0» —6 4». + Z 0» 4» 4». +~.4»+ X»s 4» 4»+ 0; X;s 0»
0 1 0 1 0 1 0' 2 P12 0 1 0 1 ~ 0 0 0 1 0

+12 &12 +12 ~12

+ L ((8». „ t))) "(4) „»I)+(t)» ii)s) +(Xis '»s))il'»+ Z ~)g»g=O

X/2
(&0 ~»)x)a+(0'' 4» x)s" Z 4 -

4» de+)'ski + t)):0' 41+ 0' » )»'+12 I

'
F12

(QV)

g/2 S/2
+I s»I)» As 4» 4» ~ 4s 4 6 ~ »»4

0 1 ~ 0 0 M 1 ~ 0 0 1 0
' +12 +12

(98)

(I»») e»)A-s+ 4» 4 As+ + 4» 0»»1)»s- 4» 6 4»s +0'aA0 1 0 ~ +12 0 1 0 2 +12,0 1 0 ~ 0 1 0
+12 +12 +12

x+2 N /2

x»e - A»I'»- ~ x»o, A 4»++ &»»4»=o ~
1 ~ 0 0 ~ 1 ~ 0 0 1 0

+12
,
F12

In (96)-(99) the sums over j now correspond to
sums over doubly occupied orbita, ls, not spin
ox"bltRls.

It may be noted that Eqs. (96) and (QV) do not
contain g»s or X», nor do (98) and (99) contain
»I)», » X»s. Hence, there are two sets of two
simultaneous integrodifferential equations which
may be solved independently for each set. This
is precisely the simplification that me sought ln
treating spin-orbital pairs. Furthermore„ it can
be shown' that the radial parts of g,', and X,'s
are equal in magnitude but opposite in sign and
that the same is true of g»ls and X,', . Hence, Eqs.
(96) and (QV) may be combined to give a single
equation for the radial part of g,', while (98)
and (99) may be combined to yield the radial
pRrt of

In order to determine an expression for the
Hartree-Fock second-order energy in terms of
sums of orbitals (not spin orbitals), we employ
(95) in (94) and obtain

(&&» (I.(e».& + &e';) I, (X'&)»s

N/2
~ z (&~', f~. f~l, & &~ll~. l~';. &)

+» &tll~~t';&

where again the sums are now over doubly occu-
pied orbitals.

VIII. VARIATIONAL METHOD OF SOLUTION OF FIRST-
ORDER EQUATIONS

Equations (96)-(99) are fully coupled integro-
differential equations for the first-oxder func-
tions, perturbed in the magnetic field gradient.
They are described as coupled because, for ex-
ample tile equation fol' ( ~ [(96)]111volves tile so-
lllt10118 l)l)»~ fox' 811 otllex' orbltals, Since closed
form analytic solutions for these equations do not
exist, xesort ls made to numerical methods.
Variational methods, using wave functions in
RQRlytlc form with vRrlRtlonal pRx'a. metex's hRve
yielded convex'gent l esults ln similar calculations
of electric dipole and quadrupole pola, rizabili-
ties. " ~ Furthermf re numerous accurate
analytic Hartree-Fock functions are available for
the zero-order wave functions. Accox dingly, we
employ R variational method by constructing foul
functionals and requiring that each of them be
stationary. For example, the first of these func-
tionals is
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& ((,'.) =((",.)l

4- ~l)l ('!.) + &(',„(()(0(2)— ()'(2)('. (') + r (l (&).(', (2) ('.(2}(' (1))

+ &((l.
)l

)'. )I()') ~ 2 &().((&x)J2& (,'(2)()(1) + 2 (,'„(()(),'(2) —&',,(2)(',. (i)&
~12 I &12

+ 2Z ()„(1)t)~(2) " (),(2)(, (1) + (',,(l)(',, (2) " (;(2)(;(1) + (';„(()()(2) —y,'.S(2}(,'. (1))
A

' 7'12 &12

1 1~1 2 02 0~ + 2~1 1 0

+12
(101)

so that imposing the condition

6z, ()/I. ) = o (lo2)

bltals. We have

r/„(r) X„~="e (110)

yields Eq. (96).
The functional forms assumed for )/)'„, X',z, etc

are
M

)/;. = Z c„f„(~,//, p),
n=i

where the f„are assumed basis functions and the
c„are variational coefficients. The condition of
stationarity (102) then requires

(108)

ctli =0 n=l 2 3 ''M
n

(lo4)

Equations (104) are then a, set of simultaneous
linear algebraic equations for the c„. However,
since the A. ';~'s are additional unknowns, more
equations are required to determine unique solu-
tions for the c„. These additional equations are
supplied by the orthogonality conditions:

&s(l s',.&+ &~I. I
~',&

= o,

&~~ I
x';~&+ &x','I ~,'& = o,

&cllc'„& &x!.Ic',&=0,

&t( I x&.&+ &(l~ I k~& = o.

(105)

(106)

(107)

(108)

would have been added to the functional according
to the method of undetermined Lagrange multi-
pliers to account properly for the conditions of
constraint.

The zero-order functions have been calculated
by a number of researchers and are generally in

the form of sums of coefficients times Slater or-

We note at this point that had we not retained the
off-diagonal Lagrange multipliers A. ,',. from the
beginning (i. e. , by assuming the x-matrix diag-
onal), then the functional (101)would still have
been obtained. That is, the terms

(109)

where the N„are normalizing factors. Thus, (/)',

takes the form

|', = [Z„f.'n.'(~)I y„.,(8,~), (111)

where the set of basis functions &i„'(x), are takenas
the same for all orbitals of given l quantum num-
ber (e. g. , all 8 or all P orbitals). Further, be-
cause of the degeneracy on the magnetic quantum
number, the coefficients b„' are the same for all
orbitals belonging to the same P shell (e. g. , 2P, ,
2P and 2PO orbitals).

As a matter of convenience in calculations we
take the first-order functions in the same form as
the z ero-order function, for example,

(8, y)Q, c,'„r"4e '~) ~. (112)

The values of g,.~ are chosen equal to the value/&
in the zero-order functions. Furthermore, it may
be shown' that the first-order function should con-
tain spherical harmonics according to the follow-
ing:

0x;.- U. )/'~,

1 0
X ((} V}} ))}& )/))(& U)) )/)(

where )/),'„V,)/}, im-plies that )/)I„ is to be taken as
a sum of terms, each with a radial function mul-

tiplied by one of the spherical harmonics contained
in V, (/)0(. Table I summarizes the forms of the
z ero- and first- order funct ions.

In addition, the smallest value of the exponent

n&, in (112) is selected as indicated by calculations
for the hydrogen atom. ' That is, the lowest power
of r is selected as one higher than the power of x
multiplying exp (- f ',~r} in the zero-order func-

tion. This choice of lowest power of x is consis-
tent with that of both Lyons and Langhoff' for the

calculation of the first-order functions required
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TABLE I. Functional forms of the zero- and first-order functions.

Orbital
type

Zero-order
function

f, (r) ~pp gio«) ~~o

X]g
1

h~, (r) F«

f,(r)I „ ~ ~ ~ po «)
+I 2o«»2o

fg, (r) ~f —f ~ ~ ~
App(r) rpp

+I»(r»2p
h, ,(r) V,

Pp fp(r) &)p goo(r) Fpp

+g2p(r) &2o

gpp(r) Fpp

+g2'p(r) ~2o
I, , (r) ~, ,

These functions are zero because V g; = 0 or V&g& = 0.

to obtain the electric dipole polarizability. The
similarity between the electric dipole and magnet-
ic quadrupole cases occurs because the perturba-
tions that require calculation of the first-order
functions (V, Vz, U, and Uz in the present case)
a11 contain the first power of x.

IX. COMPUTATIONS AND RESULTS

Atom
or
ion

No. of
linear

variation
coefficients

Magnetic
quadrupole

polarizability
(a. u. )

TABLE II. Effect of increasing the number of varia-
tion parameters on the magnetic quadrupole polarizability
for two-electron systems.

Tables II and III summarize calculations for the
two- and four-electron systems, respectively,
wherein the number of variation coefficients per
value of f in (112) is varied from one to three.
It may be seen from Table II that, except for the
H ion, the calculations of y are identical to
five significant figures for two and three coeffi-
cients per g value. Similarly, Table III indicates
convergence to three significant figures with only
two coefficients per g value.

Table II shows calculations of y for several He
and Li' zero-order wave functions. When these
results are compared for only one coefficient per
f value, they differ in the third significant figure.
However, similar calculations using two coeffi-
cients (i. e. , twice as many variation parameters)
differ only in the fifth significant figure. Similar
results also occur for the Be atom as shown on
Table III. Hence, comparisons of y for different
zero-order wave functions are meaningful only if
enough variation parameters have been used to
guarantee convergence. In comparing values of y
for other atoms and ions, therefore, we shall con-
sider differences in the second and third significant
figures as indicative of differences in the zero-or-
der functions.

Calculations of the magnetic quadrupole polar-
izability are summarized in Table IV for atoms
and ions in the 2-, 4-, 10-, 12-, and 18-electron
systems. Several zero-order wave functions are
also available for F, Ne, Na', Mg, and Ar, so
that comparisons are made of the effect of these

He

He

He

He

Li'

Ll

B

C4

18

19

20
21

19

19

19

19

10
15

4
8

12
12

3
6
9

12
5

10
15
4
8

12

6
9

8
12
4
8

12

8
12

8
12

Source of zero-order wave function.
"Found in the first-order function.

0.423 72 x 10 2

0.430 27xlp ~

0.430 28xlp 2

0.40676xlp 4

0.41076xlp 4

p.41076xlp 4

p.410 84xlp 4

0.405 10 x 10
0.410 81xlp 4

0.410 81xlp 4

. 0.410 81xlp 4

0.41007 xlp 4

0.41085xlp 4

0,410 85 x 10 4

0.518 87 x 10 5

0.521 12x 10 5

0.521 12 x 10
0.51904xlp '
0.521 19x lp-'
0.521 19x 10
0.13429xlp '
0.13447 x 10-'
0.13447 xlp '
0.49025xlp 6

0.49070 xlp 6

0.49070 xlp 6

0.21939xlp 6

0.21955xlp 6

0.21955 xlp 6

0.11236xlp '
0.11244 x 10-6
0.11244x 10 6
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TABLE III. Effect of increasing the number of varia-
tion parameters on the magnetic quadrupole polarizability
for four-electron systems.

or
ion

Be
Be

B+

B,efs.

20
19

No. of
1111ear

variation
parameters b

12
24
36
10
20
30
24
12
24
36
10
20
30
10
20
30
10
20
30
10
20
30
10
20
30
10
20
30

Magne t1c
quadrupole

polar1zab111 ty
(a. u. )

—0.12181 x 10'
—0,11959x10
—0,11878 x 100
—0.473 74 x10-'
-0.39840 xl0 '
—0.398 33 x 10
—0.398 44 x 10
—0.39952 x10-'
—0,398 97 x10
—0.398 97 x 10 1

—0.41449 x10-'
—0.39759xl0 ~

-0.39758x10 '
0.11999x 10
0.15725xl0 '
0.157 26 x 10
0.249 14 x 10-'
0.27706 xl0 2

0.27706x10 ~

0.97399xl0 3

0.10336x10 2

0.10336 x 10 2

0.485 91x 10-3
0.50400 xl0 '
0.50401x10 3

0.27831x10 '
0.28501x10 3

0.285 01 x10

~Source of zero-order wave function.
Found in the first-order wave function.

zero-order functions on the magnetic quadrupole
polarizability„Differences shown for the F, Ne,
and Na' ions are not expected to be significant
compared to errors inherent in using the Hartree-
Fock method. This conclusion is based on corn-
parisons between coupled Hartree- Pock calcula-
tions of the electric dipole polarizability' and cor-
responding experimental values.

An exception occurs in the case of the neon wave
function from Ref. 26 for which y is considerably
lower than the corresponding values for the other
five neon wave functions. This difference is at-
tributed to a poorer zero-order wave function as
indicated by the higher zero-order energy and by
an anomalous electric dipole polarizability as not-
ed by Lyons.

Again for magnesium and argon the differences
between calculations for alternate wave functions
are not considered significant compared to expect-
ed discrepancies with experimental values. An ex-
ception, however, occurs in the case of the wave

function from Ref. 29 which contains too few basis

functions and has a somewhat higher zero-order
energy,

Table IV contains calculated values of y for the
H, Li, F,Na, and Cl negative ions. These re-
sults appea, r consistent with the remaining calcula-
tions in the corresponding series, although anom-
alous values for the electric dipole polarizability
have been obtained from calculations using the un-
coupled Hartree- Fock method. ' Furthermore,
the four values of y calculated for the F ions are
quite consistent. Despite these consistencies, one
would expect the calculated values of y for negative
ions to be in poor agreement with experiment be-
cause of the inherent inability of Hartree-Fock
theory to describe negative ions. This occurs be-
cause the Hartree-Fock method neglects electron
correlation, a defect which is very serious for the
outermost electrons wherein the major contribu-
tions to y arise.

Table IV also indicates that the magnetic quad-
rupole polarizability decreases rapidly with in-
creasing atomic number. As Z becomes large for
2-, 4-, and 12-electron ions, y approaches aZ
dependence, however, the values of y for the 10-
electron systems decrease more rapidly than Z
for large Z.

Negative values of y are obtained for the Li
and Na ions and the Be atom, wherein the pre-
dominant contributions to y arise from the outer
orbitals. Again these calculations are subject to
error in the Hartree- Fock approximation because
of lack of correlation between the outer two elec-
trons,

One atomic unit of magnetic quadrupole polariza-
bility is 4. 48x10~ p, ~ cm20e '. Hence, magne-
sium in a magnetic field gradient

8 B'3' =10' Oe/cm
8x3

has an induced magnetic quadrupole moment T» of
1.971xl0 '

p, ~ cm.
Within a crystal, at a site between two paramag-

netic atoms, the magnetic field gradient approaches
1 a. u. (3. 24x10'5 Oe cm '). The energy associ-
ated with the induced magnetic quadrupole moment
(15) may therefore become significant compared
to other magnetic energy terms. Hence, lt appears
likely that the magnetjc quadrupole polarizabilities
presented here are of interest in the investigation
of impurities in paraagnetic and ferromagnetic
crystals.
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TABLE IV. Magnetic quadrupole polarizabilities.

or
ion

H

He
He
He
He
Li+
Li
Be '
B3+

C4'

N

Li
Be
Be
Be
Be
B+

C2+

N'+

04+

F+

F
F
F
F
Ne

Ne
Ne
Ne
Ne
Na+

Na'
Na'
Mg'
Al+
Si4+

ps+

Na

Mg

Mg
Al'
Si'
p 3+

S'
C].~

C1
Ar
Ar
Ar
K+
Ca2+

Sc+

Va~

Refs.

18
19
20
21
19
19
21
19
19
19
19

19
19
20
22
21
19
19
19
19
19

23
24
21
25
19
22
24
26
21
19
24
21
19
19
19
19

27
19
19
19
19
19
19
19

27
19
28
29
19
19
19
19
19

Zero-order wave function
Number of
zero-order

basis functions
S P

12

7
7
6
3
7
7
7
7
7

Energy
(a.u. )

(E,)
—0.487 929 33 x 10
—0.286 167 85 x lp'
—0.286 168 00 x 10'
—0.286 168 00 x lpga

—0,286 167 99 x lp'
—0.723 641 36 x 10~
—0.723 641 40 x 10
—0.136 11256 x lp'
—0.219 861 9p x lp2
—0.323 61154 x 102
—0.447 36133 x 102

—0.742 822 98 x lp'
—0.145 73p 14x ].0~

—0.145 730 20 x 102
—0.145 730 20 x 10'
—0.].45 73Q 2Q x ]0
—0.242 375 56 x 102
—0.364 084 84 x 10
—0.510 823 09 x 102
—0.682 577 00 x 102
—0.879 340 35 x lp

—0.994 593 60 x 102
—0.994 592 10 x 10
—0.994 593 69 x 10
—0.994 593 58 x 102

-0.128 546 98 x 10'
—0.128 547 00 x 10
—0.128 54700 xlp
—0.128 543 18 x 10
—0.128 547 10 x 10
—0.161676 76 x 10
—0.161676 90 x 103
—0.161677 00 x 10
—0.198 830 51 x lp'
—0.240 000 01 x 10
—0.285 180 58 x 1Q3
—0.334 369 32 x lp3

—0.161854 64 x 10
—0.199614 32 x 103
—0.199614 58 x 103
—0,24167408 x 10'
—0.287 995 16x 10
—0.338 562 63 x 10
—0.393 368 80 x 103
—0.452 409 13x 103

—0.459 576 67 x 103
—0.526 81706 x lp'
-0.52678407 x103
—0.525 765 26 x 103
—0.599 017 ll x 103
—0.676 15360 x 10
—0.758 213 93 x 10
—0.845 18977 x 103
—0.937 075 40 x 10

Magnetic quadrupole
polarizability

(a.u. )
(v)

p.43p 27xlp 2

0.41076 xlp 4

0,41084xlp 4

0.410 81 x 10
0.410 85 x 10 4

0.52112xlp 5

0.521 19x 10 ~

0.13447 xlp '
0.49070 xlp 6

0.219 55 x 10 6

0.11244xlp 6

—0.11878 x 10
—0.398 33 x 10
—0.39844xlp ~

—0.398 97 x 10
—Q.397 58 x ]0

0.15726xlp '

p.27706 xlp '
0.10336xlp '
0.504 01 x 10 ~

0.28501xlp 3

0.36418 xlp '
0.367 14 x 10 3

0,354 75 x 10
0.35481xlp '
0.55188xlp 4

0.550 70 x 10-4
0.54739xlp 4

0.48670xlp 4

0.53893xlp 4

0.149 23 x 10 4

0.14933xlp 4

0.146 60 x 10 4

0.480 28 x 10 '
0.150 84 x 10 5

0.293 86 x 10
0.170 05 x 10 6

—0.661 84 x 10
0.435 03 x 10-'
0.441 43 x 10
0.570 07 x10-'
0.203 19x 10-'
0.99245xlp 3

0.56923xlp 3

0.36077xlp 3

0.14160 x 10-2
0.415 26 x lp-3
0.40122xlp '
0.14990 xlp 3

0.19970 x 1Q

0.11569 x 10 3

0.747 39 x 10 4

0.51815xlp 4

0.377 54 x 10 4
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