
PHYSICAL REVIE%' A VOLUME 2, NUMBER 3 SE PT EMBER 1970

Atomic Bethe-Goldstone Calculation of the Hyperfine Structure of Li(2 P}

R. K. Nesbet
IBM Research, I aboxatoxy, Sag Pope, Caljfownia 95114

(Received 18 March 1970)

A variational formulation of Brueckner's theory has been applied to the calculation of hyper-
fine parameters for the 2 P excited state of atomic lithium. The hierarchy of nth-order (or
n-particle) Bethe-Goldstone equations defined previously has been modified so that complete
electronic configurations occur at each level of the hierarchy. Thus L, S eigenfunctions
could be used throughout the calculations, although for practical reasons such functions are
not explicitly constructed. Each net increment of any mean-value electronic property defined
within the hierarchy is shown to be equivalent to a sum, to infinite order, of a certain well-
defined set of linked diagrams in the many-particle perturbation theory. Computed results
are in excellent agreement (within roughly 1%) with experimental data and with a previously
published accurate perturbation calculation.

I. INTRODUCTION

A nucleax magnetic moment p, interacts with
atomic electrons through three interaction opera-
tors of different tensorial character. These are
referred to as the Fermi contact, spin-dipolar, and
orbital hyperfine operators, respectively;

H, =as~g, (e/2mc) g. Z; s, n (r,), (l)

&sii g, 2 g Z, i [3(s, r„)r, — 'is, ], (2)

a„„=(e/mc) p Z, ~ l,

Here m is the electronic mass, -e the electronic
charge, and

g, = 2. 00232.

The index i is summed ovex' the N electrons in an
atom.

Since each of these operators is the scalar prod-
uct of p, and an electronic vector operator, their
combined effect in an electronic state of quantized
total angular momentum J can be parametrized by
an effective Hamiltonian

ha I J (5)

whexe I is the nuclear spin. Both spin vectors are
expressed in atomic units (angular momentum di-
vided by h), and az is defined in frequency units
(energy divided by h).

For light atoms, the electronic wave functioncan
be assumed to have definite quantum numbers I and
8. Although the relative contributions of the three
magnetic hyperfine operators differ in different J
states within the I -8 term, they are completely
determined by the mean values of the hyperfine op-
erators in the state with O'=5+8, M~ =L, M~=8,
and Mz =J. In this particular state, the electronic
contribution to the hyperfine interaction is determined

by meanvalues computed for a given electronic wave
function

5xo yc

AQo g~y

Sxo Xo

= [»]=(«~i s,i ~(ri)) ~s, (6)

= [s C'"]=(2Z; s„r Coi+ (8,)) ~s, (7)

= [T]=(Z, r ,'f„)„-. (s)

Two other mean values evaluated in the present
work are

[~]=«Z, ~(,)&.. .
[c'"]=(~i«'t-"o" (ei)) ~s .

Here Co ' is the spherical tensor function

(~)

(lO)

C,'" (8) = (4m/5)'" Y', (e, y) =S, (cos e),
defined in terms of the normalized spherical har-
monic Fi (8, P)
The square -bracket notation introduced here will be
used throughout the present paper.

In the state with J =2+8, the coupling constant
az is the sum of three terms

ag, =&gi(g /6) X

ad', diy ~11(ge/2) ~diy

az, ax~
= &el xor~ ~

(l2)

(is)

(i4)

where p, & is the nuclear magnetic moment innuclear
magnetons, and I is the nuclear-spin quantum num-
ber. The fundamental constant 6« is

G,„=2P, P„/haos,

where 0, is the Bohr magneton, P„ the nuclear mag-
neton, and ao is the Bohr radius. If the following
values are used
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P, =9. 274096x10 "erg jG,
P„= 5. 050951&&10 erg jG

ao = 5. 291 772& 10 cm

k= 6. 626196~10 ergsec

then

G,„=95.4129 MHz . (16)

If the parameters y.„g«„and g„„are defined to
be nondImens1onal, Rs ill Eqs. (6)-(6), then Eqs.
(12)-(14)define the independent contributions to the
hyperfine coupling constant a~ in frequency units.

A nuclear electric quadrupole moment eg inter-
acts with atomic electrons through [O' I] defined by
Eq. (10). The magnitude of the interaction isdeter-
mined by the quadrupole coupling constant eqQ,
where

q = -2e [C'2I],

in atomic units, is the electric field gradient at the
nucleus due to the atomic electrons.

It is convenient to denote the three independent
contributions to az with J = L+ S simply by a„a„,~,
and a„„. Together with eqQ, these parameters
determine all hyperfine interactions within or among
the substates of a given LS term. Only rarely are
enough experimental data available to determine
all four parameters. If the experimental data are
incomplete, they cannot be analyzed or used for
prediction unless augmented by data from theoret-
ical calculations. In the theory of hyperfine inter-
actions, this has often been done at the primitive
level of assuming that a«„a„„,and q all depend
on a single parameter (y ) through coefficients
determinedbyangular momentum coupling of equiv-
alent P orbitals in the atomic valence shell. Thi.s
is valid in the traditional Hartree-Fock approxi-
mation to the~electronic wave function, but cannot
be maintained when internal electronic polarization
and correlation are taken into account.

The work of HRrvey oIl RtoDllc oxygen Rnd fluo-
rine demonstrates the need for three independent
parameters to describe the observed magnetic
hypet"fine tnteractions, in addition to the quRdru-

pole coupling constant. As Harvey points out, the
fact that different effective values of (I" ) must be
used in a«~ and a „ implies that a still different
value must be used in q. Hence, q cannot be ob-
tained directly from measurements of magnetic
hyperfine structure. The profound implication of
this is that measured values of eqQ can be used to
determine nuclear quadrupole moments Q only to

~ the extent that accurate values of q are available
from theory. It is clear that the required theory
must go beyond the limits of the Hartree-Fock
Rpproxim ation.

In atomic S states (with L= 0), the Fermi contact
interaction a, is the only hyperfine constant that
does not vanish identically. This constant, which
measures the electronic spin density at the nucle-
us, is due entirely to s orbitals (I = 0), because
orbitals with /& 0 vanish at the nucleus. In the
traditional Hartree- Fock approximation for an atom
with closed s shells, but with an open p shell, the
contact interaction must vanish because of cancel-
lation between doubly occupied s orbitals with iden-
tical spatial functions but opposite spin. The ob-
served hyperfine interaction in such states, for
example, N( 8) or P('S), is entirely due to effects
neglected in the traditional Hartree-Fock approxi-
mation.

It is to be expected that an unbalanced spin dis-
tribution in an incomplete atomic valence shell will
induce spin polarization in the nominally closed
inner shells and result in a nonvanishing Fermi
contact hyperfine interaction. In fact, this phys-
ical effect is neglected in the traditional Hartree-
Fock approximation only as a result of somewhat
artificial constraints that are built into the formal-
ism. The Fermi contact interaction has been com-
puted for a number of atoms by Hartree-Fock cal-
culations that retain the use of a single determi-
nantal variational wave function but drop the con-
straint of doubly occupied spatial orbitals. While
a very good result is obtained in the simplest case,
the 2 8 state of Li, calculations for other atoms
show serious quantitative errors. For quantita-
tively reliable results, it is necessary to include
electronic correlation effects that are neglected in
the Hartree-Fock approximation, even when the
traditional symmetry constraints are relaxed.

The 2 I' excited state of Li is interesting be-
cause it is the simplest case in which none of the

hyperfine coupling constants vanish identically. A

nominally closed inner shell (ls ) can be polarized
by the open valence shell (2p) to give an induced

Fermi contact interaction. The P term has two

fine-structure levels, I'&&3 and I'3&3. Thus, only

two magnetic hyperfine coupling constants a&&2 and

a»3 are defined in the absence of external fields.
In fact, for experimental reasons, only the constant

a»2 has been measured directly. However, exper-
iments on the crossing of Zeeman levels in an ap-
plied magnetic field give enough data to determine
all three magnetic hyperfine constants. * The
quadrupole coupling constant has notyetbeen deter-
mined to useful accuracy.

The spin polarization of the ls shell in I i (2 P)
due to the open 2p shell was studied by Goodings,
who carried out a Hartree-Fock calculation with-
out the traditional constraint of identical 18 spatial
orbitals. Although referred to by Goodings as a
UHF (11111'estllcted HRrtI'ee-Fock) cRlculR'tloll, tllls
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is a misnomer because the symmetry constraint of
neglecting d/s polarization was imposed, even
though this effect in inner shells due to an open P
shell had previously been cited as an example of
polarization effects in the Hartree-Fock formal-
ism. In fact, the dpolarization of the 1s orbitals
in Li (2 P) makes an important contribution to the
contact interaction and to the difference among
effective (I 3) values for the other hyperfine inter-
action terms. The value of az/2 computed by Good-
ings was found to differ by approximately T%%uo from
the subsequently measured experimental value.

More recently, several calculations have gone
beyond the framework of the Hartree-Fock approx-
imation. In calculations with a wave function that
allows for correlation effects and spin polarization
of the 1s shell, Goddard has obtained a value of
a, /& in good agreement with experiment. The effec-
tive (r ) values were all constrained to be equal,
in conflict with values deduced from level-crossing
experiments. ' The computed value of as/3 is in
serious disagreement with the value deduced from
these experiments.

A multiconfiguration wave function for Li (2 P)
obtained by gneiss was used by Ardill and Stew-
art to compute the hyperfine constants. This was
the first work in which correlation effects that
affect differently the various (r ') values were
taken into account. No systematic procedure was
used to examine or ensure convergence of the com-
puted hyperfine constants with respect to approxi-
mations inherent in such a wave function. The
computed value of a&/3 was close to the experimen-
tal value, but a3/2 is in serious disagreement with
the value subsequently deduced from level-crossing
experiments.

It is clear from this survey of prior work thata
theoretical method is needed that provides inter-
nal criteria of accuracy and convergence and that
is free of the constraints of the Hartree-Pock ap-
proximation. Two such methods are available,
both based upon formalism originally developed
for many-body theory in nuclear physics. The
first of these methods is the Brueckner-Goldstone
perturbation formalism, "developed for practical
application to atomic electrons by Kelly. " As
applied to hyperfine structure, each of the opera-
tor mean values defined by Eqs. (6)-(10) is ex-
pressed as an infinite suIQ of perturbation diagl ams
with a single vertex representing the appropriate
hyperfine operator. The magnitude of the contri-
bution due to any given diagram can be estimated,
and, in principle, all diagrams can be computed
whose effect exceeds a given criterion of accuracy.

A calculation of this kind has been carried out
by Lyons, Pu, and Das'6 on the 2 P state of lith-
ium. The calculated value of af/p is within the ex-

perimental limits of error. The effective values
of (r ) were found to be significantly different for
the mean values [s C' '], [f], and [O' I]. Because
the level-crossing experiments had originally been
analyzed on the assumption that a unique value of
(x ') could be defined, Lyons and Das" undertook
a reanalysis of this data using three independent
parameters for the magnetic hyperfine interaction.
The values of as/3 and of various level-crossing
data obtained from this new analysis are in excel-
lent agreement with the perturbation calculations. '
One of the principal purposes of the present work
is to verify these results by an independentmethod
of calculation.

The second general method capable of extension
to ultimate convergence, with internal criteria of
accuracy, is the use of a hierarchy of n-electron
Bethe-Goldstone equations, where n= 1, 2, 3, . . . ,
N for a system of N electrons. This method is a
generalization of the many-particle theory of
Brueckner. '~ In Brueckner's theory the two-par-
ticle problem is solved exactly for each pair of
particles in an N-particle system, while each two-
particle wave function is constrained to be orthog-
onal to the remaining N-2 orbital functions de-
scribing particles in an assumed Fermi sea. The
two-particle equation of Brueckner's theory, de-
rived originally as an integral equation, was ex-
pressed as a differential equation by Bethe and
Goldstone, and the two-particle equation is com-
monly referred to as a Bethe-Goldstone equation. '
A third form of this equation, a sum to infinite or-
der of so-called ladder diagrams in perturbation
theory, has been derived by Goldstone. The "ex-
act-pair" equation proposed by Sinanoglu is a
variational form of the Bethe-Goldstone equation. '

If a Fermi sea is defined by the occupied orbit-
Rls QI of R I'efeI'811ce-stRte Slater detel'nllllRIlt 40,
the Bethe-Goldstone equation for pair ij is equiv-
alent to a variational ea1.culation with an N-parti-
cle trial function

ab

In the notation used here, a Slater determinant
obtained from 40 by replacing occupied orbitals

. . . (I' &j«. . . N) by unoccupied orbitals
ItI„ III1„.. . (N&a &tI&. . . ) taken from a postulated
complete orthonormal set of orbital functions is
denoted by C',.&~~" . In Eq. (20), the summations
extend over all values of the indices a and 5, but
indices i and j are fixed and denote speeifie occu-
pied orbitals in 4o. The summation over ab de-
notes a double sum with a & b.

The general definition of a Bethe-Goldstone equa-
tion of order N, as used here, ' is the equivalent
of a variational calculation with a trial functionthat
is a linear combination of 4o and of all Slater de-



R. K. NE SHET

terminants 4';,".~"' whose indices ijk. . . are any
subset of a specified list of n occupied orbital
indices. The variational wave function of order g,
4;» for the specified indices ijk. . . , is deter-
mined by the coefficients c';&~ ", obtained as com-
ponents of an eigenvector of the N-particle Hamil-
tonian matrix over the Hilbert space of Slater de-
terminants included in the trial function. The
gross increment hE» of the mean value of any
operator I' is defined as the mean value evaluated
for C«,-~, less the reference-state mean value
Eoo. Then the net increment f;;1 of any such
mean-value property is defined as the difference
between the corresponding gross increment and the
sum of all net increments of lower order whose
indices form a subset of the given set ijk. . . .

For example, the net energy increment for pair
2, 5 is defined by

(2l)

where ATE&~ is the directly computed lowest eigen-
value of the configuration interaction matrix (ma-
il'lx of the N-particie Hamlltolllan) fol' @pg, and 83
and e~ are net increments obtained from first-or-
dex' Bethe-Goldstone calculations for 42 and 4„
respectively. Thus, ez, is that part of AE2, not
contained in e~ and es separately. If carried to
Nth order, this method of bookkeeping gives the
exact mean value of any operator E in the form

&r&=f +Zf. +Zf. + ~ ~ ~ +f (22)
I

where fo=FOO is the mean value in the reference
state.

This formalism has been used to compute the
contact hyperfine interaction in the ground states
of Li ( S) and N( S), taking into account one-, two-,
and three-electron net increments of [s 5j, de-
fined by Eq. (6). This mean value is usually
denoted by f and referred to as the Fermi contact
parameter. In these calculations, there was sig-
nificant cancellation among the one-electron (first-
order) net increments of f, and the three-particle
net increments were not at all negligible, espe-
cially for N('S). Because of the practical difficulty
of computing three-particle terms, it could not be
certain that the finite orbital basis sets used in
these calculations gave results near the practical
limit of completeness even though the computed
hyperfine constants mere close to their experimen-
tal values.

The present paper will describe a modified
Bethe-Goldstone fox'malism based on excitations
of electronic configurations rather than of individ-
ual orbitals. This has the considerable advantage,
especially for the. study of hyperfine structure, that
each of the variational ~ave functions 0&» is a
strict eigenfunction of I and 8 . This is not true

except in special cases for the wave functions de-
fined by a hierarchy of Bethe-Goldstone equations
based upon individual orbital excitations. Calcu1.a-
tions of electronic correlation energies by a Bethe-
Goldstone formalism defined in terms of configura-
tional excitations have been carried out on several
atoms by 3chaefer and Harris and on diatomic
molecules by Bender and Davidson. '

The hierarchy of Bethe-Goldstone equations for
configurational excitations is defined in Sec. II.
The computational method is described ln Sec. III.
A systematic procedure used in the present calcu-
lations to extrapolate orbital basis sets to com-
pleteness is described in Sec. IV. Results of the
specific computations on Li (2 P) are given in Sec.
V. In Sec. VI it is shown that Qet contributions to
mean values defined in terms of configurational
excitations can be equated to certain sums of per-
turbation theory diagrams. A general discussion
of the present method and of the particular results
fol' Li (2 P) is glvell 111 Sec. VII.

The definition of a Bethe-Goldstone equa'. On of order
p, for orbital excitations, is based upon a, system-
atic subdivision of the Hilbert space of N-particle
Slater determinants. A countable complete ortho-
normal set of orbital functions is assumed, of
which the first N, denoted by &f&;, i= I, . . . , N, are
occupied in a reference-state Slater determinant
40. A complete set of normalized Slater determi-
nants 4';&"' is defined in tex'ms of virtual excita-
tions of 40, in which orbitals P„N &a, replace
the occupied orbitals of 4O. In practice, finite sets
of orbitals are used, and computed results are ex-
trapolated to the limit of completeness of the

orbital set.
The set of Slater determinants formed by all

possible vix'tual excitations from a giveQ set of
occupied orbitals, with indices f/'. . . , coQstitutes
a Hilbert space that can be denoted by the symbol
(ijk. . . ). For example, (ij) is the linear function
space spanned by IC'1&J, E & a & b, for fixed i, j, but
all values of a, b. If [4 j is the complete Hilbert
space of X-particle Slater determinants, then this
space can be decomposed into a direct sum of dis-
joint subspaces,

[Cj= (0)+Z (i)+Z (ij)+Z (ijk)+" . (23)
Q j»

Here (0) denotes the reference state.
A Bethe-Goldstone equation with indices ijk. . .

is defined as the equivalent of a variational calcu-
lation within a Hilbert space that can be denoted by
[ijk. . . j, defined as the direct sum of (0) and of all
subspaces (ij . . ) whose . indices form a subset of
ijk. . . . For example,
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t F II =fo+fI+fI+f I

exactly parallel to Ell. (24). This defines

f6=tIFII fo fI fI

(2't)

(if)=[i&]-(0)-(i)-(~) .
The computational procedure based on Bethe-

Goldstone equations defined by orbital excitations
can be generalized to make use of any decomposi-
tion of the N-particle Hilbert space into a direct
sum of disjoint subspaces. Within any lattice
structure built up from these subspaces, in analo-

gy to Elle. (24), (25), and (26), variational compu-
tations can be defined that lead to systematic defi-
nitions of gross and net increments of properties
of an N-particle wave function.

Disjoint subspaces defined in terms of orbital
excl'tRtlolls, sucll Rs (ls p), (2p lp), 01' (isQ 2poQ),

are not invariant under space or spin rotations.
Hence, for atoms, symmetry-adapted eigenfunc-
tions of L and 8 cannot, in general, be construct-
ed within the variational subspaces defined by or-
bital excitations. Especially in the case of hyper-
fine interactions, which are intimately related to
orbital and spin angular momenta, , it is desirable
to have a Bethe-Goldstone formalism which works
with symmetry-adapted functions at each stage of
computation. This can be achieved by defining
disjoint subspaces of [@jthat are closed under space
or spin rotations. In an unperturbed atom, ne-
glecting relativistic effects, quantum numbers MI
and Mz are well defined, even for orbital excita. —

tions. To obtain subspaces closed under rotations,
it is necessa. ry to include all Slater determinants,
with given M2 and Ms, in the same configuration
as any determinant in the subspace. Here a con-
figuration is defined in the usual way: For atoms
in L-S coupling, quantum numbers nl are defined

[~i]= (0)+(i)+(i)+(ii) .
These uariational subsPaces of [4] form a lattice
in the technical sense that

[0]g[ifu. . . ]g [C]

for any [ij k. . . ], and simple ordering holds for vari-
ational spaces with nested indices,

[o]c[i]g [iq]g[iqn. . .],
but no ordering relation is defined otherwise.

This lattice structure of Hilbert spaces is used
to define net increments of numerical properties of
the variational wave functions. Thus if 4E;& is the
gross increment of (F) computed for 4I& defined
within [ij], then, by definition of net increments

&joe ~ &

for each occupied orbital in a typical 8later deter-
minant of the configuration, which consists of all
determinants with the specified nE values, but with
all possible values of the quantum numbers m&, m,
for each orbital.

Disjoint subspaces of [O] are defined in terms of
configurational excitations of a reference configu-
ration (0) by specifying the subset of orbitals whose
quantum numbers nl are changed by virtual excita-
tions. For example, the subspace (ls) consists of
all configurations obtained from (0) by decreasing
the number of occUpied 1s orbitals by one, while
increasing the number of orbitals with some other
value of ni. A vaxiational subspace is defined as
the direct sum of those disjoint subspaces whose
indices (sets of nl values) form subsets of the
indices of the variational subspace. For example,
variational subspaces are defined by

[ls2s] = (0)+ (ls)+ (2s)+ (ls2s),
[ls'] = (0)+ (ls)+ (ls'), (30)

[ls'2P] = (0)+ (ls)+(2P)+ (ls')+(122p)+ (ls'2p) .

~»s2s =fo+fl, +f2.+f1,2.

~FIsis =fO+fls+f Isis

~+1s1sop f0+f1s +fop +fIs ls+fl s2p+fl sl s2p ~

This has the effect of defining net increments

fls2s = ~Ftsos fO fls fos

flsls = ~+Isis fO fls r

flsls2p Flslsop fo fls fop flsls fls2p

(31)

(32)

T116 gellel'Rl def1111'tloll of R Ilet increment of (F)
with indices n&E&, n3E3. . . is the difference between
the corresponding gross increment, directly com-
puted from a variational wave function, and the
sum of all distinct net increments of lower order
whose indices are a subset of those given.

Because the subspace (0) or [0] must be takento
consist of the configuration containing the refer-

Configurational Bethe-Goldstone equations can
be defined as the equivalent of variational calcula-
tions with trial functions confined to the lattice of
variational subspaces defined as in Elle. (30). Phys-
ical mean-value properties of an electronic system
can be computed from this hierarchy of Bethe-Gold-
stone equations by defining net and gross mean-val-
ue increments as in Elis. (2V) and (28), but indexed
according to the lattice structure of configurational
variational subspaces. For example, corresponding
to the variational spaces indicated in E4s. (30),
gross increments of a mean value (E), evaluated
for the implied variational wave functions, can be
expressed as
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ence-state Slater determinant 40, it is convenient
to retain a zeroth-order net increment fo in the
definitions used here. If gross increments ~F are
defined relative to Eoo, the mean value evaluated
for Co, then fo denotes the change of (E) due to
interaction of determinants within the configura-
tion (0). Such a definition is required when sever-
al independent symmetry-adapted functions with
identical quantum numbers L and S occur in the
same configuration, or when Co is not symmetry
adapted.

These definitions of a hierarchy of configura-
tional Bethe-Goldstone equations are applied in the
present work to computations of the mean values
of the hyperfine interaction operators given by Eqs.
(6)-(10) for the 2 P excited state of Li.

The nth-order variational wave function 4
&&

is
expressed Rs R llneRr combination of the bRsls
Slater determinants 4 of the variational Hilbert
space [ij. . . ],

4";g...=Z~ @„c„ (33)

where the coefficients e~ are computed as elements
of an eigenvector of the Hamiltonian matrix II~„.
The gross increment of some mean value {E)is
given by

&&;&...=+,2, (&,.-&&0 ~..) c*.c./Z, c*.c. (34)

All of the matrix elements E,„required for the
various hyperfine interaction operators can be ex-
pressed in terms of raw orbital matrix elements

I ~=XpN, , /p=l, =0, np=g =1
(36)

+p, =N~N, (p~x '~q), l~=l, to or l~=l, +2

Here N~, N, are the radial normalization factors of
basis orbital functions of the form

g(r, 8, P)=N~" ' exp(-f~)l', (8, Q), {36)

where F, is a normalized spherical harmonic. The
mai;rix element in Eq. (36) is

(3'f)

The occupied orbitals f; of the reference state
40 and the orthogonal set of unoccupied orbitals
P, are constructed as orthonormal linear combina-
tions of basis orbitals of the form indicated in Eq.
(36). The coefficients of these linear combinations
are used to transform I'~, to the basis of orthonor-
mal radial orbitals. The usual symmetry and
equivalence restrictions of Hartree-Foek theory 6

(O', , Ee,)=(a(Z(f) . (39)

If p, denotes a determinant 4';&'", the required
diagonal matrix element is

where the summations run over just those indices
indicated in the notation for 4 ~, defined by rela-
tive vlrtuRI exeltatlon of 40.

A counting algorithm has been devised and pro-
grammed that lists all Slater determinants in a
variational subspace Inf, n'E', ], given the di-
mensions of the occupied and unoccupied orbital
basis sets. Only determinants with the same val-
ues of MI. , M~, and parlty as the reference deter-
minant Co are included in the tabulation. For con-
figurational excitations, all determinants of the
same configuration occur as a contiguous subset
of the determinant list. This will facilitate the
eventual construction of symmetry-adapted eigen-
functions of L Rnd S, but such functions are not
constructed in the present work prior to diagonali-

are used, so the radial factor of each matrix ele-
ment is independent of m.

Each of the orthonormal orbital functions is char-
acterized by quantum numbers (nlmm, ), where n
is a counting index within the set of orbitals of giv-
en /. Matrix elements of the hyperfine operators
between any two orbitals P„Q, (occupied or unoc-
cupied) vanish unless mq = my= m and m~ = may= mq ~

The specific dependence on the angular quantum
numbers ls

(ai&if) =z.„ f.=f, =o

(a(s &(5) =2m, F„, I,=/, =0

(a (C"' (5) =e'(l, m;f, m)E„, /, =l, (&0), &p+2 (38)

'(E.m;E, m)Z„, f, =f, (~0), f, +2

(a(T[f)=ms„, &, =f, (~O)

where E,~ is the radial matrix element defined by
Eqs. (35), transformed to the orthonormal basis,
and c {fm;f'm') is a matrix element of P2 {cos8).
These are the Gaunt coefficients tabulated by Con-
don and Shortley. ' The different tensorial char-
acter of each of the hyperfine operators is obvious
from these formulas for the dependence on m and
m, of the one-electron matrix elements.

The matrix elements Ii „between Slater deter-
minants, required in Eq. (34), are expressed in
terms of one-electron matrix elements by formu-
las given by Condon and Shortley. There are
only two kinds of nonvanishing matrix elements—
diagonal elements and those between Slater deter-
minants that differ by a single occupied orbital.
In the latter case, the general formula can be de-
duced from the special case
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zation of 0». The inclusion of complete configu-
rations in the determinant list ensures that the
eigenvectors of H „„represent symmetry-adapted
functions.

The mean values indicated by Eq. (34) are com-
puted by a double count through the determinant
list, constructing each element I' „as it arises in
the order of the lower triangle of a symmetric ma-
trix by combining angular and phase factors with
tabulated values of the radial matrix elements.

nl

ls
2s
2P
3d
Qf

f list

1.9635, 2.6270, 5.1370
2.3348, 0.6024, 0.4859
2.3348, 0.6024, 0.4859
1.25, 2.23
2.451

TABLE I. Exponents 0 for basisorbitalsx~~e ~"
Y& (8, ft)).

IV. ORBITAL BASIS SETS

The hyperfine interactions are found to be much
more sensitive to fine details of the electronic wave
function than is the total energy. In earlier calcu-
lations of correlation energies, adequate conver-
gence of the orbital basis set was found with "dou-
ble-zeta" 'vs~is sets, augmented by sequences of
orbitals as indicated in Eq. (36), with a common
value of f for each atomic shell. Preliminary
calculations of hyperfine interactions in several
atoms showed that this did not give sufficiently
stable convergence.

The orbital basis set shown in Table I was used
as a base for extrapolation. It contains 1s and 2P
basis orbitaj. s obtained in a matrix Hartree-Fock
calculation that gave -'7. 365054 Hartree units for
the 2 P state of Li. Because of the near degen-
eracy between the 2P and 2s valence orbitals, 2s
basis orbitals were included with the same expo-
nents as those used for 2p. Virtual excitations from
1s to virtual d orbitals have an important influence
on the hyperfine interactions. The two Sd exponents
included in Table I were obtained by a two-param-
eter minimization of the energy of the [1s]varia-
tional wave function. This was required to stabi-
lize the dominant contribution to the Fermi contact
parameter [s 6]. A single 4f exponent is included
in Table I. It was obtained by minimizing the en-
ergy of the [1s2p] variational wave function.

Extrapolations were carried out by augmenting
the basis set of Table I with additional orbitals
with a common exponent ( = 5. 543 appropriate to
the K shell of Li and an increasing sequence of

powers of t'. It is well known that such sequences
form countable complete sets of radial functions
for each / value. The technique of extrapolation
was to add, successively, one through five basis
orbitals to the base set for each l value. Five
terms allowed two successive applications to the
computed hyperfine parameters of an extrapola-
tion formula, equivalent to assuming geometric
convergence. In cases of obviously irregular con-
vergence, mean values computed for the final cal™
culation in the sequence were used instead of extrap-
olated values. Atypical example of the extrapola-
tion procedure is shown in Table II. It can be seen
that the energy increments e form a monotonic de-
creasing sequence, as they must from the varia-
tional nature of the computations within a specified
variational Hilbert space.

The significant result of each extrapolation is
the set of quantities indicated by ~ in Table II, the
extrapolated increments to the hyperfine parameters
obtained with the base orbital basis set (denoted by
6321 and defined in Table I). It is assumed as a
working hypothesis that the extrapolated increments
~ obtained separately for different l values can
simply be added. All of these results are listed
in Table III and are summed to give extrapolated
estimates of the various net increments of the
hyperf ine parameters.

V. RESULTS

Final computed values of the hyperfine parame-
ters are listed in Table IV. The Hartree-Fock
results, denoted by net increment (0), are obtained

TABLE II. Example of extrapolation. Convergence of 1s2p net increments for d-orbital completeness. Energy
increment e and hyperfine parameters in atomic units. Basis sets are 6, 3, 2+n&, 1. 4 denotes extrapolated correction.
"n m" means n x10 .

nd

base 0
1
2
3
4
5

—0.153 960 —2
—0.154486 —2
—0.154937 —2
—0.155093 —2
—0.155 143 —2
—0.155 171 —2

I&3

—0.109150
—0.109162
—0.109189
—0.109 105
—0.109065
—0.109064

0.000 093

t. s &3

0.405 990 —3
0.211480 —3
0.138 180 —3
0.117550 —3
0.115150 —3
0.124 520 —3

—0.287 350 —3

[C (2

—0.114643 —2
—0.106 916 —2
—0.113617 —2
—0.109888 —2
—0.112409 —2
—0.110304 —2

0.003 325 —2

isc&»3

—0.879 037 —3
—0.956 174 —3
—0.901 238 —3
—0.941 009 —3
—0.918 599 —3
—0.933 904 —3
—0.049 422 —3

f&3

0.452 026 —2
0.455 699 —2
0.457 834 —2
0.458 484 —2
0.458 526 —2
0.458 499 —2
0.006 482 —2
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TABLE III. Summary of extrapolated corrections for angular completeness. Net increments of hyperfine param-
eters in atomic units. Data are in floating decimal notation: fraction followed by power of ten.

Increment

base
S

p
d
f
total

base
S

p
d

f
total

lg base
S

p
d

f
total

1s2P base
S

p

f
total

—0.856 136 —2

0.050 136 —2
—0.004 277 —2

0.002 215 —2

0.0
—0.808 062 —2

0.0
0.0
0.0
0.0
0.0
0.0

0.424 231
—0.472 857

0.267 549
—0.003 927
—0.006 777

0.208 219

—0.109150
—0.000 150
—O.Q10 578

0.000 093
—0.000 856
—0.120 641

[s6]
—0.205 005

0.006 798
—0.000 388

0.000 025
0.0

—0.198 570

0.0
0.0
0.0
0.0
0.0
0.0

—0.214 648 —1
0.012 747 —1
0.031 212 —1
0.005 927 —1
0.001 611 —1

—0.163 151 —1

0.040 599 —2

0.122 403 —2
—Q.090 584 —2
—0.028 735 —2
—0.017 099 —2

0.026 584 —2

0.161 244 —2

0.000 045 —2

0.000 032 —2
—0.022 271 —2

0.0
0.139050 —2

—0.312 296 —7
0.266 151 —7
0.301 665 —7
0.0
0.0
0.255 520 —7

0.755 078 —4
—0.003 847 —4
—0.009053 —4
—0.171498 —4

0.008 312 —4
0.578 992 —4

—0.114643 —2
—0.000 119 —2
—0.002 432 —2

0.003 325 —2
—0.001 171 —2
—0.115040 —2

[sC (2)]

—0.977 886 —3
0,000 145 —3

—0.001 683 —3
0.134 374 —3
0.0

—0.845 050 —3

—0.312 296 —7
0.266 151 —7
0.301 665 —7
0.0
0.0
0.255 520 —7

—0.048 681 —4
0.001 752 —4
0.065 662 —4

—0.128 526 —4
0.002 652 —4

—0.107 141 —4

—0.879 037 —3
—0.000 894 —3
—0.024 121 —3
—0.049 422 —3
—0.004160 —3
—0.957 634 —3

f.&i

0.598 643 —5
—0.000 117 —5

0.002 823 —5
—0.038488 —5

0.0
0.562 861 —5

0.156 148 —6
—0.133075 —6
—0.150 832 —6

0.0
0.0

—0.127 759 —6

0.014 252 —4
0.000 180 —4
0.118949 —4
0.000 152 —4
0.000 068 —4
0.133601 —4

0.452 026 —2
0.000 533 —2

0.003 746 —2
0.006 482 —2

0.001 783 —2

0.464 570 —2

with the s and p orbital basis of Table I extended
to eight and five radial basis functions, respectively.
The energy computed with this approximate Hartree-
Fock function is -7.3650670 hartree units. Net
increments of the hyperfine parameters for all one-
and two-particle configurational excitations possible
in the 2 P state are included in Table IV.

For comparison with experiment, the computed
hyperfine parameters must be multiplied by the
conversion factors indicated in Eqs. (12)-(14). If
2. 792782 p& is used for the magnetic moment of
the proton, the recalibrated value of the magnetic
moment of the Li nucleus (I=—,') is

p, q= 3. 256355 p, ~

Then from Eq. (15), with J = —,
' and the constant G,„

given by Eq. (18),

yJ g= 138.088

in MHz/a. u.
Although not required by the expected accuracy

of the present results, additional correction fac-
tors arise from the finite mass of the Li nucleus.
These factors convert from atomic units in which
the electronic mass is the reduced mass in the Li
atom to the units given by Eq. (17), appropriate to
infinite nuclear mass. The Li-based atomic units
are inherent in the atomic calculations. If M is the
nuclear mass (7. 01601 C'~ mass units for Li~),
and m is the electronic mass (5.48593x10 C'2

mass units), then [s 5] and [s C' '] must be multi-
plied by the factor

Increment

TABLE IV. Net increments of hyperfine parameters in atomic units.

[s&] [c ] [sC'"]

0
lg
2P
1~2

1s2p
total

00
—0.008 081

0.0
0.208 219

—0.120 641
0.079 497

0.0
—0.198 570

0.0
—0.016 315

0.000 266
—0.214 619

—0.011711
0.001 391
0.0
0.000 058

—0.001 150
—0.011412

—0.011711
—0.000 845

0.0
—0.000 011
—0.000 958
—0.013 525

0.058 553
0.000 006
0.0
0.000 013
0.004 646
0.063 218

~The Hartree-Fock value of [6j, 173.845 568 a.u. , is not included in the tabular entries.
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y„„=(1+m/m)-'= 0.999 8436 (44)

to give X „„in standard atomic units. To facilitate
comparison with future calculations of higher accu-
racy than those reported here, these mass correc-
tion factors have been included in the presentfinal
results, converted to hyperf inc coupling constRnts
in MHz.

These results are listed in Table V. The hyper-
fine interactions are computed directly in the state

In a P state, the J'= —,
' coupling constants can

be obtained from the formulas derived from the
Wigner-Eckart theorem'

+1/2 c +3/2 0

~1/2, diy 13/2, diy

~1/2, 0rb ~3/2, 0rb

These coupling constants are included in Table V.
Except fox' the VRlue of Qg/2& R dlx'ectly measured

result, the experimental data included in Table V
have been deduced by Lyons and Das' by a recent
reanalysis of experimental data on Zeeman level
crossing in Li. This new analysis assumes three
independent magnetic hyperfine parameters, as
implied by perturbation theory calculations and
by the present work.

A comparison of the computed and experimental
data in Table V indicates substantial quantitative
agreement. The present results fall generally with-
in 1% of the experimental data or in most cases
within the indicated error limits.

Existing experimental data do not provide a val-
ue of the quadrupole coupling constant eqg of use-

y„= (1+m/I)-'= 0.999 V654

to give X, and X«, in the usual atomic units. This
is the mass correction for ao . In the case of the
orbital hyperfine interaction, the Bohr magneton
is also inherently defined in terms of the electron-
ic reduced mass. This correction compensates for
one of the factors in y,~, and [I]must be multi-
plied by the factor

ful accuracy. However, judging from the results
obtained here for the magnetic hyperfine parame-
ters, the electric field gradient q obtained by Eq.
(19) from the computed value of [CN'] listed in
Table IV should be accurate to 1/0 of its value.
Hence, if eqQ can eventually be measured to this
accuracy, a comparably accurate value of the nu-
clear moment Q can be deduced.

The electric field gradient q is often expressed
ln terms of Rn Rppl oxlmRte VRlue Q'0 obtained by
a one-electron model calculation by the formula

{46)

where 8 is the Sternheimer quadrupole shielding
factor. Calculations of intershell polarization in
the 2 P state of Li give a value of 0. 1156 for this
factor. ' The Brueckner-Goldstone calculations of
Lyons et al. lead to B=0.1700. 6 Thepresent cal-
culation of [C ], indicated in Table IV, is equiv-
alent to R = 0. 0255, in very marked disagreement
with earlier results. It should be noted that the
present (1s) net increment by itself would give R
= 0. 1188, in reasonable agreement with the result
of Sternheimer. However, this is nearly canceled
by the (Is2P) pair correlation effect. There is no
evidence of such cancellation in the perturbation
diagrams considered by Lyons et a/. . Inthe present
calculations, this cancellation between (1s) and
(1s2p) appears quite clearly for the orbital basis
set indicated in Table I and persists in the extrap-
olated net increments. This provides some inter-
nal evidence that the cancellation effect is real.

VI. COMPARISON VHTH PERTURBATION THEORY

The perturbation-theory equivalent of a mean-
value net increment defined by the hierarchy of gth-

order Bethe-Goldstone equations for OxMtal exci-
tations has been described previously. The net
increment with indices (ij. . . ) is equal to the sum,
to infinite order, of all connected linked Goldstone
diagrams' ' whose backward directed lines are
labeled by just this set of indices with every index

TABLE V. Hyperfine coupling constants for Li in state 2 PJ, in MHz.

aJ
aJ dye
aJ Ox'b

aJ

Present~

9.8880
18.6937
17.4566
46.0383

v= 1/2
LPDb

9.5788
18.9638
17.3453
45.8879

Expt'

9.806 +0.116
19.080+0.340
17.282 +0.074
46.17 +0.35

—9.8880
—1.8694

8.7283
—3.0291

—9.5788
—1.8964

8.6727
—2.8025

Expt'

—9.806+0.116
—1.908+0.034

8.641 +0.037
—3.073 +0.126

~Hyperfine parameters shown in Table IV multiplied by conversion factors defined in the text.
J. D. Lyons, R. T. Pu, and T. P. Das, Phys. Rev. 178, 103 (1969). Original results, in atomic units, have been

multiplied by conversion factors used in present paper.
'Values of coupling constants implied by experimental data discussed in text. The value of a~/2 is a direct experimen

tal result [G. J. Ritter, Can. J. Phys. ~43 770 (1965)].
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[" (nl)""'] (47)

It follows from the bookkeeping procedure used to
define net increments that the diagram in question
is part of the net increment denoted by

(- (nl)""~ ) (48)

value appearing at least once. For the mean value
of an operator F, each diagram contains one Fver-
tex and has no external lines.

This theorem can be extended to the present case
of configurational excitations, if care is taken in
dealing with the so-called EPV (exclusion principle
violating) diagrams. Of various classes of EPV
diagrams considered by Kelly, ' the only class that
requires special analysis arises originally from
factorization of unlinked diagrams prior to cancel-
lation of the denominator that represents the renor-
malization of the unperturbed wave function. In
EPV diagrams of this class, repeated values of
particle (a) or hole (i) indices may occur at a
cross section across the diagram between succes-
sive vertices. The exclusion principle is violated
in that the implied intermediate wave function can-
not be defined, since a Slater determinant does not
allow repeated particle or hole indices. Exceptfor
certaindiagrams that cancel exactly inpairs, Kelly
has shown that EPV diagrams of this class can be
decomposed into unlinked segments such that the
exclusion pr'inciple is valid within each segment.
Then a Slater determinant wave function, or set of
such wave functions, can be identified with each
cross section of each diagram.

If EPV diagrams are taken into account as de-
scribed above, the configurations that enter into
any linked diagram can be determined by examining
the Slater determinants associated with each cross
section of the diagram. In terms of relative vir-
tual excitations from a reference configuration, the
change of occupancy of anoriginally closed or com-
pletely empty subshell of orbitals (nl) is obvious.
The change of occupancy of a partially occupied
shell is given by the excess of holes over particles
with the same (nl) value. Each cross section of a
linked Goldstone graph determines a set of indices
y(nl), the excess of holes over particles for each
(nl) value needed to describe the Slater determinant
wave functions at that cross section within each
linked part of a factored EPV diagram. The set of
maximum values of these indices taken over all
cross sections of the diagram describes the maxi-
mum complexity of virtual excitation required ina
wave function that would lead to the diagram in
question. This set of indices uniquely determines
a variational Hilbert space for configurational ex-
citations, denoted in Sec. II byanotationequivalent
to

Conversely, this net increment is the sum of all
such diagrams characterized by a set of maximum
relative excitation indices y(nl) for each (nl) value
of the reference configuration.

This simple rule shows how any fully labeled
mean-value Goldstone diagram can be assigned to
a definite configurational net increment.

VII. DISCUSSION AND CONCLUSIONS

The present results indicate that the method used
here, a hierarchy of variational Bethe-Goldstone
equations, is capable of obtaining hyperfine param-
eters within an error of 1/o of their experimental
values. Although themethodis, in principle, appli-
cable to much heavier atoms than lithium, it re-
mains to be shown that results of high accuracy can
be obtained as the number of electrons increases.
It is encouraging to note that calculations on the
P ground state of boron, to be reported separately,

appear to maintain the level of accuracy indicated
here for 2 P lithium.

The crucial practical question is whether net
three-particle terms can be neglected, and if not,
whether they can be estimated without carrying out
computations as elaborate as those reported here
for one- and two-particle terms. In 2 P lithium,
calculations using a somewhat truncated orbital
basis set were carried out and indicated that the
only possible three-particle term here (ls~2p) gives
net increments of the same magnitude as the resid-
ual error (roughly 1%) inthe present result:s. Thus,
it is justified to omit the (1s~2p) net increments, as
has been done here. However, this does not justify
neglecting irstxaskell three-particle terms, such as
(2s 2P) in boron, which mightbe considerably larger
than the intershell term 1s 2P. This point will be
examined in calculations on heavier atoms.

The present method classifies corrections tothe
Hartree-Fock approximation in a hierarchy that is
based on the underlying physics of electronic cor-
relation. Because of the apparently rapid conver-
gence and high accuracy of the present results, it
is justified to associate a physical meaning with
each of the net increments listed in Table IV. The
(ls) net increments correspond to virtual one-par-
ticle excitations from the Isa shell, corrected for
rotational invariance by the method of configura-
tional excitations. Thus, it is reasonable to attrib-
ute (ls) net increments to a physical polarization
distortion of the inner shell orbitals because of the
asymmetry of the open 2P outer shell. The corre-
sponding polarization of the 2p orbital vanishes to
six decimal places.

The two-particle net increments (ls ) and (ls2P)
must be considered to be true correlation effects
requiring the virtual polarization of two electrons
at a time. These correlation effects, as indicated
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in Table IV, are smaller than the dominant Hartree-
Fock terms for the spin-dipolar and orbital inter-
actions and smaller than the (ls) contact interac-
tion (a polarization effect), but their magnitude is
roughly one-tenth of the total in each case. Thus,
correlation effects must be computed accurately
lf computations Rre to be compared with exper1-
mental data in the range of I%%uo errors.

A detailed comparison with perturbation-theory
results' will not be attempted here. The very
detRlled agreement shown ln TRble V with the LPD
magnetic hyperfine constants is encouraging because
perturbation theory and the present method are
complementary in their essential approximations.
The linked cluster perturbation method, as imple-
mented by Kelly, takes into account with relative
ease a complete basis of radial functions for each
E value, but must truncate the sum of all Goldstone
diagrams at R rather low order. In contrast, the
present method inherently sums an infinite set of
Goldstone diagrams at each level of the hierarchy
of computations, but must truncate the set of radial
orbital functions severely for each E value, depend-
ing on extrapolation to approach completeness.

Because of these complementary limitations of

the two methods, it is encouraging when they come
into agreement with calculations that are practica-
ble within either method, and this agreement gives
some credibility to the results.

A serious disagreement exists between the cor-
relation contribution to the electric field gradient
q as computed by the present method and by per-
turbation theory. '~ All of the present calculations,
including basis set extrapolations, were carried
out in a uniform manner in the present work with
no arbitrary choices such as arepossible inselect-
ing Goldstone diagrams in perturbation theory.
Because of this, it is unlikely that the present val-
ue of q is grossly less accurate than are the mag-
netic hyperfine parameters. It can be concluded
that resolution of the disagreement is most likely
to be found by including more Goldstone diagrams
of the (1s2p) class in the perturbation calculations.

The calculations reported here were carried out
on an IBM 360j91 computer.
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Rotational Raman Effect: Molecular Impurities in Alkali Halides*
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Raman scattering of light from representative alkali-halide crystals containing CN, NO2,
OH, and OD impurities is reported and analyzed. The observed spectra have a low-fre-
quency range in whichthe scattered light is usually shifted from the incident light by less than
300-400 cm ~, and a high-frequency range in which the shifts are typically 1000-2000 cm
Although the low-frequency region does not readily lend itself to quantitative analysis, it is
clear that its main features can be interpreted in terms of a mixture of second-order scat-
tering from the pure host, impurity-induced first-order scattering that results from perturb-
ing the pure host, and scattering from the rotational degrees of freedom of the molecular
impurity. The high-frequency region, on the other hand, consists of spectra whose frequen-
cies are characteristic of the internal normal coordinates of the molecule. A very narrow
totally polarized line with depolarized sideband structure is generally observed. The sharp
central component is at the frequency of an internal molecular normal coordinate and, typ-
ically, has a linewidth of 1 cm . It is not significantly affected by the type of host or changes
in temperature. It is found that the sideband structure gives a measure of the molecular
rotational dynamics. Depending on host and impurity, the observed characteristic behavior
varies from nearly free rotation to heavily trapped librational motion. The techniques em-
ployed here, both theoretical and experimental, demonstrate and define the usefulness of the
Raman effect in studying systems of an analogous nature.

INTRODUCTION

In this paper, we discuss the application of spon-
taneous Raman-scattering techniques to the study
of rotational motions of selected molecular impuri-
ties in various alkali-halide single crystals. The
results suggest that observations and analysis
similar to what we report here will enable one to
also study rotational motions of other molecular
systems, including liquids. The particular im-
purities and host crystals chosen for detailed ex-
amination were CN in KCl, KBr, and NaCl, as
well as OH and OD in KCl. In addition, less ex-
tensive observations were made on these same
molecules in other hosts and also on NO~ in repre-
sentative crystals. The choice of these systems
for the present work was partially made on the ba-
sis that they had previously been studied by a vari-
ety of other methods, and although a good deal was
already known of their rotational kinetics, there
was need for further experimental confirmation of

conclusions that were previously somewhat specu-

lative. ' " The consistency between conclusions
drawn from the present measurements and pub-
lished results of others supports these previous
conclusions. The results reported here can also
be taken as some measure of the general suit-
ability of Raman scattering for quantitative mea-
surements of molecular rotations.

Extensive studies, including near-infrared ab-
sorption, stress, and specific-heat measurements,
have been performed by Seward and Narayanamurti
on CN -doped samples. The detailed structure of
the absorption bands in the vicinity of the internal
stretching mode of the CN molecule (near 2000
cm ') was used to determine some features of the
molecular rotational motion. The conclusion was
that the CN molecule in KCl, KBr, and RbCl is a
relatively free rotator which could be successfully
treated by the Devonshire model. ' In the case of
CN in NaCl and NaBr, the results were inconclu-
sive, but it was supposed that the molecule is rel-
atively heavily trapped in a given orientation. Va-
cancy and entropy studies showed that the CN mol-


