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The propagation of light in an optically pumped vapor is determined semiclassi ally by the
expectation value of a dielectric susceptibility operator. We present explicit formulas for
the dielectric susceptibility of a vapor of alkali atoms. The qualitative features of the sus-
ceptibility are .illustrated for the specific case of Rb '. The theory of this paper is essen-
tial for a clear understanding of phenomena such as the birefringence of alkali vapors and
the microwave modulation of light by alkali vapors. Some experimental observations of bi-
refringence in rubidium vapor are Interpreted with the semiclassical theory.

I. INTRODUCTION

The purpose of this paper is to present a rig-
orous theory of light propagation in optically pump-

ed alkali vapors. A complete analysis of light

propagation is rather involved because the index

of refraction of the vapor may be anisotropic, in-

homogeneous, rapidly varying, and lossy. The
most important shortcoming of simplified theories
is that they do not adequately account for the spec-
tral profile of the light beam. The spectral pro-
file of the light beam is usually assumed to be
much broader than the width of the atomic absorp-
tion lines. Under these conditions, theory pre-
dicts that alkali vapors should exhibit no birefrin-
gence. "However, birefringence is often observed
experimentally in rubidium and cesium vapors. '

A further inadequacy of simple theories occurs
when there is microwave coherence in atomic
vapors. The spectral profile of a lightbeam which

has passed through a vapor with microwave coher-
ence is radically modified since sidebands, dis-
placed by the microwave frequency, are added to
the optical carrier waves. In rubidium and cesium,
the displacement of these sidebands from the car-

rier can be significantly greater than the spectral
widths of a typical lamp line.

Recently, several comprehensive theories have
been developed to account for some of the phenom-
ena mentioned above. ' In this paper we shall
follow the Happer-Mathur semiclassical theory,
hereafter referred to as HM. In this theory the

propagation of a light wave through a vapor is
governed by the dielectric susceptibility of the
vapor. The basic theory of light propagation
through optically pumped vapors is developed in
Sec. II.

The susceptibility is not a constant, but it de-
pends on the state of the vapor. Consequently,
one must think of the susceptibility as the quantum-
mechanical expectation value of a susceptibility
operator. Explicit formulas for the susceptibility
operator of an alkali atom are given in Sec. III.

As an example of the application of this theory
to concrete problems, the results of some new

experiments on the birefringence of rubidium vapor
are analyzed in Sec. IV.

II. THEORY

%'e can think of a light beam as being composed



LIGHT PROPAGATION IN OPTICALLY PUMPED ALKALI VAPORS

of many monochromatic waves whose electric
fields E may be written in the form

E= h(f, t) exp [i(k r —&oi)]+c.c.
where c.c. denotes complex conjugate. The am-
plitude 8 will be a slowly varying function of time
t and of distance f along the direction of
propagation, where

g=(I/k)k. r .
The oscillating electric field of the light will in-
duce an oscillating electric dipole moment p in
each atom of the vapor with

p = p exp i(k r —&u i) + c.c. (3)

we can use (6) and (4) to write

&=&X) & (6)
Thus, the susceptibility is the polarizability per
unit volume or, alternatively, the polarizability
is the susceptibility per atom.

Suppose that microwave coherence exists in the
vapor so that the susceptibility is a rapidly oscil-
lating function of time. Then it is convenient to
write the susceptibility in the form

%e shall always be concerned with weak light
sources, that is, with sources for which the rates
of induced adsorption are much smaller than the
corresponding spontaneous decay rates. Then the
dipole-moment amplitude p is directly proportional
to the electric field amplitude, thus,

F =(u)h (4)

The polarizability dyadic of the atom is denoted by
{1f'). The polarizability is the expectation value of
a ground- state operator:

&n) = Tr[o.p] (6)

Here p is the density matrix of the atomic ground
state.

The density matrix may contain rapidly oscilla-
ting off-diagonal matrix elements or "coherences. "
In consequence, both &n ) and y may contain com-
ponents which oscillate at one of the ground-state
transition frequencies. That is, even though an
atom is driven by a monochromatic light wave, the
induced polarization need not oscillate at the op-
tical frequency alone. It may oscillate at the driv-
ing frequency plus and minus multiples of the atom-
ic coherence frequencies.

The macroscopic polarization of the vapor is

P = Np = p exp[i(k r —&ut)]+ c.c. (6)

Here N is the atomic-number density. If we define
the susceptibility operator by

&x(~, C, f))

=2 &u)'IX I~)exp(i[(k'-k)g-((o'-(o)t]) . (9)

The sum over u' is such that all coherence fre-
quencies of the vapor are included in the set of
difference frequencies &u —&u'. Hence, &&u IX i&u')

can be chosen to be time independent, although it
may still depend on the position f. One can think
of &~' l X i &u) as a matrix element in the frequency
domain; &&u' iX I &u) couples two light waves of fre-
quencies v and ~'.

Now let us represent the electric fieM of a light
wave as a superposition of many monochromatic
waves. Then,

E = Q 6 ((u) exp[i (kt' —&et)]+ c, c. (10)

The problem one must solve is the following:
Given the amplitudes $(&u; (0, to) at some initial
position $0 and time t„how does one calculate the
amplitudes $(&u, f,t, ) at some more distant posi-
tion g, and later time t, 'P In order to solve this
problem, we introduce new independent variables

t = —,'(g+ ct),
ri= ,'(5- ct-) .

(11)

(12)

then

&~
I x.I&') = &(k)'&~ Ibex

~') &(k),

Physically, it is clear that only the transverse
components of the susceptibility can affect the
propagation of the light, since the longitudinal com-
ponents of y give rise to longitudinal components
of polarization, and dipole oscillators do not ra-
diate in the direction of oscillation.

The coupled equations (13) are similar to the
Schrodinger equation for a quantum-mechanical
system, and they may be solved in the same way.
The solution to (13) may be written in the form

g(u), $,)=+V((o$, ;(o'$0) ~ S(&o'50) (16)

Here the propagation matrix V is analogous to the

Then it can be shown' that the electric field am-
plitudes satisfy the set of coupled equations (some-
times called the reduced Maxwell's equations )

=2wikg&(uIX, I(o') $((o') (13)
I

The variable q is held constant in (13). Note that
one uses the transverse susceptibility &ur i X, i ~~ )
in (13). If we define a transverse projection oper-
ator by

T (k) =1-kk
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time-evolution operator of elementary quantum
mechanics. In analogy to quantum mechanics,
we can write a perturbation series expansion for
V:

V((u(„(o'(,) = 6„„.+ 2via &~
I X, ($)

I
~'&R

~' fo

+(2mik)' dt d('
4p "4p

A. Optically Thin Vapors

Suppose that the vapor is optically thin, i.e. ,
that

1«i —&0»&~
I x. l

~'&
I
"1 (16)

Then one can neglect quadratic and higher-order
terms in x, and Eq. (17) becomes

v(&ut'&, v $0) = 5„„.+ 2vrik~' &&
I
xi(t) I

& ) @ ~ (19)
(p

Equation (19) is a good first approximation to many

experimental situations.

B. Static Homogeneous Susceptibilities; Wave Surfaces

&~ x. l~'&=6..&x.(~)& (20)

We shall also assume that (X,(~)& is independent
of (, i.e. , we assume that the susceptibility is
spatially homogeneous. Under these conditions,
Eq. (17) becomes

V(&ut'„e'(0) = 5„„.exp[2mik(&, —&0)&X,(v)&] . (21)

That is, the propagation matrix describes atten-
uation and changes in polarization of the light
wave, but not frequency changes. From (21) and

(16) we find that the electric field for a light wave

in the vapor ha, s the form

Z(y, t) = exp[i(Kg —(ut)] 8(0, t) + c.c. (22)

The complex propagation dyadic K is

K= kn

where n is the index-of-refraction dyadic

n= 1+ 2m&X, & (24)

The propagation dyadic will always have two trans-
verse eigenvectors e,.'

Let us consider the case where the susceptibility
is static or very slowly varying. Then, electric
field amplitudes of different frequencies will not
be coupled and the susceptibility matrix elements
become

K ~ e,=ke, (x=1, 2) . (26)

These eigenvectors represent the polarizations of
of the two wave surfaces' of the vapor. The eigen-
values k, determine the complex phase velocities
e)„of the two eigenwaves:

(26)

C. Light with Broad Spectral Profile

Optical-pumping experiments are usually done
with incoherent light from a resonance lamp. The
light from such a lamp will be characterized by
some spectral profile function 4(v) = 2m4(u&) such
that 4'(v)dv is the energy flux carried by the light
waves whose frequencies lie between v and v+dv.
Such light can be represented by an ensemble of
many monochromatic waves of random phases.
The average energy flux carried by a monochro-

The real part of z~ determines the actual phase
velocity of the wave, and the imaginary part of v,
determines the rate of attenuation of the wave.

A widespread and convenient representation of
light propagation in anisotropic media makes use
of wave surfaces. 'o The normal-velocity surface
is simply a plot of the phase velocity v, as a func-
tion of the direction of propagation. The ray-ve-
locity surface is the surface which would be ob-
tained if a short pulse of light were set off at some
point in the vapor and if the resulting wave front
were allowed to expand in all directions. It is
worth noting that the ray-velocity surface and the
normal-velocity surface are identical to firstorder
in (X&. Since we shall always be concerned with
susceptibilities which are much smaller than unity,
we can use. the ray-velocity surface and the normal-
velocity surface interchangeably. Both surfaces
will be referred to as "the wave surface. "

If the susceptibility is time dependent, we must,
in general, solve the full propagation equation. (13).
However, we may use the instantaneous value of

(x) in (22) if both of the following conditions are
satisfied. Firstly, the susceptibility must not
change appreciably during the time required by the
light to pass through the vapor. Second, it is es-
sential that no appreciable variation of (x,(~)& oc-
cur over the frequency range occupied by the side-
bands of the light wave. From (13) we find that
the latter criterion is satisfied provided that

2vugl &x, ((u, )&l(u /au), «1 (27)

Here k is the thickness of the vapor;
I
(x, (&u, )&l is

the amplitude of the oscillating susceptibility, eval-
uated at the optical carrier frequency ~„and ~
is the oscillation frequency of (X,(&uo)&. The Dopp-
ler width of the atomic absorption line is denoted

by 6(d D ~



matic light weave is
4 =(./4 ) &~EI'&.. .

where the symbol "av" denotes an avexage over
several optical cycles. For a superposition of
monochromatic waves such as (10), one can always
make the replacement

Any time variation of &)(& has been neglected in
(35) because the ground-state resonant frequencies
are much smaller than the optical frequencies.
Since the bandwidth of conventional photodetectors
does not extend to optical frequenciesp %$6 may
substitute (35) into (34) and average over a few
optical cycles to obtain

(i
4)((o)d(d= (e/2)[)&

i
h((d)i' (29) &I()&~~= —i(() 8 ' &'X&' 8+ c~ c.

Occasionally, one does experiments in which the
incident light is already modulated in some way. "
Under such conditions one must xetain phase xe-
lations be@veen different frequency components of
the incident light wave, and it is not sufficient to
specify only the spectral profile @(v). It is not
difficult to treat the case of modulated incident
light, but me shall not consider it furthex here.

D. Attenuation of Light Beam

Let us assume that light of R definite polariza, -
tion vector e Rnd initial spectral profile 4' (v) is
incident on Rn opticRlly pumped vapor. The atten-
uation of the flux is then

~C =—'g[(g(~, gl} ('-
( g(~, g, )~']

='@((d)d~ K[V($ ~' ( ~) e] [V(k ~"'t ~) e]'

xexp(i[( ')- )) , (-(~'-ra )t, )) —(I."

For optically tlllll VRpol's, we cRn substltll'te (19)
into (30) and retain only linear terms in y. The
attenuation is then

Using (29) and the fact that b = 8e, we obtain

&I0&,„=-2)like* &y& ec'(v)d) +C.C. =hC(()dv . (3V)

Thus, the absorptivity ()I((e, f, f) is simply the
instantaneous poorer Rbsoxbed per unit volume and
per unit flux from a light wave of frequency ~.

One ean also show that the absorptivity is closely
related to the light-absorption operator 51' of HM.
One finds that for a monochromatic vrave

I(./2v)j&~'= &A«» . (33)

Physically, (38) shows that the rate of absorption
of energy from the light wave is just equal to the
photon energy times the rate of atomic excitation,

In deriving (31) we assumed that the vapor was
optically thin. The same profile function 4'0())) and
polarization vector e can thus be used throughout
the volume of the vapor. In the case of optically
thick vapors, both the spectral profile Rnd the
polarization of the light change in a, complicated
way as the beam passes through the vapor, and one
must use the more general expression (30) instead
of (31) to calculatethe attenuation of the kightbeam.

III. POLARIZABILITY OF ALKALI VAPORS

S@(tl)=- "d&' 'dg@, ((o)h((o, g, t),
0

f = f, -(1/. )(C, —~)

and the absorptivity is

II((d, l, i)=-2IIike~ &y, ((o, t', i)& e+c.c. (33)

Ne have shoran that the dielectric susceptibility
&y& or, equivalently, the dielectric polarizability
((I& =N &y& determines the way in which light prop-
agates through a vapor. Because of hyperfine
structure, the polarizability of an alkali atom is
rather eomplicatedp Rnd in ox'dex' to fRcilltate oux"
discussion of the polarizability, it is convenient
to verite the polarizability operator as the sum of
foux' components:

Equation (33) may be derived from simple phys-
ical considerations. Power is absox'bed from a
monochromatic light beam because of the work done
by the electric field of the light on the oscillating
dipole moments of the atoms. The poorer se ab-
sorbed pex' unit volunle ls

dpsv=E' —. (34)dt

Differentiating (6), we obtain

dP
N
—=- i(()&l(& 8exp[i(k 1' - (()i)]+ co c.

o(=o( +(I„„Ii+i+(I (ff )J(ff }x
fP

+Zo(„,(ff )Q(ff') .
ff'

The physical significance of each of these compo-
nents will be discussed in Secs. III A-IUD

A. Isotropic Polarizabilities

There are two isotropie components of the po-
karlzabiklty opeI'Rtol". tile equlllbl'illlll polR1'izRk)ll-
ity and the hyperfine-stx'ucture pola, rizability. The
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equilibrium polarizab'l'ta i i y ~„is independent of the
e vapor and is the onl co

' i y w ich would be res
were distributed

present if the atoms
i u e at random amon the

the ground st t Th
g e sublevels of

h yp ine structure polar-a e. he h erf'
i y nh„I ~ Jhas a nonzero e

only when s
expectation value

n some population imb
between the

alance (I ~ J) exists
e upper and lower h

t. .' t

ariza ility operator &Q as

Q Q Qeg+ +hfs I J p

y = (~c'/2It T)'"[(I/2r+ )/2~v (47)

(4o)

where the e u' '
q ilibrium response function is

1
"= 2'(2f 1) P

g
Q g

and the hyperfine-structure-s ruc re response function '

(43)y=0. 5

The results are shown
' F'in igs. 1-4.

From (33) we find that the e
tlvlty is

a e equilibrium absorp-
""

v 3(21+ I) „(2E,+I)"'
Here,

A, (E/) = 2V3G(2E+ I)' (49)h„=4m' Ima„

and the hyperf ine absorptivity

hoofs

= 4nkN(I J) Imn'+hfs

&&+ (2E, + 1)Wl (J,F, ~Fg,
' I1)Z(FFg) (43)

(5o)

All nomenclature ' th
particular X

'
th

is e same as that of HM. In
is e wavelen th

li ht ' "th
Q

is e classical electron radius
o cill to st ength of tho e transition M is
molecular weight of the atoms oe atoms, t." is the speed of

is the gas constant, T is the
perature, v is the f

is e absolute tem-
is e frequency of the li ht

t of ity of th to absorption line,

« is e optical frequency corresresponding to a

'td- tt l lE
ween e ground-state level

eve „Tis the lifetime

, an y, is the collision b

ica -a sorption line.
The ressponse functions n of (41

lla b 1 t d

parameter
a ua e explicitl foy or a broadening

[see (III. 3) and (A26) of HM], and

G = (X Xof/87 )(M /2RT) (4

The symbol W denotes a Racah
plasm d

a acah coefficient. The
a lspersion functions'~ Z(EE '

by
, ,' are defined

Z(E,E,) = Z(x(F,F )+ iy) (45)

x(F,F,) = v-'(mc'/2' r)"'"——.]-[ (FF,)- .,]],
(46)

Thus , while the equilibrium absor tivit
t of th t t f

tivity can servrve as a useful m
e s absorp-

observ bla e I ~ J). Both the e uilib '
onitor of the atomic

ti ity d th e s absorptivity are inde

po
' t'o f th

from isotro '

' no eli htsin'g ' ce both originate
iso ropic components of the

%e note that the
o e polarizability.

a e response function S
q. , of Ref. 13 is related

hyperf inc polarizabil't b
' a i i y y the formula

II
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S„„(v)= —(4n/hc) R«„„
B. Gyrotropie I'olarizabijities

The gyrotropic polarizabilities of an alkali vapor
are anisotropic, and they depend on the expectation
values «(ff')) of the electronic angular momentum

operator within each hfs level (f=f ) and between
different hfs levels (fWf'). The gyrotropic polar-
izability is important in a wide range of optical-
pumping experiments which involve circularly
polarized light beams or which utilize the para-
magnetic Faraday effect.

Making use of (A26), (A34), and (A16) of HM,
we find

s=ie xe* . (66)
The average photon spin s is a unit vector parallel
to the beam direction for right-circularly-polar-
ized light, and it is a unit vector antiparallel to
the beam direction for left-circularly-polarized
light. For all other states of polarization, s lies
somewhere between these two extreme values.
The gyrotropic absorption can serve as a useful
monitor of the angular momentum observables
«(ff)&.

We note that the gyrotropic polarizability is
related to the response function M(E, v) for the
effective magnetic field of Eq. (16) of Ref. 13 by
the formula

o. , = g f~„(F,F,')$(F,F,')x, (62) 6'(E, v)=-(2m/g, p,c)Rea„(EF) .

where the frequency response functions are C. Birefringent Polarizabilities

x W(J,F, ,'F„I1)W(J—,F, ,'F, ;I 1) .—

The projected angular momentum operators are

~(F+ )=Z)F,V)(F,I /J)F, ~ )(E, ~ )

Vfe have evaluated the gyrotropic response func-
tions (63) for Rb'7, and the results are shown in
Figs, 5-8,

In the absence of hyperfine coherence, the gyro-
tropic absorptivity is

k« =4mkiV 7 (J(ff)) s Im n«(ff)f
Here the vector s is the average photon spin

(66)

o,«(E,E~')
, Z(F., F') (2F, +1)W(IIF,F,';IF.)

The birefringent polarizabilities of an alkali
vapor are anisotrogic, and they depend on the ex-
pectation values (Q(ff )) of the quadrupole oper-
ators:

Q (ff ) = Z (-1) Q, &, (ff')

Here, Q~ is an irreducible basis dyadic defined
by (A10) of HM, and Tz (ff ) is an irreducible
basis operator defined by (Al) of HM. The bire-
fringence of an alkali vapor is negligible w'hen the
excited-state hyperfine structure is small compared
to the Doppler widths of the atomic absorption
lines. However, the birefringence is quite notice-
able in rubidium and cesium vapors, where the
excited-state hyperfine structure is fairly large.

From (III. 2), (III. 3), and (A26) of HM, we find
that the biref ringent polarizability is
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n„(F,F,')=~,(F,F,') =6GQ(-1)" " 'Z(F, F,')
p@

x[(2F,+1)(2F,'+ 1)j"'(2F,+ 1)&(11FF,'; 2F)

&&W(J,F, 2F„'Il—) W (Z,F, ',F, ;Il—) (6o)

Th6 polarizabllltles of Rn RlkRll Rtom Rx'6 chRx'-

Rcterized by certain frequency-response functions,
mhich are shown for Rb 7 in Figs. 1-10. The
complex response functions n«(ff') and a»(ff ')
(fwf ), are used when hyperfine coherence ispres-
ent in the vapor. They measure the production
efficiency of upper and lowex hfs sidebands. We
shall not have occasion to discuss them any fur-
ther here, but me shall make extensive use of
them in a future paper. For all of the other fre-

The birefringent response functions nb, (22) and

o.»(11) have been explicitly evaluated for Rb'7, and

the results are shomn in Figs. 9 and 10.
In the absence of hyperfine coherence, me may

use (33) to write the birefringent absorptivity as

h»=4mkÃge* (Q(ff)) elmo. '„(ff) . (61)

The birefringent absorptivity can serve as a useful
monitor of the quadrupole observables.

%6 note that the birefringent polarizability is
related to the frequency response curve 82(v) for
tensor light shift for Eq. (22} of Ref. 13.

quency-response functions [i.e. for o.0 4 P eg~

hfdf~

a«(ff), »«»(ff)], the real part of the response
function is responsible for phase shifts of the light
wavey and the lmaglnary pRx't 18 responsible for
attenuation. Both real and imaginary components
mill, in general, cause changes in polaxization of
the light mave. The light-shift response functions
of Ref. 13 can be expressed in terms of the real
parts of the polarizability response functions.

The effect of the polarizability of the vapor on

light propagation is illustrated in a qualitative way
in Fig. 11. As we remarked earlier, the equilib-
rium polarizability is independent of the state of
the vapor, In principle, any two of the remaining
three polarizablllty components couM be D1Rde

zero. The nonequilibrium polarizability of the
vapor would then be determined solely by the hfs
polarizability, by the gyrotropic polarizabilities,
or by the birefringent polarizabilities. Beneath
each polarizability component of Fig. 11 we have
sketched the wave surface which would result if
the nonequilibrium polarizability were determined
by that component alone. For the hfs polarizabil-
ity, the wave surfaces are degenerate spheres.
There is no dependence on the direction of prop-
agation or on polarization. For the gyrotropic
polarizability, the origins of the wave surfaces,
which correspond to 0, and 0 light, are congruent
ellipsoids of revolution with the origin at one fo-
cus for 0, light and at the conjugate focus for g.
light. For the birefringent polarizability, the wave
surfaces are just those of a birefringent crystal.
For simplicity, we have sketched the wave surfaces
which mould result if the vapor behaved like a uni-
axial crystal. This is the case, for instance, when
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no coherence exists in the vapor. The wave sur-
faces are a sphere for ordinary waves which are
polarized perpendicular to the axis of the quadru-
pole operators and an ellipsoid of revolution for
the orthogonal polarization, i.e. , for the extra;
ox'dinax'y w'aves

IV. EXPERIMENT

A. Rationale

Both the hfs polarizability and the gyrotropic
polarizability of optically pumped vapors have
been thoroughly investigated and are well under-
stood. However, the biref ringent polarizability is
less well known and is frequently ignored. Here,
we present the results of some experimental stud-
ies of birefx'ingence in optically pumped xubidium
vapox's,

A crossed-beam experiment, shown in Fig. I2,
was used to study the birefringence of rubidium
vapor. Isotopically pure rubidium metal was dis-
tilled into spherical Pyrex cells, and neon or ni-

trogen buffer gas at a pressure of about 10 Torr
was added before sealing off the cells. The cells
were pumped with circularly polarized resonance
light from lamps of the corresponding isotope, and
the pumping beam was directed along a small mag-
netic field ( 1 6), which defined the z axis of a
coordinate system. A small rf field of frequency
~ was used to induce magnetic resonance between
the Zeeman sublevels of the atoms. A probing
beam of linearly polarized light passed through the
vapor at right angles to the magnetic field. The
direction of propagation of the probing bea, m de-
fined the y axis of the coordinate system. The
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FIG. 11. Wave surfaces and the susceptibility. FIG. 12. Experiment on birefringence of Hb vapor.
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polarization vector e of the probing light made an
angle 8 with the magnetic field:

e = i;,cos8+ i„sin8 (62)

No gyrotropic absorption of the linearly polar-
ized probing beam can occur for optically thin
vapors, because the average photon spin is zero
[see (55)]. However, the equilibrium absorptivity,
the hfs absorptivity, and the birefringent absorp-
tivity can contribute to the attenuation of the beam.
Both the equilibrium absorptivity and the hfs ab-
sorptivity are isotropic and time independent for
steady-state conditions. The biref ringent absorp-
tivity can be anisotropic and it can be modulated
both at the radio frequency and at twice the radio
frequency. Thus, in this experiment, any polar-
ization-dependent or oscillatory attenuation of the
linearly polarized probing beam must be due solely
to the birefringence of the vapor.

Under steady-state conditions the multipole com-
ponents of the density matrix within each Zeeman
multiplet have the form

PLtg I PLAr I
exp[L(+M~t + ~Lrlf)] (63)

&c„,=Zzc [ I oLO
I

6 '~ (1 —3 cosL8)

(~t+ p»)

where

vaz I
sin 8 cos (2&et+ pLL)] (65)

(66)C=4mkM @0 ~ Imo„dn
The space-averaged density-matrix amplitudes

I o~„l, the phase PL„, and the convolution C will,
in general, be different for the two different Zee-
man multiplets.

B. Observations of Birefringence

In our experiments we did not concern ourselves
with the precise values of the quantities

I cd„l and

P~„, since these depend in a very complicated way
on many experimental parameters, such as the
pumping-light intensity, the rf field amplitude and

frequency, the buffer-gas pressure, the geometry

The plus sign applies to the Zeeman multiplet f
=I+ —,', and the minus sign applies to the multiplet
f=I- —,'. The amplitudes ~PL~~ and the phases
&1.& may vary with position within the vapor. For
optically thin vapors it is convenient to average
these quantities over the pathlength / through the
vapor. Thus,

I oL~ I
exp(APL~) =

1
IpL~ I

exp(L~Lu)d& (64)
1

Then, from (31) and (61), one can calculate the
birefringent component of the attenuation to be

of the cell, etc. Rather, we examined the unam-

biguously predicted angular dependences: (1—
3cos'8) for the dc signal, sin28 for the signal at
the radio freguency and sin 8 for the signal at
twice the radio frequency.

For experimental convenience the rf magnetic
field was square-wave modulated on and off at a
low frequency (= 3 Hz). When the rf is turned off,
the rf components of the density matrix p2&(~p 0)
decay to zero, and the dc component p~, assumes
some steady-state value which differs from the
value when the rf is on, The 3-Hz modulation fre-
quency is low enough for transients in the density
matrix to be ignored. Thus, the components pz~
are essentially square-wave modulated in phase
with the square-wave modulation of the rf field.

The dc component DID(8) of the probing beam was
observed by detecting the 3-Hz component of the
photodetector output with a phase-sensitive am-
plifier. The observed angular dependence of the
dc component is sketched in Fig. 12. The cos~8
angular dependence, which was predicted by (65),
wa.s verif ied.

To observe the light modulation at the radio fre-
quency co, the signal from the photodetector was
mixed with the rf carrier frequency, and the 3-Hz
difference frequency was detected with a phase-
sensitive amplifier. The observed angular depen-
dence I„(8) of the first harmonic component is
sketched in Fig. 12 and is in agreement with the
sin28 variation predicted by (65).

The light modulation at twice the radio frequency
was observed by mixing the photomultiplier out-
put signal with the second harmonic of the rf car-
rier frequency in a balanced mixer. The 3-Hz
signal from the balanced mixer was measured with
a phase-sensitive detector. The observed angular
dependence Iz„(8) is sketched in Fig. 12. The
sin~8 angular dependence predicted by (65) wa, s
verified.

Signals similar to those sketched in Fig. 12
were observed in Rb 7 vapor with both Dy and Dg

probing beams from a Rb" lamp. The D, probing
beam gave a larger signal, aswasto be expected
since the birefringent polarizability is larger for
D, light than for D2 light (see Figs. 9 and 10).

With a Rb 7 probing beam, we observed signals
which were similar to but very much smaller than
those for a Rb" probing beam, This is understand-
able since a. typical Rb'~ lamp profile overlaps
roughly equal positive and negative portions of the
response curves (see Fig. 13), and the convolution
(66) becomes almost zero. The Rb" spectral pro-
file is asymmetric with respect to the Rb response
curve, and a, large convolution results. By insert-
ing a heated Rb filter cell between the Rb ~ prob-
ing lamp and the Rb'7 absorption cell it was possi-
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ble to make the birefringent signal much larger.
Since the Rb ' filter cell selectively absorbed part
of the Rbev spectral profile, the modified profile
mas no longer symmetric with respect to the Rb 7

response curves, and the convolution (66) was no

longer almost equal to zero.
Essentially the same features just described for

optically pumped R187 vapor mere also observed
for optically pumped Rb" vapor. However, all
Rb signals mere significantly weaker than the
corresponding ones for Rb'7 vapor. This is to be
expected since the smaller excited-state hyperfine
structure of Rb leads to smaller birefringent
polarizabilities.

%hen the linear polarizer mas removed from the
probing beam of Fig. 8, signals at the rf mere
barely observable, while signals at twice the rf
mere quite strong. These observations are in
complete accord with the predictions of (65). We
may regard an unpolarized light beam as being
composed of two uncorrelated light beams, linearly
polarized at right angles to each other. Suppose
that the two polarization vectors make angles of
8 and B+ —,'m with the magnetic field. According to
(65), the first harmonic component will be propor-
tional to

I„~sin28+ sin2(8+ —,'v) = 0

so no first-harmonic modulation of the unpolarized
probing beam should exist. In practice, the direc-
tion of the probing beam is never precisely per-
pendicular to the magnetic field, and a slight degree
of polarization is introduced into the beam by lens-
es and cell walls. Therefore, a very small first-
harmonic component is still observed when the
linear polarlzer ls 1 emoved

However, according to (65), the second-harmonic
component should be proportional to

fz„~sin38+ sin~(8+ —,'v) = 1, (66)

and, in agreement with experiment, a strong sec-
ond harmonic should occur.

u = —i, sinB+ i„cosB (69)

The electric field amplitude of a given monochro-
matic component of the polarized incident light
beam is

h, =ib, fe .
After the beam passes through an optically thin
vapor and the analyzer, the amplitude will have
been transformed into [see (16)]

E,=uu VSo .
Substituting (70) and (19) into (71), we obtain

8,= u(2vikfu ( y ) e}8 (72)

The spectral intensity at the photocathode is then

=4&'(~f)'iu (X) ei'C (&)d& (73

From (73) and (39) we find that the total intensity
at the photocathode is

C. Crossed Polarizer and Analyzer

A number of experiments mere carried out mith
a linear polarizer at an angle B with the magnetic
field and a linear analyzer at an angle B+ —,'m with
the magnetic field. These experiments with
"crossed polarizers" make use of the change in
polarization of a light beam mhich occurs when the
beam passes through an optically pumped vapor.
The polarization vector e of the polarizer is given
by (62), and the polarization vector u of the ana-
lyzer is
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C (p)=4m (yllV') jC'4(&)d& xg
~
((Jr)o'„

+( [3/2(6) l~~ ]P~4 sin28+ ReP~1 cos2~

+ Rep~, sin28) o„)
~

'.

90'

One can see fl'on1 ('72) tllat tile signal fl'0111 a
crossed-polarizer experiment is much more
difficult to interpret than that from a single-polar-
izer experiment. Both the gyrotropic and the
biref ringent polarizabilities contribute, and the
signals depend quadratically instead of linearly on
the density-matrix components. For optically thin
vapors, the dimensionless quantities of the form

x=2~uVr~n~« l (V5)

IBO OO

are very small, and the crossed-polarizer flux is
on the order of x'40, where 40 is the initial flux
of the light beam. The attenuated flux in a single
polarizer is on the order of x40. Hence, the
crossed-polarizer signals should be weaker by a
factor of x than single-polarizer signals. A fur-
ther practical complication is that it is very dif-
ficult to get truly crossed polarizers. Without
special precautions, a small amount of light pass-
es through the polarizer because of imperfections
in the polarizers, the angular divergence of the
beam, and the polarizing action of the glass walls
of the cell. To account for these effects, some
terms which are linear in the susceptibility should
be included in (V4).

Because of the quadratic dependence of the
crossed-polarizer signals on the polarizabilities,
third- and fourth-harmonic light modulation, as
well as very complicated angular dependences,
can occur. In view of the complexities and un-
certainties which attend the interpretation of a
crossed-polarizer experiment, no systematic

2704

FIG. 14. Crossed-polarizer signals. The angle is
that which is between the incident polarizer and the rnag-
netic field.

studies were made. However, sizable signals
were found and, as an example, we reproduce in

g ~4 the dc signals which were observed in Rbsv

vapor with a Rb probing beam. The observed
angular dependence can be accounted for in a qual-
itative way by the use of (V4).

ACKNOW LEDGMENTS

%'e would like to thank the staff of the Columbia
Radiation Laboratory for their assistance in this
work. %e are particularly grateful to R. Hrignoli
for help in the experiments, and to J. Clendenin
for computer programming.

*Work supported by the Joint Services Electronics
Program (U. S. Army, U. S. Navy, and U. S. Air
Force) under Contract No. DAAB07-69-C-0383.

~Present address: Indian Institute of Technology,
Kanpur-16 (U. P. ) India.

'W. E. Bell and A. L. Bloom, Phys. Rev. 107, 1559
(1957).

~M. A, Bouchiat, J. Phys. 26, 415 (1965).
3M. A. Bouchiat and F. Grosset0te, J. Phys. (Paris)

27, 353 (1966).
B. S. Mathur, ColumbiaRadiation Laboratoryprogress

RePort No 17' 1968 (unpublished).
B. S. Mathur, H. Tang, R. Bulos, and %. Happer,

Phys. Rev. Letters 21, 1035 (1968).
W. Happer and B. S. Mathur, Phys. Rev. 163, 12

(1967).
C. Cohen-Tannoudji and F. Laloe, J. Phys. (Paris)

28, 505 (1967); 28, 722 (1967); F. Laloe, M. Leduc, P.
Minguzzi, ibid. 30, 277 (1969); 30, 341 (1969).

%. Happer, Optics/ Pumping Theory (Gordon and
Breach, New York, 1969), Vol. XIc.

SC. L. Tang and B. D. Silverman, physics of Quan-
tum &I,ect~on~es, edited by P. L. Kelley, B. Lax, and
P. E. Tannenwald (McGraw-Hill, New York, 1966), p.
280.

'OF. A. Jenkins and F. A. White, Fundamentals of
Physical Optics (McGraw-Hi. ll, New York, 1937).

"W. E. Bell and A. L. Bloom, Phys. Rev. Letters
6, 280 (1961).

' B. D. Fried and S. D. Conte, The &Easma DisPexsion
inunction (Academic, New York, 1961).

'38. S. Mathur, H. Tang, and %. Happer, Phys. Rev.
171, ll (1968).


