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The theory of transient stimulated Raman scattering has been extended to include an arbi-
trary shape of the laser pump pulse. It is shown that the maximum Stokes gain depends on
the total energy content per unit area of the pump pulse, and not on the instanteous intensity
for an exciting pulse of short duration. The Stokes pulse has a leading edge which rises
sharply to a maximum, where the maximum occurs with some delay with respect to the maxi-
mum of the pump pulse. The trailing edge follows the decay of the pump. In a nondispersive
medium, the gain is not reduced by frequency broadening of the laser output, while in a dis-
persive medium, considerable gain reduction is expected. Numerical results for various
laser-pulse shapes and spectral distributions are presented.

I. INTRODUCTION

Several experimental investigations of the stim-
ulated Baman effect induced by a train of picosec-
ond pulses from a mode-locked laser have recently
been reported. ' It has been demonstrated6 that
the Stokes light is emitted in the forward direction
in picosecond pulses with a duration which is equal
to or shorter than the laser pulses. One purpose
of this paper is to show that some important con-
clusions about the shape of the laser pulses may
be drawn from this observation.

The theory of transient stimulated Brillouin and
Baman scattering has been developed for the case
that the input laser power is a step function. If
coupling to anti-Stokes and higher-order Stokes
waves may be ignored, the stimulated Baman ef-
fect is described by a set of four coupled equa-
tions ' ' for the laser field, the population differ-
ence in the initial and final vibrational states, the
Stokes field, and the normal vibrational mode of
the material system, corresponding to the off-
diagonal elements of the density matrix connecting
the initial and final states. The interest in the
present paper is focused on the transient buildup
of the Stokes and vibrational oscillations. The la-
ser field will therefore be treated as a prescribed,
but time-dependent parameter, and the population
difference will be taken as constant. In other
words, the effects of laser-pump depletion and
saturation of the material system are ignored.

In the usual manner, "the fields are expressed
in terms of the slowly varying complex amplitudes
by

g E (s g) stttgs —t(oL t

g E ( g) e tilts —to&t t

q q(& t) et'&hg- t s&zht

(la)

(lb)

(lc)
where the wave vectors and frequencies are cho-
sen to satisfy the conditions corresponding to con™
servation of momentum and energy, respectively,
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The fretluencies in Eq. (2b) are related to the
wave vectors in Etl. (2a) by the dispersion rela-
tions of the linear medium. The parametrically
coupled equations for the Stokes and vibrational
complex amplitudes then assume the form"
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In these equations v, „andvs are the group veloci-
ties of the vibrational and Stokes waves, respec-
tively; F ' is the damping or dephasing time of the
optical phonon wave. The parametric coupling
constants are proportional to the change in molec-
ular polarizability with the vibrational coordinate
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The form of Eqs. (3) does not take into account the
effects of a finite beam diameter in the x-y plane.

Equations (3) and (4), for constant E~, have the
same form as those describing the voltage and cur-
rent on a lossy transmission line. Their solution
has been studied extensively, "and applied to volt-
age surges on a transmission line because of light-
ning. Similar solutions have been found by, Kroll'
and Wang to describe the transient buildup of
Stokes oscillations. The same equations govern
the generation of a laser pulse and the concomitant
electronic excitation in an amplifying medium. If
the laser pulse is short in duration compared to
the vibrational lifetime 1" ', this solution describes
the impulse-type or shock excitation of the molec-
ular vibration.

In this paper, solutions for the Stokes pulse will
be described for various pulse shapes of the laser
pump. It will be assumed that the laser pulse
propagates with the same group velocity as the
Stokes pulse, i. e. , there is group velocity match-
ing of the laser and Stokes waves. We thus have

E, (z, f)=E, (f -z/v, )=E, (f') . (»)
We also introduce a new "syatial" coordinate

(6b)

Since the grouy velocity of an oytical phonon is
very small, z' is essentially equal to the position
in the laboratory frame. Another way of express-
ing this fact is to say that the term in v» in Eq.
(3a) may be ignored, because v,

„
/c - 10 ~0.

terms of the variables f' and z', Eqs. (3) may be
rewritten as

By eliminating either Q* or Ez from Eqs. (6), it
follows that both Q* and Ez E~'(f') obey the same
second-order hyperbolic partial differential equa-
tion,

BE BE
, + 1' —,—((:,((:2

~
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~
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E t" dt" or, = E&t' (9)

7 measures the accumulated energy in the laser
pulse up to a time t', and this transformation re-
duces the hyperbolic equation to the standard form

B2P—,—K&tC2U= 0.
B7'Bz'

(10)

Equation (10) may be solved for arbitrary initial
conditions using Riemann's method. A special so-
lution is the Bessel function of imaginary argument
I o(2(~,~,rz ')'~') .

The initial condition of interest is that there is
no vibrational excitation at the beginning of the la-
serpulse. Thus BEz/sz' =Q*(z') =Ofor f-- ~. If
the Stokes input at the beginning of the cell z =z' = 0
is prescribed to be Ez(0, f'), the solution of Eqs.
(6)-(10) may be written in the form

where F stands for either Q* or Ez E~ '(f'). With
the substitution F= Ue ~', the equation takes the
form

B U„,„,-~,~,
~
E, (t'))'V=0. (6)

This equation is reduced to an equation with con-
stant coefficients by a transformation to a,new vari-
able 7 defined by

+ 1'Q = iwgEgEz, (t )
sQ"

', = i~,Q*E, (f ') .Bz' (6b)

In Sec. II the analytic solution of this set of equa-
tions will be presented. Numerical results for the
Stokes pulse characteristics are given in Sec. III
for various input laser-pulse shapes. In Sec. IV
special attention is given to the case when the in-
cident laser or Stokes pulse has an intrinsic phase
modulation or frequency structure. Both a fre-
quency chirp and a random frequency variation
will be considered. Finally, comments concerning
the effects of linear dispersion on the solution for
the Stokes pulse will be made in Sec. V.

E, (z, f' ) =E,(0, t')+((q((zz)v'E, (f')f' e
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where r is given by Eq. (9), and I, (x) is the ith-
order Bessel function of imaginary argument.

The special solutions in which EL, and E~ may
be taken as realquantities aed Q as pure imaginary
are most significant from a physical. point of view.
They correspond to the case of maximum gain for
the parametric process. In the remainder of this
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section and in Sec. III, we will discuss this case in
detail. The more general situation will be dis-
cussed in Secs. IV and V.

Throughout the paper we will assume the initial
condition that (Z~ (o,t') j is a constant. As might
be expected on physical grounds, the exact form of
the input Stokes wave is not important in the high-
gain limit. Since Eqs. (6) are bilinear in Z~ and

Q, we can divide Z~(0, t') into a sum of several
terms, solve independently, and linearly superim-
pose the solutions. Since Z~(0, t') only enters in

the integrand of the Stokes increment, rapid varia-
tions in Z~(0, t') are averaged out by the integra-
tion. Experimentally, the Raman input of an os-
cillator would be spontaneous emission noise. It
should be noted that the following discussion is not
strictly valid for the initiation of a Raman oscilla-
tor or for the very-low-gain regime.

Let us first examine the Raman amplitude Z~(z, t')

in Eq. (lla) at a fixed point z for the case where
the laser-pulse width is shorter than I" '. The
first term is the input value and can be neglected
in the high-gain region. The second term contains
the integral, and represents the increment in the
Stokes amplitude. Now, the integral is zero at the
front edge of the laser, and rapidly increases
while the main part of the laser pulse is passing
through the medium. In the tail of the laser pulse,
the integral varies much more slowly, and gradu-
ally decreases as e ~' . Except for the initial
stages at the beginning of the laser pulse, the am-
plitude of the molecular vibrations Q is given by
the integral in Eq. (11b), and behaves in a similar
manner. Therefore, both the vibration Q and the
Stokes pulse E~ amplitudes rise rapidly when the
laser is about at its peak. The peak of the Raman
pulse always comes after the peak of the laser.
The vibrational excitation then decays as e ~' .
Since the Stokes amplitude in Eq. (lla) has anaddi-
tional dependence on Z~(t'), it drops off, closely
following the laser-pulse shape in the tail.

The maximum Stokes gain is determined essen-
tially by the asymptotic behavior of the Bessel
function of imaginary argument, I& (x)-(2))'x) ' e'.
In the limit of large transient power gain e~~ one
obtains

G r = ln
I (z,),„/z,(0) I

' = 4[~ g ~ f „
I &.(t ')

I
'« "l"

(»)
The upper limit of integration in Eq. (12) can be
replaced by ~with little error, because the peak
of the Raman pulse is on the tail of the laser pulse.
Therefore, the Raman gain depends only on the
total energy flux of the laser, and is almost inde-
pendent of the laser-pulse width or shape. The
transient gain is proportional to the square root of
both the length of the medium and the laser energy.

For a square-wave laser input, this is equivalent
to a gain proportional to the square root of the time
and intensity, as discussed by Kroll' and Wang.

The Raman pulse width and the relative position
of the Stokes and laser-pulse peaks are more sen-
sitive to the detailed shape of the laser pulse. The
peak of the Raman pulse is obtained from sEz/8 t'
=0. From Eq. (lla) one obtains

«I

+z
I z, (t') I' z, (o, I')

d (t ) II d" (t")d (0, t") — . —It dt")et' e7

where Io has the same argument as in Eqs. (11).
The laser-pulse duration is assumed to be short
compared to I" '. Using the asymptotic form for
Io, and by approximating 7(t') —r(t")- r(~) —r( ~), -
we obtain for large z

z» 1/.;,f"„lz, (t-) I'dt-,

—„'","IIz I (z&"tf Iz, (t )I dt]" o. t

If we assume the laser pulse is of the form

z, (t') = z, ,„e-""I"
we obtain for the maximum point of the Raman
pulse

t,„=T(—,
' lnG~~)'t" .

Here G» is the steady-state power gain coefficient
evaluated at the peak value of E~, and is given by

G" =2~ ~ Iz «')I...&/1". (14)

This is readily verified by setting BQ /st' =0 in

Eq. (6a) and substitution of Q" into Eq. (6b). The
approximate expression for the Raman pulse width
is obtained from the curvature at the peak as

(z, /s'z, /s t')'"I, , 8x ng «i n [Q ]nGg ((«)

This expression is a good approximation only for
large G», and does not give the accurate numeri-
cal factor. However, it shows that the Raman
pulse width stays approximately constant with z
when n = 1, while for n &1, the Raman pulse broad-
enswithz, and for n & 1, it sharpens. This behav-
ior is confirmed by the numerical calculations dis-
cussed in Sec. III.

For a laser input in the form of a rectangular
pulse of duration t~, the Stokes pulse amplitude
would drop abruptly as the laser amplitude drops
to zero. In this case, considerable sharpening of
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In this section, the quantitative results of a nu-

merical integration of Eg. (lla) for various shapes
of the incident laser pulse are presented. It should

INPUT MIDDLE OUTPUT
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FIG. 1. Schematic diagram indicating the spatial
dependence of the laser, Stokes, and phonon amplitudes
in various parts of the Baman cell. The temporal be-
havior at a fixed position in the cell is similar.

the Stokes field would occur. " Inthe limit of large
gain, the Stokes field would be given by

Ez (z, t') = Ez(0, f')exp(4vigz
I E. I' f' )",(»)

for 0& t & t~. The maximum Stokes amplitude oc-
curs for t =t~, and the pulse width at half maxi-
mum is given by (2ln2)t&/Gr) Un. fortunately, such
a sharp drop in the Stokes pulse duration with tran-
sient gain cannot be obtained experimentally, and

the observed Stokes pulse is not much sharper
than the laser pulse due to the trailing edge effect.

The transient behavior, however, will usually
lead to some sharpening of the Stokes signal in the
time domain, with a concomitant frequency broad-
ening. This behavior should be contrasted with

the steady-state regime, where the spectral width

of the Stokes output narrows with increasing z, and

the product of logarithmic gain and bandwidth is
essentially constant. In Fig. 1, we have sketched
the qualitative behavior of the Stokes and vibra-
tional amplitudes excited by the rectangular laser-
pump pulse at the entrance, middle, and exit of a
Raman cell.

Qualitatively, the above discussion of the Stokes
pulse width t~ and delay will be modified in the
presence of laser depletion. For the dispersion-
less case, it is clear that complete laser depletion
implies that the Stokes pulse shape will be identi-
cal with the input laser-pulse shape. Also, the
delay tD between laser and Stokes maxima will
now vanish. At the onset, depletion will occur
only where the Stokes amplitude peaks, and the ef-
fect on t~ and ta will be small.

III. NUMERICAL RESULTS FOR TRANSIENT STOKES
PVLSES
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FIG. 2. The transient Baman gain coefficient Gz as
a function of the steady-state gain G~~, which would be
obtained for a constant laser intensity equal to the maxi-
mum pulse intensity. The pulses of different shapes are
normalized to the same total laser energy and the same
pulse width at half-maximum amplitude t&= 0.1I'

be kept in mind that this pulse shape also enters
through 7 (f') defined in Eg. (9). We have per-
formed the numerical integration for the following
laser shapes: a rectangular, Lorentzian, and

'" pulse with n=0. 5, 1, 1.5, 3, 3, 4, and 6.
The method of integration used was the Gaussian
quadrature technique over a sufficiently wide range
to include all points where the integrand had sig-
nificant values. The program was checked by nu-
merically integrating the rectangular laser-pulse
case, and checking the results in detail with the
existing analytic solution. Checks on the accuracy
of the integration were made by changing both the
range and the number of points in the quadrature.
The accuracy was found to be better than 1% in all
cases except for the Lorentzian and the n = —,

' ex-
ponential pulse shapes. In the latter cases the er-
ror was less than 5%.

First, it is shown that the transient gain coeffi-
cient G~ is rather insensitive to the shape of the
laser pulse. In Fig. 2, G~ is plotted as a function
of the steady-state gain coefficient G», which is
proportional to the length of the Raman medium z
and the laser peak intensity I E~(t') I ',„.The la-
ser pulses are so normalized that they have the
same total energy and the same full width t~ at
half-maximum amplitude. In Fig. 2, a value t~
= 0. 1I" ' was chosen. In this highly transient re-
gime the gain is much lower than the steady-state
gain, because the molecular vibrations do not have
time to build uy to their steady-state value. The
curves for G~ overlap for the exponential laser
shapes with n ~ 2. For n& 1 and the Lorentzian
shape, there is a slight difference which is due
mostly to the definition of G» . For these curves
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FIG. 3. The transient Haman gain coefficient for
Gaussian laser input pulses with the same total energy,
but different pulse widths. The steady-state gain coef-
ficient G~~ corresponds to a constant-intensity laser
output equal to the maximum laser-pulse intensity.

I Ez(t')I,„,and therefore Gsz, is significantly
lower at constant pulse energy. If we renormalize
G» by changing z such that s I E~ (f') I 2,

„

is con-
stant, all curves approximately coincide with the
n=2 curve for all values of G&. If we ylot G~

against laser-pulse energy, for 5&G~ &120, the
transient gain coefficient for all laser-pulse
shapes are the same to within 5/0 except in the cas-
es of the Lorentzian and n = —,

' exponential pulse
shapes For .E~ ~e ' ~r', Gr is about 10/~ less
than for the other laser shapes, while for a Lor-
entzian laser-pulse shape, the slope is slightly
lower than for the other shapes in the same gain
region. These slight differences for different la-
ser-pulse shapes reflect the fact that the Stokes
peak gain coefficient G~ is determined by the laser
energy up to the time t~, where the Stokes pulse
has its maximum. Since the laser pulse has its
maximum at t' =0, tD is the delay between the
Stokes and laser-pulse maxima. The upper limit
of integration in EIl. (1la) should therefore be t~

rather than ~ for purposes of evaluating the peak
transient gain coefficient G~. If there is substan-
tial energy in the laser pulse for times t' & tD, the
replacement of the upper boundary from tD by ~ is
not a good approximation, and G~ will be less in

the case of long laser tails.
Figure 3 shows G~ for Gaussian laser-pulse

shapes containing the same total energy but with

different widths. For t&
~ 1 ', Gz is smaller than

G». The curves have essentially the same form
and are displaced because G« is taken to corre-
spond to I E~(t') I

~ which is different for pulses
with different widths but the same total energy.
The curves show the transition to the z' behavior
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FIG. 4. Stokes pulse shapes as a function of different
laser-pulse shapes but the same total laser energy,
shown at the top. The Stokes pulse shapes for moderate
gain are shown in the middle, and for high gain at the
bottom,

for high gain. For t~ = 10/f' and Gr & 1, the tran-
sient gain is nearly equal to the steady-state gain;
but for larger G~, its z dependence is found to be
intermediate between linear and square root.

In Fig. 4 the Stokes pulse shapes are shown for
the various laser-yulse shapes, where the laser
pulses are normalized so that they have the same
total energy and the same full width at half-maxi-
mum height t~ =0. 1I' '. The Stokes yulses are
shown after a moderate gain G~ - 18 and a high
gain G~ = 120, respectively. All Stokes pulse
heights are normalized to magnitude one at the
peak for purposes of comparison of their shapes.
As shown in Sec. II, both the Stokes pulse width
and delay of the peak relative to the laser-pulse
peak decreases with increasing n or increasing la-
ser falloff rate.

The change of the width t& and the delay tl, be-
tween the Stokes and laser-pulse maxima with
gain G~ for the various laser shapes are shown in

Figs. 5-7. Figure 5 shows t~ and t~ for exponen-'
tial laser-pulse shapes with n ~ 1, including the
rectangular pulse where n = ~. The laser-pulse
duration is taken as t~ =0. 1I' '. For these cases
t~ is exyected to become narrower with increasing
G&. The Stokes pulse width reflects the shape of
the tail of the laser pulse, as mentioned above.
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FIG. 5. The stokes pulse width g and delay time P~
(see text), normalized by the laser-pulse duration
g&=0.1I, as a function of transient gain coefficient for
various laser-pulse shapes.
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FIG. 6. The variation of Stokes pulse width t8 and
delay g~ with transient gain coemrient, for Gaussian
laser input pulses of various widths t given in terms of
the optical-phonon dephasing time I"

The VRriRtion of Eg Rnd tg with Gg does not
change much for different laser-pulse widths, for
the laser-pulse shapes presented in Fig. 5, if t&

& I' ', This is shown in Fig. 6 fox the ease of a
Gaussian-laser shape, For laser yulses vrith a,

long tail, the Stokes pulse is more sensitive to the
laser-Ikulse width. Figure 7 shows ts jt~ and tkk/t~

for the Lorentzim and m = 2 exyonential laser in-

FIG. 7. The variation of Stokes pulse width t~ and
delay gg) with transient gain coefficient fol two elo%'ly
decaying laser-pulse shapes. The laser-pulse widths
at half-maxlxRQDl amplitude fp ie given two different
values in terms of the optical-phonon dephasing time
1" ~, but the total laser energy involved is constant.

puts, %'ith laser-pulse widths t& =0. lr" ~ and I' ',
Both ts and to increase rapidly with Gr, and at the
same time, the behavior is fairly different for the
two different laser-pulse vridths t~. The Stokes
pulse width decreases slightly before it starts to
increase. In Sec. II ere found that the Stokes
pulse vridth ts reflects the slope of the laser yulse
at the point in time where the Stokes pulse is at its
peak. Although these lasex yulses have a long tail,
the sloye is fairly steey at t -

t& . Therefore, tz
decreases vrhen the Stokes pulse maximum occurs
such that the delay tz -

t&, where the lasex has this
laxge slope.

Finally, the Stokes light generated by an asym-
metric laser inyut pulse is yxesented in Fig. 8.
A Gaussian rise arith a m = 1 exponential tail is as-
sumed. Again the value t~ = 0. II' ' is taken, and
one quarter of the pulse width is due to the Gaus-
sian while the remaining three quarters is due to
the e = 1 exyonential tail. The total laser energy
is again normalized to be the same as in previous
cases. Both Ig and tg) are some%'hat different
from the values obtained for either of the symmet™
ric cases with m= 1 ox n=2, xespectively. In
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FIG. 8. The variation of Stokes
pulse width tz and delay tD with
transient gain coefficient for an
asymmetric laser input pulse are
compared with those for the sym-
metric pulses of the same duration
t&. The asymmetric laser pulse
consists of one-quarter Gaussian
rise and three-quarters exponential
decay.

1.6— 1.6

1.2 .—

0.8— 0.8

04— 0.4

0
10

. I

I I I I I I III
10 '

i i i i i IIII I I I I I l Ill
1.0 IO'

GT

I I I I I I II

10

agreementwiththediscussion in Sec. II, the Stokes
pulse width is mainly determined by the laser-
pulse shape in the tail. Since Fig. 8 applies to the
case where the laser-pulse tail is an n=1 expo-
nential with a half-width f~/2 = 0.076I', the vari-
ation of the Stokes pulse width t~ with G~ agrees
to within a few percent with the one which would
have been produced by using a symmetric n = 1 ex-
ponential laser pulse with t~ = 0. 15I' '. However,
the delay t~ resulting from the asymmetric pulse
is different from that resulting from a symmetric
n=1 exponential pulse with t~ =0. 15I' ', reflecting
some influence from the front part of the laser
pulse on the delay. Therefore, asymmetries in
the incident laser pulse as well as its decay rate
are directly reflected in the generated Stokes
pulse characteristics.

IV. TRANSIENT AND STEADY-STATE RAMAN
SCATTERING IN THE PRESENCE OF PHASE

MODULATION OR FREQUENCY BROADENING

Inthe preceding, Secs. I-III, the laser and Stokes
fields have been considered as real quantities. If
the laser has a phase or frequency structure, all
the amplitudes must be treated as complex:

(16a)

(16b)

(16c)

The problem may be immediately reduced to the
preceding one by giving the Stokes field precisely
the same phase variation as the laser field:

y& (z, f ') = y& (t '
) + yo, (17a)

and by taking

9yh(z~f ) 2z —90, (17b)

where po is a constant in time. This solution is
only possible for all z in a dispersionless medium.
The amplitude of the molecular vibrations I Q*(z,f') I

and the amplitude I Ez(z, f')I will then grow in the
same manner as described previously. The maxi-
mum growth rate of Q* is obviously obtained when
the driving term g,E~ E~ has a phase factor con-
stant in time, namely, e'"o. In the high-gain limit,
the phase of the Stokes field will assume the be-
havior in Eq. (17a), even though the input Stokes
field may not have followed the phase of the input
laser pump field.
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FIG. 9. The transient Stokes gain coefficient for a
frequency-chirped laser pulse (dotted line) is compared
with the gain coefficient for a laser pulse without phase

structure (solid line). Both laser pulses have the same
total energy and the same duration t&=0.1F i.

Numerical calculations were performed for cas-
es in which the simple phase relations given by
Eqs. (17), with yo independent of z and t', were not
satisfied. It should be emphasized that Eqs. (11)
retain their validity for the arbitrary complex am-
plitudes, Eqs. (16), and contain the time-varying
phases only in the combination yz, (t') —yz(0, t').

In Fig. 9 the result of the numerical calculation
for a frequency chirp on the Stokes gain coefficient
is shown. For definiteness let us assume that the
input Stokes signal has a constant phase, but the
laser phase changes, yi = ——,'Kt' . This is com-
pletely equivalent to assuming a laser phase which
is a constant, but an initial Stokes phase which
changes as p~ = —,'Et' . The laser has a Gaussian
envelope with a pulse width at half-maximum t~
= 0. 11" '. The constant K is chosen so that the fre-
quency chirp Kt~ =(162 —I)'@/t~ broadens the
frequency spectrum by a factor 16 over that for a
pulse of the same duration without a chirp. The
Stokes gain coefficient for the chirped laser pulse
(dotted) coincides with the curve for the laser
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The half-width of the power syectrum is 4z =207.
This corresponds to a stationary random process
switched on at t' = 0. Since the numerical calcula-
tion is possible only for a finite number of Fourier
components, the laser pulse shown in Fig. 12 is
assumsumed to reyeat itself with a period of about
800I' '. The Stokes gain coefficient is calculate

from Eg. (lla) as a function of time at a point z,
for which G~ =46. The broken line in Fig. 12
shows the Stokes gain coefficient for a laser with
no phase modulation or frequency broadening,
switched on at t' =0. The Stokes gain coefficient
for the random laser yulse follows essentially the
same curve except for a constant factor of about
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ln(Gzz & ar/r), and except near z = 0. Figures 12(b)
and 12(c) show that the Stokes amplitude structure
follows the variations in the laser amplitude struc-
ture for times t » I' '. The system behaves es-
sentially as an amplifier for parametrically gener-
ated Stokes radiation. The inertia of the molecu-
lar vibrations, in combination with the laser pulse,
generates Stokes signal of the correct phase for
further amplification. This dominates the behav-
ior except in the vicinity of z =0, where the input
Stokes signal has some significance. This also
explains why, in a picosecond pulse train with a
separation betweenpulses of about 10 'sec = 10'I' ',
the Raman gain may be calculated for each indi-
vidual pulse separately, even though there may be
some phase relation between the consecutive la-
ser pulses due to mode locking. The molecular vi-
bration has time to decay back to the noise level
between pulses, and all phase information for the
Baman process is lost.

V. INFLUENCE OF LINEAR DISPERSION

The calculations presented in this paper all re-
fer to a dispersionless medium, in which the la-
ser and Stokes pulses travel without distortion at
the same group velocity. For this idealized situa-
tion, the rather startling conclusion of the preced-
ing section is valid, namely that the Stokes gain is
independent of the frequency spectrum of the laser
signal, even if this spectrum is much broader
than I". The relative phase between the laser and

the Stokes waves quickly adjusts to one which satis-
fies the conditions for maximum Stokes growth
[Eqs. (I'l)]. Since linear dispersion tends to de-
stroy this phase relation and to reduce the overlap
between the pulse envelopes, the gain will gener-
ally decrease under experimental conditions in

which dispersion cannot be neglected.
To a first approximation, the effect of disper-

sion can be taken into account by introducing the
group velocity mismatch between the laser and
Stokes waves. In Eqs. (6), E~ and Ez* acquire a
z' dependence in this ca,se:

where v~ and v~ are the group velocities at the
laser and Stokes frequencies, respectively. An

equation for the intensities can still be found in the
form

(20)

When the spectral width A~p of the laser is
large compared to t~', the relative phase p~ —y~
is randomized by the group velocity mismatch, or
by the higher-order effects of dispersion, long be-

fore the envelopes of the laser and the Stokes pul-
ses are significantly displaced. From the discus-
sion in Sec. IV, we can immediately conclude that
the gain must decrease in this case, because the
driving term Kgb Eg of the molecular vibrations
cannot always maintain its optimum phase.

When the relative phase y~ —y~ is completely
randomized the gain may be estimated from Eq.
(20) in two limiting cases. For very short laser-
pulse durations t~ & I" ' the growth in the Stokes
energy 5'~ is given approximately by

E g t gt — g

(21)

and q, (z')=», f Z, (z', f')Z,*(z', t')df .

If the Stokes wave is assumed to have the same
spectral width Av~= 4~~ = ~~, E~E~ will change
sign about hef~/z times during the laser pulse.
The expectation value for i Q, (z') [ will be reduced
by a factor of z/&~t~ compared to the dispersion-
less case, thus reducing the Stokes gain by the
same factor. For very long laser pulses t~» I' '
or quasicontinuous random laser pulses, one ob-
tains from Eq. (20)

(22)

with Qs', t' dt' = ' Qs', ur der

,2 1'
I

(', )l' d„(22)

and P(z', &o) =
( ),&, ~(E (z', f')E (z', t')e'"'dt'.

If the relative phase of E~ and E~ is random, the
power spectral density may be expressed in the
form

(24)

Combination of Eqs. (22)-(24) then yields the fol-
lowing:

—,w, = ' '(E,(z'f')l') w, = -G„w,. (25)

The gain is reduced from the steady-state gain
G~ for a monochromatic pump by a factor r/b ~.
This result has been discussed previously, '
and is essentially based on an argument of steady-
state amplification of r/h&o Stokes Fourier com-
ponents, pumped independently by an equal number
of laser pump components.

The gain obtainable in a dispersive medium de-
pends on a balance between the dephasing of pr.
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A characteristic phase restoration length Z„,may
now be def ined by the condition that ) E~ )

-
) E~ (, or

Z 6(d/KylC2 I @g I
(26)

At the same time, dispersion tends to destroy the
phase relationship between yl. and y8. For a ran-
dom laser input of spectral width 4u, the phase
relationship will be destroyed in a distance Z„,
for which

or Z„„=v/(1/v~ —1/v ~ ) L~ . (2"f)

If Z„,«Zd„, the phases will be well correlated
and the gain calculated in Secs. I-IV will apply.

These arguments remain approximately valid
for other mechanisms of phase distortion, as long
as the energy relationship expressed by Eq. (20)
retains its validity. If the laser- and Stokes pulse
envelopes are significantly displaced with respect
to each other, the foregoing arguments must be
supplemented by additional considerations which
restrict the validity to certain intervals of time
and space.

Consider first the case in which a laser pulse
of duration Ep & I ' travels faster than the Stokes
pulse, v~ & v~. Inthis case the transient solutions
may only be used up to a distance Z= ~tp
x(v'~' —u~') '. Beyond this distance the Stokes
signal does not overlap any more with the laser
pulse. For a relatively sharp laser pulse, the
maximum power gain obtainable in the high gain
limit is approximately given by

exp{ 2
I zz, I &~ [~,a/(v, ' —v, ')] ' "]

The gain coefficient is proportional to the pulse
duration, but independent of the cell length, pro-
vided the cell is .longer than ts, (v~' —vz') ' .

In the case of normal dispersion the laser pulse

—ye induced by the dispersion and the phase resto-
ration induced by the gain mechanism, which fa-
vors the phase p~ —p~ for which the molecular vi-
bration Q has maximum growth. For laser and
Stokes signals with random phases y~ and p~, but
with a power spectrum limited to 6+, the molecu-
lar vibration Q will be driven coherently for atime
interval 4~ '. This results in a molecular vibra-
tional amplitude of magnitude

I Ql = ~ilEillE~ I/«~,
and produces a component ) E~ ( with the correct
phase, after transversing a distance z', whose
magnitude is given by

travels more slowly than the Stokes pulse. When

v~ & v ~, the laser pulse lags behind into regions
of space where the molecular vibrations Q are
still highly excited. More Stokes radiation can
thus be generated. This process is reiterative,
and the longer the cell, the more laser intensity
is converted into Stokes. The Stokes intensity
develops into a pulse shape which is stationary in
the coordinate system moving with the velocity
vz. This Stokes pulse intensity grows exponen-
tially with distance, and is proportional to

exp[2IZ. Iz [ K1K2(vL vs )]

This expression has approximate validity for pulse
durations which satisfy the inequalities

I' ' f 2&[(v ' —u ')/v, v2IEI, I
]'~

There is thus an interesting asymmetry depending
on the sign of the difference in group velocities.

In conclusion, the combination of phase struc-
ture or frequency broadening plus linear disper-
sion reduces the gain available in the stimulated
Raman emission, both in the transient and steady-
state regimes. A similar conclusion was a.rrived
at previously by several authors on the basis of
more qualitative arguments. ' ~ It appears worth-
while to extend the present semiquantitative argu-
ments by more precise numerical calculations.
The complexity of these calculations which depend
sensitively on the assumed form of the dispersion
law and the phase structure of the laser pulse,
place them beyond the scope of this paper.

When laser phase structure or frequency
broadening becomes severe, the slowly varying
amplitude approximation, on which the calcula-
tions in this paper are based, breaks down. The
condition

is obviously not satisfied when the phase structure
or frequency broadening of the laser results in a
linewidth 4'~ such that the product of the gain co-
efficient G and b,(d~ is larger than the molecular
vibrational frequency. When G4~~ »I —or ~ one
has to return to the second-order differential
wave equations. For such a degree of phase
structure or frequency broadening, the first ap-
proximation to the linear dispersion may also
break down. The pulses do not propagate simply
with the group velocity, but are also distorted.
There are strong indications that the combination
of the frequency broadening of a mode-locked
Nd +-glass laser and the dispersion of many fluids
in the near infrared causes a sufficient reduction
inthe gain so that the threshold for the stimulated
Raman effect cannot be reached. Even though
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some power is lost by doubling the frequency to
the green, the stimulated Raman effect can often
be obtained by the green pulses. The combination
of frequency broadening and dispersion becomes
more favorable for the green pulse train. '

Experiments, both with the Nd +-glass laser
and a ruby laser, are now in progress. More
detailed information could be obtained with the

use of a second cell as a picosecond pulse ampli-
fier. The influence of a variable delay time be-
tween the laser and Stokes pulse and the influence
of phase distortion caused by dispersion could
then be made more quantitative.
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Recently, we have reported variational solutions to Schrodinger's equation for CH4, NH3,

H20, and HF, using a Hamiltonian which included the kinetic-energy operators of the protons.
The results of these calculations implied the existence of protonic spectra similar to the
electronic spectra. We show here that the selection rules which apply to electrons also apply
to the protons. Furthermore, we find a two-particle-transition operator which allows an
electron and a proton or two protons to be simultaneously excited with intensities proportional
to the square of km&/M, where k is the wave number of the light, m& is the mass of the proton,
and M is the total mass of the molecule. For completeness, the effects of the radiation field
on the coordinates of the c.m. are given also.

I. INTRODUCTION

Recently we have reported variational solutions
to Schrodinger's equation for CH4, NH3, H20, and
HF using a Hamiltonian which included the kinetic

energies of the protons. ' The trial wave function
was an expansion of the form

0 =G ~.«.+~&"

where for n electrons and m protons, we have


