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The spontaneous emission of a set of N identical two-level atoms interacting with a quan-
tized electromagnetic field is studied. The atoms are assumed to be close together com-
pared to the mean wavelength of the emitted radiation, and their initial state is either a
IXicke state or a superposition of the ground and excited state for each atom. Approximate
expressions are obtained for transition probabilities, expectation values, and correlations as
functions of time. The spontaneous emission for a very large separation of the atoms is
also studied. In this case the directional properties of the emitted radiation, as well as
the time within which the atoms decay to their ground state, depend on the position of each
atom.

I. INTRODUCTION

In the following the evolution in time of a set of
N identical atoms interacting with a quantized
electromagnetic field is studied. It is assumed
that the atoms lie far enough from each other so
that their wave functions do not overlap. In addi-
tion it is assumed that only two levels of the en-
ergy spectrum of each atom are involved in the
process of evolution, so that each individual atom
is treated as a two-level system. The initial con-
dition of the system is such that at t= to there are
no photons present in the field and the set of atoms
is in an excited state which can be prepared ex-
perimentally.

When the electromagnetic field consists of a
single mode it is possible to diagonalize the Ham-
iltonian' and the problem can be solved exactly.
It may be shown then that the energy of the excited
atoms is exchanged back and forth in time between
the set of atoms and the one mode of the electro-
magnetic field. Hence no energy dissipation of
the system of atoms occurs on a long time average.
In the present work it will be assumed that the
electromagnetic field consists of an infinite num-
ber of modes. In this case the atoms return to
their ground state after a long time interval.

When the electromagnetic field has an infinite
number of modes there are various methods of

approach in solving the problem approximately.
The method of approach that will be adopted here
is to deal with the equations of motion of the ma-
trix elements of the evolution operator. It turns
out that there is only a finite number of such ma-
trix elements, so that there is also a finite num-
ber of coupled equations of motion. In addition,
these equations of motion are linear and hence
easier to solve than, for example, the equations
of motion of the operators themselves which are
nonlinear. This same method of approach was
used by Weisskopf and Wigner~ for the first time
to study the spontaneous emission of a single atom
and rather recently it was also used by Ernst and
Stehle' to study the spontaneous emission of N
atoms. The latter investigators consider the par-
ticular case where all the atoms are excited ini-
tially, while the initial state of the set of atoms
considered here is a superposition of the ground
state and the excited state for each individual
atom (sec. Iv).

Following a completely different approach,
Dillard and Robl have also treated the spontaneous
emission of N two-level atoms which lie close
together compared to the mean wavelength of the
radiation. Some of the results obtained in their
investigation are duplicated here in order to show
explicitly that either method of approach gives
identical results. In most of the present work the
condition that the atoms lie close together com-



600 DEMOSTHE NE S DIA LE TIS

pared to the mean wavelength of the radiation is
imposed, as it is done by Dillard and Robl, but the
case where the atoms lie very far apart is also
incorporated in a trivial manner (Sec. V).

[R„R.]=R, ,

[R„R ]=-R
[R„R ]=2R, .

(5b}

(5c)

II. EQUATIONS OF MOTION AND THEIR SOLUTION

Assuming that the atoms lie within a volume
much smaller than X', [Xo = 2»e/{d„{d,= (I/tf)(E,
—Ek), where E„E,are the energies of the excited
and ground levels of each atom, respectively, and

{do is its resonance frequeneyJ, thefollowingHam-
iltonian is adopted'.

(2&()'
If = II~O(Rk+ k»+

kX

(2»)' ~
k

(8)

will be allowed.
Now it is easy to show that the operators

R —= k (R,R +R R,}+R~

The electromagnetic field has been quantized
within a box of side L(V = L') which is assumed to
be so large that the transition

(2&()'
E ~ 2 [gk krak kR- gk kQkkR+]

kX

(2&()'S—=R3+ g akkak&,
gX

(8)

where

R(i& (2a.)

commute with the Hamiltonian (1), so that they are
conserved. It is most appropriate then to work
with the Dieke states Ir, m) defined by the rela-
tions

R =ZR"' (2b)

g R(i& (2c)

V
[skk &k k ]=(2 P

5H5kk
27l')

The notation of Dicke is followed here. The com-
mutation relations satisfied are

R'lr, m&=r(r+1)l r, m&,

R, lr, m&= mlr, m&,

) = c„.
l
r, m»&,

R lr, m)=c„. , r, m 1), -
((„,l

r, m-& o,
where

(9a)

(9b)

(9c)

(9d)

(9e)

[R(i& R{j&] R(i&5

[R(i& R(i&] R(i&5

[R,"', R"']=2R,"&5,,

(4a)

(4b)

(4c)

The rest of the commutation relations are zero.
It follows that

C„.= [r(r+ 1)—m(m+ 1)]'"
and x=0, —„2, -„.. . , —,'N, while )m~ ~x. The
ground state of the system is lg) = I r= kit
m= ——,'iV&, for which Hl g) = 0lg). When the system
is in the state lr, m), the number of excited atoms
is equal to x+m.

Let U(t, to) be the evolution operator, which satisfies the differential equation

i5 ' = HU(t, t(&)
. BU(t, t )

and the initial condition U(to, to) = 1. Let lr, m) be the initial state of the system. The cooperation number
r is conserved [Eq. (7)]. Also the total number of excited atoms and photons present in the field is con-
served [Eq. (8)]. One concludes then that the only nonvanishing matrix elements of the evolution operator
are

a(t —t, ) = (r, m v(t, t, )
l
r, m)

E...,....,(t-t, )=;;&r, m- I a. a., "a., V(t, t, )l r, m&,1

(12a.)

(12b)

for I= 1, 2, . .. , r+ m. For simplicity of notation (k, &{) has been replaced by the letter {&(. These matrix
elements depend only on the time defferenee t —to, as the evolution operator U(t, to) does. If one uses the
relations (11), (1), (3), (5), and (9) together with the completeness relation of the photon states and the
conservation relations (7) and (8), he can derive the equations of motion satisfied by the matrix elements
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(12). They are as follows:

' = ( ,'N+-m)~, A(t-t, )-C„., Qg.*B.(t-t,),ttA(t —t,), (2v)'
(isa)

i = [(2N+ m —1)&uo+ tu )8„(t—to) —C„, tg A(t —, to) —v2 C„2 Q g*8 „(t—to), (13b)

at 0 ay e&

(lSc)

for l=2. 3, . .. , r+m, and &u, stands for &u-„=clkl. When l=r+m, the last term in Eq. (lsc) is absent,
since C„„,=0. The initial conditions of the matrix elements (12) are

A(0)= 1 (14a)

(14b)8„,..., (0)=0

for l= I, 2, ... , 3 + m. Relations (13) and (14) form the set of linear integrodifferential equations and initial
conditions that a set of identical two-level atoms lying close together compared to Xo= 2ttc/tuo and interact-
ing with a quantized electromagnetic field satisfies, if initially there are no photons present in the field
and the atoms are in the state (3, m).

The next task is to solve the set of linear equations (13) with the initial conditions (14). It is convenient
to introduce the functions 8"'(tu, , tu, , . . . , tu, ; t —to) and f(tu-„) with the help of the relations

ntn2 ~ ~ nt(t to)=gntga ' ' 'gtttB (&a ~ ~ ~ ~ t tu~ t t to)

for /=1, 2, ..., ~+m, and
2

f(tu-)= ~) Z [g- f'd&-
C

where the integration in Eq. (16) is over the solid angle spanned by the wave vector k in the momentum
space. In relation (15) it is assumed that the dependence of 8,,, ... (t —to) on the polarization of the pho-
ons and the direction of the k vectors is expressed only through the proportionality factors g „g
g, . Substitution of Eq. (15) into the relations (13) and (14) leads to the new set of linear equations:

i = (,' N+ m)&uo A(—t—to) —C„
. &A(t —t )

f(tut)8 (tu» t —to)deut (i7a)

(faut; t - to)
(i)

i ' = [(—,N+ m —I)duo+ tu, )8 (&u„ t —to) —C„„,A(t —to)
(s)

88"'
—v2 C„ f(tu2)B'" ((u„tu„ t —to)d tu2, (i7a)

g ct m t[8 (tu2i +3~-' ' ' ~ +l~ t to)+8 (+1~ +3~ ~ &t~t to)

+ ' ' ' +8 (011~ tu2» tul-t tto~)]

—(l+1) C„

for l = 2, 3, . . . , x+ m, and the initial conditions

A(0) =1

8 (tut, tu2, . . . , tut~ 0) = 0

(~+],)f(tut+1)8 (faut~ ~2t ' '
~ +tt +t+ti t to)d+t+1 (17c)

(18a)

(18b)

for l = 1, 2, . . . , 3 +m Relations (16) .and (6) were taken into account in deriving Eqs. (17) and tut stands for
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(IOa)

(or &o2 =c )kl )) for simplicity of notation. The set of equations (IV) and (18) do not depend either on
the polarization of the photons or the direction of the k vectors and the same is true for the solutions of
these equations. Therefore, the assur ption implied in Eq. (15) is justified.

The Laplace transform method will be employed to solve the set of linear equations (1V) with the initial
conditions (18). For this the Laplace transforms

a(E) = f A(t —t )e e" 'o'dt
$0

a(E)b"'(ol„. . . , ol„E) = f, &"'(ol„.. . &dl,
' t —to)e

" 'o'dt,
0

for I = 1, 2, . . . , r+ m are introduced together with their inverse

~(t —t ) = (I/211) f a[E= —i(a+i')]e ""-'o'da

(18b)

(20a)

E"'(ol„.. .&u„ t -t,) = (I/22) f"a[E= —i(z+is))b"'[&u„. . . , ol„E= —t(e+ te)] e-""-' o'de,

1=1, 2, . . . , x+m. Here E is a positive number which tends to zero. Next the Laplace transform of Eqs.
(17) is taken, as defined by Eqs. (19), and the initial conditions (18) are taken into consideration. The
functions b ' (&o„.. .&u„' E), I = 1, 2, . . . , 2'+m satisfy the following set of coupled integral equations:

[iE —[(2'N+m —l)olo+ol, ]tb
' (ol„E) = —C„,—&2Cr ~ 2 f f(F12)b (&o» &o2, E)d+2

(iE —[(2 N+ m —l)olo+ oil + ~ + oil])bill(oil, . . . (dl, E)
(2la, )

= - (I/v'l)Cr, ~,[b" "(ol„ol„.. . , ol, „E)+b""(ol„.. . , ol,.„ol„E) ~+

+ b 4&2, (02, . . . , &1;E)]—(I+I) Cr, ~ 1 1 fo f(&1+1)b (&» o12 ~ ~ ~
~ ol» &1+» E)d&1+1 ~ (2lb)

(&-i)
oo (r+s)

for I =2, 3, . . . , r+m, while the function c2(E) is equal to

2E —(2 N+ m)(do+ C„,~ lfo f((dl)b (&1jE)tf&1
(22)

When I =2'+m, the last term in Eq. (2lb) is absent, since C„„1
= 0.

The problem of solving the set of equations (13) with the initial conditions (14) has been reduced to that

of solving the set of coupled integral equations (21). This set can be written as follows:

(E- [(-,'X+ —1),+,] -D„, ,( „E))b'"(~„E)

Cr, m-1 Cr, m-2 f(+2) 2 b (+1& 2i j + .E [(1 ~+ 2) + + & ] D (
. E) 2 i (23a)

12

(&)
(iE —[(—2N+ m —f)ohio+ ol, + ~ ~ ~ +ol, ] —D„,( „o.l. . , ol„E)]b ~(ol, . . . ol, E)

I Cr, ~-lib (&» o12~ ~ ~ ~ ~ ol&-» E)+b (oil~ ~ ~ ~ ) oil-2& &li E)(l-y) . (~-1)

+ ' ' ' + b (ol2~ o12~ .
~ I'dry E)] f(ol...) (3+1)' 'b""(ol„.. .ol„ol„„E)

a(& }fCr. m-]„~u i&, ~ g, . . . , &g,' dh)+
~

I & . ~E $+1
2E —[(2 N+ m —I —l)(do+ &d1+ ' ' ' + (dl ~1] —Dr ~ 1 1(ldl, ~ ~ ~ ~ (01~» E)

for I =2, 3, . . . , 1"+m. The function D r, ( „o.l. . , ol„E) is defined by the recurrence relation

(23b)

~R
Dr, m-l(&1~ &2~ ~ ~ ~

~ &» E) —Cr ~-l-l

for /=1, 2, . . . , z+I —1, and for / =x+I

f(QJ1 1)d(dl 1 (24a)
0 1 1+1] Dr, tn 1 I(» ' -~ -&1+» E)

D„,.r(&d». . . , &Or,„;E) =0

It is seen then that the systems (21) and (23) are identical.
form (23) is the following: From Eq. (21b), when one sets

The reason for writing the system (21) in the
I-1+ 1, it follows that b""'(td». . . , ~d, +»E) is
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a sum of tel ms one of which js proportional to Q ((dl (d& . . .(d('E). Hence, the integral fo f((d„,)
b(' '"((d„. .. , (d, „;E) d(d „,willalso bea sumof terms one of which is proportional to I)'"((d„(d2, . ~ . , (d„E)
(this latter function is independent of the variable (d„„sothat integration over this variable does not affect
it). One concludes then that, due to the presence of the integral in Eq. (2lb), there is a term on the right-
hand side of this equation which is proportional to f)"'((d» (d». . . , (d„'E) [a similar statement applies for
Eq. (2la)]. If this term is subtracted from the right-hand side of Eqs. (21) and added to the left-hand side,
the system (23) is obtained. In Eq. (23b) then there is no term in the right-hand side of this equation
proportional to I)")((d„(d~, . . . , (d„E}[a similar statement applies for Eq. (23a)].

Up to now no approximations were made beyond the postulation of the Hamiltonian given by Eq. (1). But
at this point one has to assume that the coupling constant is small in order to solve approximately the sys-
tem of coupled integral equations (23). This system can be solved by an iteration method in powers of the
function f((d), which is proportional to the coupling constant squared [Eq. (15)]. To lowest order then one
has from Eqs. (23)

5(1)( .E) ~ r e 1. -C
iZ-[(-,'X+m —I)(d, +(d,]-D(0', ((d„E) ' (25a)

(l) ~ r.m-l

Vl fE —[(pX+ PE —l)(d +(d + ' ' +(d ] —D ((d (d 'E)

»» ~ ~ i (-» }+ (~» ~a) ~ ~ ) (d( »(d(-i E)+ ' ' ' + ((d2i(ds) ~ ~ ) (d(iE}] ) (25b)

for 1=2, 3, . . . , x+rn, where

f((d (+1)(f(d (+1

K —[( N+ Pll —I —l)(d +(d + ' +(d ] (2o)

Here D(0', ((d„.. . , (d„E) is the lowest-order expression for D„.,((d„.. . , (d„E) as defined by Eq. (24).
From Eqs. (22) and (25a) one also has

a(E) —i/ (iz —( , +mN)wp —i „— f((d 1)(f(d 1

ix —((lii+w —))ra, +re J-&,",'., (ro„a)) ' (27)

The relations (25) and (27) form an approximate solution of the system (23) and Eq. (22). One must set
iE= s+ ie in these relations in order to evaluate the functions A(t —f,) and 8")((d„.. . , (d„ f - t, ) from Eqs.
(20). In this case a typical denominator, for example in Eq. (25b), is of the form

)( .
& &s

"" f (~„,)d~. ..
)

z+ &
& ~,m-&-s

& + le (0( —(d() + (d (» 1)

f((d )(f(dI ( 1 +1[&+1TCr ~ ( 1f(& —(d(+ (dp)8(s- 0(+(do)])l
o —(z —Oi+ vo&

Here 0, =(,'N+m —l}(do+—(d,+' +(d, and

Q, + C„

8(x) = 1 if x & 0, 8(x) = 0 if x & 0

In Eq. (28) use has been made of the identity

I/(~+ fe) = vf5(x)+ I (I/x),

f((d }(f(dzp-~~+ C&, -~-~P
p M —(Zp ~&+ Vp

where P denotes the Cauchy principal value. Now it will be assumed in the following that there is no
8 so value wlllcll satisfies both tile 1nequality zo Ill+ (do & 0 alld the equation

(28)

(29)

for l= 0, I, 2, . . ., x+ m. When this is true, the system of atoms is said to form an unstaMe system, i.e. ,
if initially the atoms are in an excited state, they will decay in the ground state as time evolves. Assum-
ing then that the system of atoms is unstable and also that the coupling constant is small, it is seen from
Eq. (28) that the pole in this equation lies very close to z= 0,. Hence Eq. (28) may be approximated as
follows:
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z+i& —0) —C f((d)d(d

o i

for l= 0, 1, 2, ~, t+m'. Substitution of the 1Rst relation into Eqs. (25) gives Rs Rn approximate solution of
the system (23) the following expressions, as e -0:

l ("[(d„'Z= —i(z+ is)] = Ct.m-i

8 —[(g N + m —1)(d () + (d l ]+ C~ ~ y (2 (y —t) (d 0)

)[(d (d (d ' E = '((8 + (~)]—1 Cv'. m

Kl 8 —[(2 N + m —l )(d 0+ (d l + ' ' ' + (d I]+ C ~ ~ I l ( p iy —+(d 0)

[(d l ) (d g) ~ ~ o ) (d ) yl E = —t (8 + 'L e )] + 6 [(d l, (dp, . . . ) (d I „a) (d ) ) E = —g (z + l 6 )]+ ~

+b [(de~(ds~ ~ ~ ~ )(d(i&= i(a+i'd)]]' ~

fox" l = 2y 3y. .. p
t'+ PEy %here

2 iy- t)(do = J [f((d)d(d/((d - (do- i6)]

or

y = 2 )l'f((d 0)

&(do= —PJ [f((d)d(d/((d —(do)]

Also from Eq. (2V), when D'„',{(d„E)is neglected, it follows that

(s5R}

(35b)

ga[z= —i(a+i~)j = 2a —(2N+ m)(do+ C~ ~ l(p ty «) (do)

The relations (33) and (36) are adopted as an approximate solution of the system of coupled integral equa-
tions (23) and Eq. (22). When these relations a.re set into Eqs, (20), the matrix element A(t- to) and the
functions 8"){(d„.. . , (d„t —to) are obtained. The matrix element B,,„...„,(t- to) can be evaluated then

from Eq. {15). The first three matrix elements are given below:

A(t t,) = exp(--i [(-,'AI'+ m)(d, —C'„,(-,'iy - t) (d, )](t- «0}j,
Il-„,, (t- «, ) = C„,„.,g-„,„,e~{-i [(-,'i)l+ m)~, —C'„. , (-,'iy - t ~,)](t- t,)])

&& (I-exp]-i[(d.„-(d,-2(m- I)(-,'iy-t)(d, )](t- t, )])F .,((d-„-(d,),
8„, .;„~(t-t )=~c„,c„„g-„,,gf, ex(p-i[(-,'E+ )m(d—C„,{-,'iy —t)(d )](t-t ))

(3Va)

(svb)

&&[(I —exp/-i[(d"„, +(d-„—2(d -2(2 ms)(-,'iy-& )(]d(t- t )})F ((d;, +(d", -2(d )[F„,((d"„-(d )

—F~~((di, —(do}j+{1—exp(- i[(d),, —(do-2(m-1)(2«y- t)(do)](t- t, )j)F„,((d;, —(d,)

)& F,((d~ -(do)+(exp]- i[(d-„+(d-„-2(2m- 3)(-,'iy- t)(d, )](t- t,)]-exp( i[(d-

—2(m- 1}(-,'iy-&(do)](t-«0)j)F .,((d„", -(d,)F p((d)",, -(do)] (svc)

F,((d) =1/[(d —2s(-,'iy- &(do)] .
In the above relations, use has been made of the definition [Eq. (10)]of C„„.

(ss)

In Sec. II explicit expressions have been obtained
fol evaluating the matrix elements defined bf EQ,
(12). From these matrix elements transition
probabilities and expectation values can be evaluated

as functions of time.
In the foH. ovring the cooperation number r will be

limited to i.ts maximum value x= —,'¹In this case
the Dicks state [l = ,'N, m) can be giv—en a simple

physical meaning. I et ,'(V+2m) out of X ato—ms

be excited. A possible state which describes this
sltuatlon ls the folio%'ing:



SPONTANEOUS EMISSION BY SYSTEM

!
1 1
2s o o ~ ) ~(N+ 2m)/2» ~(N+ 2m)/2+1 ——»

1 ~..., m„= - 0,'s = 1;N, m)

M+2~)/2 = 2 m(~ 2 )/2
——,

!
1 1%)/ "= » ~(A+2m)/2+1 = —z/

1
}/ 2p m!%c 2) p (39)

i.e. , the first 2(&+ 2m) atoms with indices 1, 2,
. . . , 2(&+ 2m) are excited and the rest of them are
in the ground state. A permutation of the values
of m; in Eq. (39) gives another possible state in
which it is given explicitly which ,(N+ 2m—) out of
the N atoms are excited. There are altogether
N!/[-,'(t}t+ 2m)] I[ 0(N- 2m)]! such states and they
are denoted as follows:

!(m, j;s; t}/, m),

s =1, 2, .. . , !VI/[-,'(i}/+ 2m)]![-,'(X- 2m)]!

where the index s refers to each particular per-
mutation. These states satisfy the orthonormality
condition. Now using the induction method and
the Clebsch-Gordan coefficients which couple a
spin —,

' with a spin ,'(N —1) i—t is easy to prove the
identity ¹! )

Nl /B1/2)(S+Rm) 3!Bl/2)(N&m) 3l

! (m, );s;X,m&. (40)

The state on the right-hand side describes the
physical situation in which any —,(t}I'+ 2m) out of N

atoms are excited with equal a Priori probability,
all possibilities being considered. The physical
meaning of the Dicke state I

r= ,'t}/, —m) follows then

from the identity (40).
Initially, i.e. , at time t=tp, the set of N atoms

is assumed to be in the state I 2N, m-) and there
are no photons present in the field. The probability
that the system remains in that same state at a
later time t is equal to

ac'}(X;t- t, ) = !W(t--t,)!'
= e~g-.'N(-', i}I + 1) - (m —1)m] y(t - t,)J,

(41)
as it follows from Eqs. (37a) and (10). In partic-
ular, if all atoms are excited initially (m = ,N) or-
if any one out of the N atoms is excited initially
with equal a Priori probability (m = —, t}/+ 1), i—n

both cases one has

~c}/R)N~+IIt t0) +c-}/2}}/+}(+it t0) = e "' 'o' . (42)

The maximum rate of decay 8 '(i}/; t- t0) at time
t=t0 is attained when the expression 2t}/( ,'N+ 1)-
—(m —l)m in Eq. (41) becomes maximum. This
happens for m= —,'.

From Eq. (37b) it follows that the probability for
a set of N atoms starting from the state I 2'/, m)—
with no photons present in the field at time t = tp

to be in the state I ,'f}/, m —1) at—alater time t and
one photon be emitted with momentum k lying
within d'k [in the limit of an infinite volume V the
expression (2!c)'/V= &kQk, &k, tends to d'k
= k'dkdA"„] and polarization a is equal to

!a, „(t-t,)!' Ig„-,i'[-,'X( ,'X+1)- (m-1-)m]exp(- [-,'i}I(-,'!V+1)-(m-1)m]y(t- t, )j
[0}-„-c00+ 2(m —1)&cd0]'+ (m —1)'y'

}c (1- 2exp[ —(m-1)y(t- t, )] cos(0}f-c00+ 2(m-1)acd0)(t- t,)+ exp[ —2(m-1)y(t- t0)]] . (43)

Similarly one may obtain from Eq. (3'/c) the ex-
pression 2!I&}-,„,.f } (t —t0) I which is equal to the
probability that two photons (k,}c,) lying within dsk,
and (k0, }c0) lying within d0k0 be emitted at a later
time t and the set of N atoms be in the state
I-,'i}/, m —2). The expressions t! IB},,},,
}c(t—t,) I, f =3, 4, .. . , ,'tt+ }arme i—nterpreted in a
similar manner.

The probability that l photons be emitted with
unspecified momentum and polarization while the
set of X atoms is in the state I ,'f}/, m —t) at time t-
is obtained from the relation

a"}(t/; t- t, )

2}c ' 2 3

ki)t1 kt)tl

(44)

for t = 1, 2, .. . , —,'N+ m. Equation (6) should be
taken into account for a large volume V. In par-
ticular for f = 1, 2, Eq. (44) yieldsc„(,'N- m+ 1)(—,'!}/+m—)

& e~[- (-,'i}}-m+1)(-,'iV+ m)y(t- t,)]

}c{1—exp[ —(2m —2)y(t —t,)]], (45)

a„"}(v;t-t, )

= —,'(-,'t}/- m+ 1)(-,'!}/+m)(-,'-!V- m+ 2)(-,' i}t+ m - 1)

}c exp[ - (~0K m+ 1)(2i}}'+m)y-(t —tc})]

{1- p[ —(2m - 2)y(t - t0)]&2m-2
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+ {I—exp[ —2(2m —3)y(t —to)]]
1

2m —3

exp[ —(2m —2)y(t —t, )]
1

2m —4

{I—exp[ —(2m —4)y(t - to)]]
l
~

~
(46)

In deriving these two expressions it has been as-
sumed that ~~, is negligible as compared to coo so
that it can be ignored and also that the function
f(&») [Eq. (16)] is smooth in comparison to the func-
tion E,(&u —&u, ) [Eq. (38)] so that it can be set equal
to f(&»o) = y/27(. The probability that no photons be
emitted (l = 0) at time t has already been obtained
[Eq. (41)]. A general expression for B"'(N; t- t, )
is obtained in the Appendix.

When there is one atom excited initially with
equal a Priori probability, i.e. , m= ——,N+1
an- &+m=1, only BI,' /»3„(N;t —t, ) and BI",/3»&„,
&&(N; t —t, ) are different from zero. The function

B&,'/3&„„(N; t —to) is given by Eq. (42) while from
Eq. (45)

B& & /p&&( &(N' t to)= 1 8 (47)

(1 j2)N+m
B&'&(N t -t, )=1

l =0
(49)

This identity is obtained with the help of the rela-
tions

(-,'N, m
~

U'(t, t, ) U(t, 4)
~

—.'N, m) = (-'» mI -'» m) = I

(-.'N, m
~

U'(t, 4)U(t, 4) I
—.» m)

=g /(ff U(t, t, )f-', N, m)[',
f

where the summation is over a complete set of

states [f). It expresses the fact, that the total
probability that either no photons, or one photon,
or two photons, ... , or —,'N+m photons be emitted,
is conserved. It should be pointed out that Eqs.
(41), (45), and (46), which are only approximate,
satisfy for m= —', N+ 1, —', N+ 2 the id—entity (49—),

These two functions satisfy the identity

B(- /2 &N+1&( t to)+ B(-2 /2 &N+1 (Ni t —to) = 1 ~ (48a)

Similarly, when there are two atoms excited init-
ially, i.e. , ~= ——,N+2 and x+ms=2, only B( &~»N~

j. (o)

& &/3»+3( & o)& (-&~/a&//«a(vi t to)
are different from zero. These three functions
satisfy the identity

B( & /2&N«2(Ni t to)+ B( &/2&N«p(Ni t to)

+B&",'„,„„(V;t t, )=1 (48b)-

as it can be easily verified from Eqs. (41), (45),
and (46). Actually it may be shown in general that

which is exact since no approximation whatsoever
was involved in its derivation. In addition these
three equations satisfy the right initial conditions
[Eqs. (14)].

When the functions B"'(N; t - to), l = 0& 1, .. . ,
—,'N+m are given. , one may evaluate from them ex-
pectation values and correlations. For example,
the expectation value for the total energy of the
atoms is equal to

h„(N;t-t, )=@~)/f(.(V;t t,)+ —-,'N],
where

&8.(V; t- t, ) =(-,'N, m~R, (t- t, )~ —,'N, m)
(& /2)N+m

(m —l)B„'(N& t —
t&&)

l=O

Here R~(t —to) is the Heisenberg operator
U'(t, to)R, U(t, to). The relation (50) can also be
written as follows:

(50)

(51)

(1 /2 )N+m

g (N; t —
t(&) = h'&»o Q (~N+ m —l)B~' (N; t —

t&&)

L=0
(52)

where Eq. (49) has been used, The last expression
certainly represents an average since B"'(N; t —t, )
is not only the probability that I photons be emitted
at time t but it is also the probability that —,N+ m
—l atoms be still excited at time t, each excited
atom with an energy 5~0.

Now one may introduce the expectation value

&P("&(N;t- t, ) =(,'N, m~R', "(t--t,)R"'(t- t, )

&&" R'"'(t-t, )R'"'(t-t )~-'N m)

for n=1, 2, ..., Nwhere

R("(t—
t&&)

= U'(t, t&&)R,
'

U(t& t&&)

(53a)

R('&(t —to) = U'(t, t(&)R "U(t, t(&), t = 1, 2, ... , N,

The physical meaning of this expectation value is
revealed from the relation

&p&n&( .t t )

= g/ ~
(f

~

R" 'R' '
~ ~ R "'U(t, t&&)

~
,'N, m) ~, (5—3b)

where the summation is over a complete set of
states g. Hence &I'("&(N; t- to) is equal to the prob-
ability that the atoms with indices 1, 2, . .. , n be
excited at time t irrespective of the state of the
rest of the atoms and the radiation field. Actually
one can easily prove that 8,"'R"'P, '&
&&8'"' is a projection operator. It is not difficult
to show that

(1 l2 )N+m

(I' "
(N; t —to)= Q C" (~N, m —l)B '(N; t —t&&),

(54)

where
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e Nr(& (o) -1+-(1 e-(N&&r((-to)) (56b)N-2

( )/2) )r(Ni t to}

Ny(t-to) I
e oo( 8)r-(( (o-&)-E-3

2 -or-o )r((-to)(I e (Ã&)r(-t (o&) -(56c)x-4'
The first relation has already been obtained by
Dillard and Roil' [in the statement following Eq.
(3. 12) in their paper] For .N= 2 Eq. (56b) gives
the relation

6('&(2 t —t ) = e or" 'o&[I+& (t- to)],
and for N= 3 Eq. (56c) gives the relation

(P(/(,)(3;t- t, ) = e '"" 'o)[4&(t- t,) -1+2e-""-'('] .
(57b)

These two relations coincide with Eqs. (3.23) and

(3.24) in the paper by Dillard and Robl. A general
expression for (I', /o&„(N; t —to) is given in the Ap-
pendix,

It is worth mentioning that 6I (¹t —to) and (P "
x(N; t- to) are not independent of each other. It
follows from Eqs. (51), (M), and (55) that

61.(N; t t,}=N[6."'-(N; t t, )- '.] .--
Then one has from Eqs. (50) and (56)

h (N; t t) = Nh o) 6'("-(N; t - t )

(56)

(59}

for the energy of the atoms.
The photon expectation values can also be ex-

. pressed iD terms of the fuDctloDS B} }t ~

&((t- to) or &„'(N; t- to). For example, the number
of photons with momentum k lying within d k and
polarization A, at a given time t ls given by the
relation

C'"'(-,'N, m —I)

= (-.'N, m- I ~ft(')~~('& "ft("&Z( &~ -,'N,

(-'N+m-I}(-.'N+m- &-I)~ ~ (-,'N+m- &-n+I)
N(N-1) ~ .(N-n+1}

(55)
for n = 1, 2, ..., ¹

If the indices i = j., 2, ..., n of
the operators 8,', R" in Eq. (55) are replaced by
any other set of n different indices among the N
available, Eq. (55) remains the same. Hence the
function (p'"'(N; t —t, ) does not depend on the par-
ticular choice of the n atoms in Eqs. (53a) or
(53b). When all atoms are excited initially
(m=-,'N) one has from Eqs. (42), (45), (46), (54),
and (55):

(( /3 N(Nx t to)

6Ii) (m»r't- to}

-=&-.'N, m~a-„'„(t- t,)a-„„(t-t, )~ —,'N, m)

k)X)

where a-„&„(t—t, ) = V'(t, to)a„-~U(t, to).

It follows from Eq. (15) that

6I„(&m¹,t —t()) =~g)",g~ h„(N, (u),; t —t(, )

(60)

(61)

p, = e f u*, (x) x u, (x)d'x,

is the electric-dipole moment of the atoms aDd

e (k, X) is the polarization vector of a given mode
of the electromagnetic field, it is seen that the
radiation pattern depends explicitly on the sort of
transition the atoms make, as expressed through
the wave functions u, (x), uo(x).

The number of photons present in the field at a,

given time t is equal to

sI.")(N;t- t, )

~
[(2.)'/'V]Z. -;,(t- t.).-„„(t- t.) i

—,'N,
&

(1 /3 )N+m

Ia("(N; t- t, ) .
1=1

(64a)

From Eqs. (51), (56), and (64a) it is easy to es-
tablish the relation

Sr;")(N;t- to)= -,'N+m-N6„"&(N;t- t,) . (64b)

%hen N = 2, 3 and all atoms are excited, & ~'&1

&((N; t —to) can be obtained by substituting Eqs.
(5V} into Eq. (64b).

The statistical properties of the radiation field
are described by the higher moments of the photon
number operator

S(("&(N; t - t, ) -=(-,'N, m
~

([(2v)' jI/]

x Q a-'„,(t - t, )a-„,(t - t,)]"
~

—,'N, m}

&u2&w+ ~
I"8 '(N; t —to)

The last relation clearly indicates that 8„"'(N; t —t,)

where I( (N, (o"„;t-t, ) doesnotdependonthedirec-
tion of k. Hence the radiation pattern of the num-
ber of photons emitted in d'0=0 dkdQ-„ is determined
by Ig„~i . If account is taken of the fact that in
the electric-dipole approximation

- nd, 4mkc 't'~
ga~=

(2 )o/3@7( C (di
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&1/8)N+m ) ', B.")(W;f-t,), (66,)

(-1)"g(n& g (& &)n-2„, )!(s—) -2)! (66b)

p p-) Q g(n)
(k- s)! (6v)

It is interesting to note that only the first —2N+ rn

moments in Eq. (65) are independent. As an ex-

ample, let m = —2N+ 1, i.e. , only one out of the

N atoms is excited initially. Then from Eqs. (4V),

(64a,), and (65) one ha, s the relation

is equal to the probability that I photons be present
in the field at time t. To prove this relation one
should make use of the induction method and the
following two ldentltles:

st&"&(lv;t- f,) -x.'"-"(A;f- f,)

width compared to &oo. Hence Eq. (69) becomes
approximately

'vv. (f)!;t-t,) =a~,x&'&(x; t- t, ) . (vo)

Now from Eqs. (59), (64b), and (Vo) it follows that
at any time t

$„(lV;f—f )+%' (N; f —t ) —ufo) (,'N+—m) . (Vl)

On the other hand, the total energy of the system
of atoms and radiation, including the interaction
part of the energy, is conserved [Eq. (1)], so that

X.(X; f - t, ) =-(-,'A, mla(f- f, )1 —,'A); m)

= Ro)o( ,'N+ m)— (v2)

where H(t t, )= U'(—t, to)HU(f, to). From the last
two relations it follows that

x"""(xf-f )

(v3)

(66)st,'")„,„„(A);t- f,}=1—e-"""-'o)
i.e. , the total energy of the system at any time t
is divided among the atoms and the photons while

the interaction part of the energy is almost zero.
A general result can be obtained concerning the

rate at which the radiation field is generated at
time f= to. From Eqs. (58) and (64b) one has the
relation

dpi't) )(X;f - f, )
dt

dN, „(Pr; t- t,}
dt

(v4)

Using this expression and the equation of motion

Z [g)„a';,(t —to)ft (f —t, )
kA,

~« &o)&.-(t to)]-, (V5)

one may obtain the relation

dst.")(~;t-f,)
dt 2C(1/3 N, m-i

»m a(t —t, ) Q g-„,Bg„(f—f,)
(2)&)'

0 y kX X 0 P 76

or substituting A(t- t, ), B),),(t- to) from Eqs. (3Va)

and (3vb) and performing the summation, the last
relation yields~.(A;t- f.) = &-'~, ml[(2~)'/&]

for n=1, 2, . . . , i, e. , the emitted radiation is
Poissonian in its statistical nature. After a time

t —to» I/(A)'y) one photon will be present in the field,

since only one atom was excited initially. Also,
the more atoms N are contained in the system, the

faster the radiation field will build up.
Now for 1=0, ]., 2 and m= —~N+E one has from

Eqs. (41), (45), and (46) that B())go)„„(N;f —to)

as t to -~, wh—ile B' ) (A)'; f —to) -0, as t to -~—
for any other value of m. This result can actually

be generalized, i. e. , B (~N;f —t,)-l, as t —to-~
only when l takes its maximum value /= —,'N+ m,
while for all other values of l = 0, 1, . . . , 2N+ m —1

the function B")(X;f- to) vanishes as f to tends to-
infinity. It follows then from Eqs. (54), (59), and

(64b) that 6' "(¹~)=0, S (N; ~)=0, and%„")(N; ~)
= —,'N+m, while at time (= to one has (P")(N;0)= —,

'

+m/X, h„(A;0)=a~, (-,'A+m) andm.")(X;0)=0.
Hence the total amount of energy that the atoms

have originally is transferred to the radiation field

by the creation of —,'E+ m photons, as time evolves.
The energy of the radiation field at time t is equal

to

@o&)"~ii(f to)~)l ) (t- to)1 o+~ m) ~ (69) de'."(X; f f, -
dt

= [-,'A (-', A+I) - (m - I)m]y .(VV)

The right-hand side of this relation can be expressed

in terms of the functions

[(2o)'/I ] ~ ".[(2~)'/I'] .~ IB '...,:...;t,~, «- 4)1',
k)X)

which are centered around ~0 a,nd have avery small

If all atoms are excited, the rate at which the radia-
tion field is generated at time t0 is proportional to
the number of atoms N in the system.

IV. PREPARATION OF SYSTEM

Up to now exclusive use has been made of the
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G (t) = (i»d, /Ae) p,
* A"'(0, t) . (VO)

Here A» "(0,t) is the external vector potential at
the po1nt X= 9 alound wh1ch the N atoms al e
clustered, at time t. For simplicity, the electro-
magnetic field is taken to be at resonance with the
transition frequency of the atoms, so that

A "(0,t) = ae '"o'+ a*e'"o'

When this expression for the vector potential is
substituted into Eqs. (Va) and (VQ), and the non-
resonant terms are dropped, since their contribu-
tion is small for not too strong external fields,
the Hamiltonian in Eq. (Va) reduces to the following
effective Hamiltonian:

H, (t) = 5'»do(R3+ 2N)+ hG e—' o'R, + hG*e'"O'R

where

G = (i(u, /hc)!», ~ a. .
(al)

(a2)

The evolution operator U(t) can be exp»citly eval-
uated for this Hamiltonian. It satisfies the dif-
ferential equation

ta „, =P„,(t)U(t), (aa)

and the initial condition U(0) = 1. The solution is

Dicke states because they are most appropriate
from the mathematical point of view in expressing
and solving the system of equations (13). But it
is the superposition states that can be easily pre-
pared experimentally by applying an external
electromagnetic field on the system of atoms which
are initially in their ground state. In this case
the Hamiltonian describing the interaction is

H(t) = e~,(R, + ,'X)+ @—G(t)R,+ a G*(t)R, (Va)

i
~(t, ), P(t, );~) = U(t, ) ig)

=II[ (t,)i,=l, , =l)

where

+ p (to)i'Y» = 2 ~ m» = —
& )]

(1
in(t ) p(t ) &)= e»(t )'"'""'p(t )»'-"&'a

m=-(1 j3)

'i[-(~+2 )]»[-yr-2 )]»&l

i. e. , the superposition state may be expressed as
a linear combination of Dicke states with their
cooperation number r taking its maximum value
r= —,'¹It is Eq. (90) then that allows the evalua-
tion of expectation values with respect to super-
position states if the expectation values with re-
spect to Dicke states are given. For example, the
total energy of the atoms is equal to

h(x; i~(t,)i;t- t,)

a~,(~(t,), P (t-,);~i (R,(t- t,)+!~)
i ~(t,), P(t,);~)

(112 g

e»(t )=e 0 o sl ni Gi t (aaa)

P(t, )=cosiGi t, (aab)

The absolute values of the coefficients»r(t, ), P(t, )
are not independent of each other, i.e. ,

in(t, )i'+ iP(t, )i'=I . (ao)

The probability then for each individual atom to be
either in its ground state or excited at time to is
equal to 1.

Now, with the help of Eqs. (40) and (8V), the
following relation can be established:

[-,'(X+ 2m)]![-,'(Z- 2m)]!

+ e-""-."R'-*' »ni G
I
t)],

where 4 is defined by the equation

G= iGie" . (aa)

Also 8,'", R,"', B"' are the spin- —,
' operators re-

ferring to the ith atom [Eqs. (2) and (4)]. If ini-
tially, i.e. , at time t = Q, the system is in its
ground state

(aa)
g=l

then at time to the state of the system is the super-
position state

Here RB(t —t, ) is the Heisenberg operator U'(t, t„)
XR3U(t, to), as before. The probability that n
atoms be excited at time t if the atoms are in a
superposition state at time to is equal to

P'"'(X,
i

(t»,r)i; t- t, )

-=(n(t, },P(t, };A iR."'(t- t,)R"'(t- t, )

&& ~ ~ ~ R,'"'(t —t, )R'."'(t —t, ) i
»r (t,), p(t, ); X)

io. (to)i
" ip(t )i" '

m=( 1/2)N

M'I

[-,'(X+ 2m)]![-,'(X- 2m)]!
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x [1 +
I
n (to)l y(t —to) (94a)

~"'(3, In(t, );t-t.)=
I

(t.)l""""'
x [1+21 n «o) I'(1 —2I n «o) I')

x(1 e-"' 'o')+-4I n(to)l'r(t to)] -.

(94b)

The number of photons with given momentum

and polarization at time t is given by the relation

&);~(N, In«o»t- to)

-=(n (t, ), p(t, );Nl a-'„,(t- t, ) a33(t - to)
I
n(to) p(to) 'N)

(1, /2) N

Nl

[ l(N 2 )])[)(N 2 )] (
+j3())) Nj t to

(95)

From this relation and Eq. (61) it follows that the
radiation pattern of the number of photons emitted
in d'k= k dk dA; is proportional to ig» l .

The number of photons present in the radiation
field at time t as well as its statistical properties
can be determined from the relation

st("'(N, In(t, )l; t t,)—
=-& (t,), p(t, );N ([(2 )'/V]Z -„',(t-t, )

x a-„,(t - to)]" n (t,), p(t, );N)

I.(t, )I"'.
I
p(t. ) I'-"

(1/2)N

o6[-'(N 2 )]![-,'(N-2m)]!

where n = 1, 2, 3, .. . . It is not difficult to prove
that

st")(N, In(t, )l t —t )

=N[ln(t, )l'-(P"'(N, n(t, );t—t, )]

with the help of Eqs. (64b) and (95). The energy
of the radiation field is approximately given by the

(97)

where n=1, 2, .. . , ¹ It is a simple matter to
establish the relation

~(N, In«o)l;t- to) =N~~o~"'(N, ln«o)l;t- to)
(93)

The energy of the atoms at time t = tp, i.e. , im-
mediately after the system has been prepared to
a superposition state, is equal to Nk(do ln(to) I,
since (P(")(N, In(t, ) I;0)= In(t ) I" for n=1, 2, . . . , N.
When N=2, 3, the probability &"'(N, In(to) I;t- to)
is given by the following expressions:

(P")(2, In(t, )l; t- t, )=
I
n(t, )l' -""-'o'

expression

~(» ln«o)l t-to) =It~ st")(» ln(to)l;t-t, ) .
(o8)

Also the rate at which photons are emitted at time
t= t, can be obtained from Eqs. (77) and (95), It
is equal to

dst")(N, In(t, )I;t- t, )

dt t=tp

V. ASSUMPTION OF A LARGE
INTERATOMIC DISTANCE

The treatment in Secs. II-IV was based on the
assumption that the N atoms are clustered together
within a volume with linear dimensions much
smaller than the mean wavelength A.p of the emitted
radiation. When the atoms lie at distances which
are not negligible compared to A.p, the Hamiltonian
introduced in Eq. (1) should be modified into the
following one:

(2)))3H= h(oo(R3+ 3N)+ g Ifo)"„aj,a„),V k

(2~)3 P (g„ik eft; 3 R(i)
V k)t +k)t

1=1 k )t

ik )1( „R(&)) (100)

Here X; is the position of the ith atom. This Ham-
iltonian reduces to that of Eq, (1), when the atoms
lie close together around the point X=0. Also it
commutes with the operator defined by Eq. (8).
Hence, the total number of photons and excited
atoms is conserved by this Hamiltonian too. But
the cooperation number is not conserved in general,
as the following commutation relation shows:

=NI n«o) I'[N- (N-1)l n(to)13]y

This expression coincides with that of Dillard and
Robl. Its maximum occurs when In(t, ) I

= —,
'

+ —,'[(N- 1) '). For this value of In(to) I, Eq. (99)
becomes equal to f+(N-1)N+ ,'N+ ,'[N—/(N-—1)])y,
i.e. , for large N it is approximately proportional
to N3. But if all atoms are excited, i.e. , In(to)I
= 1, then Eq. (99) is proportional to N.

The state where all atoms are excited can be
prepared experimentally by choosing the time tp

during which the atoms are under the influence of
the external electromagnetic field such that ( G )tp
=nw+ —,'m, where n=1, 2, 3, . . . . Of course, caution
must be taken so that t, is much smaller than the
decay time of the system of atoms. Also it may
be noted that the expectation values given above are
independent of the pha. se 4, defined by Eq. (85).
Hence, in general one needs to know only the in-
tensity of the external electromagnetic field in
order to evaluate expectation values.
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[It', If] =4N Zgy), ~;), Z &3 It.
In particular, IgI„[ in Eels. (61) and (95) should be
replaced by

Q» -g» —~ g" i-ik~R

i=i

in these equations. To prove the last statement,
one should make use of the identities

(-,'iv, mI~,")I-',x, m&=x 'c.„
&-,'x, mIz'"I —,'x, m&=~ 'c,„.„,

for j=l, 2, . . . , N. C,'„„is defined by Eq. (10).
Now, f(&o),), defined by Eq. (16), ought also to be
replaced by

(IOSa)

(losb)

E(rd )=
q fz Iz al pp

2 ld" ~

&id j
iCJ

Hence, the approximate solution {33)and ail the
relations obtained in the previous sections are
valid, except that y and b ~o, defined by Eqs. (35),
should be replaced by I' and 40p, given by the fol-
lowing expressions:

I' = 23 E{a&o)

~ F{QJ)d(d
0

(d —('d
p

x e-~'"'"~'"~) sin-,'k (X,-X,)

lRPIX~ +3 ++
(2~)'

ifj

&&e&'"'~2" &) sin —,'k (X; —X;) . (101)

]xi Xg )»» ~p the above commutator is
almost zero due to the presence of the sine terms.
A»o, when ~&,. -&,. ~»~p, the right-hand side o
the above relation is almost zero due to the validity
of the Biemann-I ebesque lemma, which states
that the sine (or cosine) Fourier transform tends
to zero if its argument tends to infinity. Of course,
no attempt for a rigorous p'roof will be made here.
It is only after one knows the exact solution to the
problem that he ean check that the matrix elements
which do not conserve the cooperation number tend
to zero as )X, —X~ [ tends to infinity.

It will be assumed then in the following that the
cooperation number x is approximately conserved
Rnd the matrix elements which do not conserve x
can be neglected. Then it can be easily shown
that the matrix elements defined by E)Is. (12) with
x= —,'N satisfy exactly the same set of equations of
motion (13), except that g-„„ought to be replaced
by

I&-„„I'=I&„-„I'—„I
I+ —„~cosk {X,-X,)

ieJ . j
It is seen then that the directional properties of the
emitted radiation Rs well Rs the decRy constRnt
and frequency shift explicitly depend on the position
of the atoms.

There are two interesting cases for which the
cooperation number is approximately conserved:
(i) When )X,-X,. i«Xo. Then

Q cos k (X,—X&) =P 1 = 2(N 1—)N-,
1

i&& i&j

so tha, t )Q;, )'= )g-„,)', I"=y, and 4Qp-—~(dp. This
is the case studied in the previous sections, (ii)
%hen jX, -X&)»Xp, N»1 and the atoms are ran-
domly distributed, so that g;&& cosk (X,—X&)=0.
Then io-„,i'= (I/X) ig„-„i', I =(I/~)y, and nfl,
= (I/K)&ru, . In this case the system will decay
much slower as compared to ease (i).

&I MSCUSSION

There is some advantage in the method employed
here, i.e. , in expressing and solving the equations
of motion of the matrix elements of the evolution
operator rather than those of the operators them-
selves. As mentioned earlier, the former are
linear, and hence easier to solve, while the latter
are nonlinear. Also, one has a better feeling in
the approximations performed on c-number func-
tions (the matrix elements) rather than on opera-
tors. Or, assumptions may have to be introduced
for the equations of motion of the matrix elements,
which do not arise at all for the operators. For
example, the assumption made in Sec, II that the
set of atoms form an unstable system [Eq. (31)
and the statement following it] is necessary if the
atoms are to decay in their ground state as time
evolves. Another advantage of the method em-
ployed here is that it provides much more detailed
information about the behavior of the system and
its evolution a,s compared to that obtained when one
evaluates the expectation values of the time-de-
pendent operators. The method employed here
allows one to evaluate transition probabilities as
functions of time. Then the expectation values of
time-dependent operators can be easily evaluated
by summing up appropriately these transition
probabilities. Both transition probabilities and
expectation values are measurable physical quan-
tities. Hence, one should distinguish whether the
photodeteetor is capable of measuring a single
photon or a multiphoton process, i.e. , whethex it
can measure a transition probability or the ex-
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pectation value of the photon number operator.
Now let the folloming definition of a superradiant

state be adopted here. A state of the set of N atoms
at time to will be called superradiant if the rate of
emission per atom at time to is proportional to N,
where c() 1 (for large N). In this context, the
superposition state is a superradiant state when

In(t()) I
——,', i.e. , when t3 is chosen such that

iG I to—-nm+ ~ m, n= 0, 1, 2, .. ., or )G I to =em- & m,

n=1, 2, 3, . .. [Eq. (99)j. Superradiance can be
associated with the fact that the atoms are clustered
together, but this is not always the case. For ex-
ample, when all the atoms are excited at time t,
superradiance does not occur. When the atoms
are far apart, then y should be replaced by
I =N y in Eq. (99), and again superradiance does
not occur. The Dicke state with m=0 is also a
superradiant state [Eq. (VV)], but it should not be
confused with the superposition state with In(t, ) l'
= lP(t()) I = —,. These two states are completely dif-
ferent to each other as Eq. (90) shows explicitly.

It is worth mentioning again that the directional
properties of the emitted radiation as well as the
decay constant and the frequency shift depend on
the position of the atoms. When they are far apart
and fixed in space, for example, when they form
a lattice, then interference from the radiating
atoms will take place and it will be detected in
the radiation pattern, as it follows from Eq. (106).

The method of approach used in this paper to
study the spontaneous emission from N identical
atoms could also be employed when the initial
state contains one or more photons. The coopera-
tion number and the total number of.photons and

excited atoms are still conserved, when the atoms
are close together or far apart. One should ex-
pect, of course, a more complicated set of equa-
tions of motion. When the distance between the
atoms is of the same order of magnitude as the
mean wavelength of the emitted radiation, the
solutions given above, based on the conservation
of the cooperation number, are not valid.
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APPENDIX

A general expression for B '
(N; (()) and (P I&2)~

x (N; (()), where (() = y(f —t()), will be obtained here.
!3y direct inspection of Eqs. (45) and (46) one

may deduce that, in general, Bm (N; p) is of the
form

B("(N (()) =g (—,'N+m —x+1)(-,' N- m+&)
y=l

1
)(e (2)( m+1)(2++m)sq(1 ((p) (A] )

where l = 1, 2, 3, . . . and Q
'

((3) is independent of

N, the number of atoms. That this is the general
form of B"'(N; (() could be proved using Eqs. (15),
(20b), (33b), and (44). Since the author has not
actually tried to prove the stated result, Eq. (Al)
may be taken as a conjecture.

Once the form of B '
(N; (()) is assumed, then it

is a trivial matter to prove, using Eq. (49), that
Q„' ((p) is given by the following recurrence rela-
tion:

()=(1) (- 1)k+1 l(2m-l-l)s)
( 1-)1+1

l!(2m —l —1)(2m —l —2) ~ ~ ~ (2m —2l)
&+

(-1)' e.")(q) .
, (l —p)!(2m —l —p —1)(2m —l —p —2) ~ . (2m —2l) (A2)

For example, from this relation and Eqs. (45) and (46) one may obtain for Q„'((()) the expression

(3)( )
— ( (

-(2m-2)s) 1 -2(2m-3)s2 1
1 —e + S-3(2m-4) S

)2!3!i&2m 2
' 2m-3 2m -4

-(2m-2)sll -(2m-4)s) -(2m-2)s(1 -3(2m-3)s) + e 2(2m 3)s(I-e -(2m-3)s)
i (A3)2m-6

Now let Q( '((()) be a.ssumed to be of the form

i 1:&&/~Xr-s)~ ~(t)
(1)

) Q g ( 1)l+r rs &-s(2m-s-1)s (1 -(r-2s)(2m-r-1) s
)

(l —1) t l!„1 ~() 2m —4' —1

2l-1 f(s&)l2lm 1)] A -(r-l+s) (2m-r+t-s-)) s i -(21-r-2s)(2m-r-1) s
)+ p p ( 1)lm 2l-r. s e " s (I —e

(I —1)!I! „1+, , o 2m —r —1
(A4)
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Here the symbol [g] means the integral part of the positive number g. If this expression is substituted
into Eq (A2) after a rather lengthy manipulation, it leads to the following recurrence relation for the

coefficients A„,(g)

where the first sum should be omitted when x= l,
and the second sum should be omitted, when 8=0.
Also, one should take A, o' =1. The index x takes
the values x= 0, 1, P,, . . . , l, so that r & l, while the
index s takes the values s = 0, 1, 2, . . . , [—,'()' —1)],
for given f'. The solution of tlM above recurrence
relation [Eq. (A6)] is

/I
() —s)!(I—) +s)! s!(I—s)!

It is easy to check that
(r) (~)&2)-. ~-".-&.. (Av)

Gnce the coefficients A.„,' are given explicitly by
Eq. (A6), both (I)

'
((&)) and 8„"(N; (p) are known for

any values of m, l, and ¹ Hence expectation
values can be evaluated.

As an example, the probability &p«"J»„{N;«)) that
n atoms out of N be excited at time I;, when orig-
inally all N atoms are excited, will be evaluated.
From Eqs. (54) and (Ai) with m = ,' I&& one ma-y

obtain the following expression for &P
« J»~(N; (&)):

&P, ~ (¹&&))=e "~ 1+ Q
' '

q&v»„(«)~
(.) . -~,( " (!)t'-)))!I! &»

N n —I!-)

when Q(v&2)~((&)) is substituted into this relation from

Fq. (A4) and after a. rearrangement of the summa-

tions one obtains the expression
2()&-n)-) (&l/2)&r-l)) ~(g „)

l8(&& 8 ))IP(1 &&' Qg)(g y $)rP
(AO)Xg

(,) (r 2s)-k! ~ ( )
&,„,!( )!,„., (~-I)!(I-s)!(I-~+s)!

Equations (A6) and (AV) were used in obtaining the
coefficients C„, . After the summationis performed
in Eq. (A10), the coefficients C„,"are equal to

( a) (a )!(a )! '

The expressions obtained from Eqs. (AQ) and
(A11), for n = 1 and N = 2, 2, 4, 6 coincide with those
of Dillard and Bobl. For m = 1 one can easily eval-
uate the energy of the N atoms and the number
of photons (or the rate of emission of radiation) as
time evolves, using Eqs. {69)and {64b) with
m =—'N.
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