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second-order Stark effect but no time modulation
is introduced. The similarity of the equations of
c(t) and e(t) in Eg. (A9) with those of a(t) and b(t)
in Egs. (A6) shows that we have similar results
as Eqs. (A7) except that the expression ot y is dit-

ferent as shown above and

e = 2(2(0 —(00 —5q+ 5@)~

The expressions of y in Ecis. (A'I) and (All)
are used in the text.
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Pure correlation effects on the hyperfine structure of atomic boron were investigated and
found to be important. A natural spin-orbital expansion of the well-correlated 187-term wave
function of Schaefer and Harris was used. Pure correlation effects are those contributions to
an expectation value obtained when the wave function is improved beyond the best possible

I

Slater determinant (the best overlap determinant). Our results indicate that the unrestricted
Hartree-Fock method yields valuable information about the orbital and spin magnetic dipolar
and electric quadrupolar terms, but gives unreliable results for the Fermi contact term.
Utilizing both experimental and theoretical results, the Fermi contact terxn fwas estimated
as 0.096ao, and the quadrupolar nuclear-shielding factor p as 0.093.

INTRODUCTION

Correlation effects have proven to be important
in some cases for the explanation of experimental

atomic hyperf one- structure parameters. Calcula-
tions of hyperfine structure for the boron atom
have been made by Schaefer, Klemm, and Harris.
Their two wave functions, the polarization wave
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function' and the first-order wave function, in-
clude some correlation effects, and yield 17 and
45%, respectively, of the correlation energy. For
the present investigation, a wave function which in-
cludes as much correlation as possible is required.
An earlier 187-term wave function by Schaefer and
Harris (which yields about 89% of the correlation
energy) is the best available. A natural spin-or-
bital (NSO) expansion of this wave function has
been given by Brown and Smith.

The expectation values that contribute to the hy-
perfine structure are as follows:

f= 4~(Z;5(r, ) v„.&,

I =
& Q(I,~/&l) &,

d = 2(-,'v)'~'(Q; [Y»(i)/r~]o„&,

q = 4(-' )'"(Z;[F.,( )i.l]&,

(1)

(2)

(3)

(4)

where 0„ is the usual Pauli spin operator such that
o „.o.(f) = o.(f); o„P(f)= - P(f). F»(f) = F20(e, , q, ) is
one of the ordinary spherical harmonics. f, l, and
d arise from magnetic dipole interaction between
the nucleus and the electrons; f is the Fermi con-
tact term, l is the orbital term, and d is the spin
dipolar term. q represents the electric quadrupole
interaction between the nucleus and the electrons.
The expectation values are evaluated for the
(J=L+S,~~=8') state (LS-coupling assumed). The
magnetic hyperfine constants AJ will then be par-
ticular linear combinations of these f, l, -d d for
each J value, ' for the 'P state of B"' 2

(q = 2.0023):

A~g~ = 114.0039 [l + 2 q(d+ 3 f ) ],
Aqua

= 114 0039 [2l a q(10d+ 3f ) ]

(5a)

(5b)

If I, d, and f are in a 0, the Az's will be in MHz.
The hyperfine constants have been determined ex-
perimentally for both the boron I'3~2 and P, ~~

states, which thus provide us with two relation-
ships among the three unknowns f, l, and d. Thus,
we cannot yet determine f, I, and d individually.
An assumption that has been often used is that l
and d (and q) can be expressed in terms of a. single
parameter corresponding to the ( r ~& expectation
value of the P orbitals. This assumption is valid
in the restricted Hartree-Fock (RHF) method and

also in the spin-polarized Hartree-Fock (SPHF)
method if the open-shell orbitals have the same
spin ((r ') =I = —5d for boron). Already in the un-

restricted Hartree- Fock approximation (UHF) it
fails, however, and we get additional contributions
to d caused by axial distortions of the s orbitals.
This distortion is unequal for electrons with spin

up and down because of exchange interactions with

the p electron. An examination of the correlation
contributions to the hyperfine structure with the

help of the NSO has previously been made by Lars-

son and Smith for the S ground state of lithium.
The NSO's are the eigenfunctions of the one-par-
ticle density matrix p(X, , X,) 9:

f p(xi, xi)x~(xi')dxi'=~ x (xi),
p(x„x,) =x f q(x„~ "x„)

( X ~, X2, ~ ~ ~ X~) dX2, ~ ~ dX„.
The X, denotes both the electronic space and spin
coordinates, and g; and v; are the ith NSO and its
respective occupation number or eigenvalue. For
Li, the difference between the UHF and experi-
mental values for the Fermi contact term was
2.8%. Those correlation corrections which change
the UHF spin orbitals into best-overlap'0 (Brueck-
ner or exact self-consistent field" ) spin orbitals
leave only a 0. 5% error. The NSO's are not ex-
actly Brueckner orbitals, but the difference was
found to be completely negligible' for Li, and this
will also be assumed here to be the case for B.
The remaining corrections arise when we go be-
yond the one-determinant model and consider the
true wave function. These pure correlation effects
thus only contributed 0. 5% for the lithium 2S ground
state. It is quite obvious that they will be much
more important for boron where there is near de-
generacy between several Slater determinants.

In this paper, we will study only pure correla-
tion effects. They are obtained by subtracting the
one-particle density matrix of the first NSO deter-
minant from that of the true wave function. The
pure correlation effect e on the expectation value
of an operator 0 is thus given by

N

~ = ~ (~;- I)( x; ills & + & ~ & x Ifl x;& (8)
i-1 i- N+ i

Any errors in the NSO's and the occupation num-

bers result purely from the deficiencies of the bo-
ron wave function in approximating the true one.

For a configuration interaction (CI) wave function

including much correlation, like the one analyzed
here, the errors in the NSO's with large occupa-
tion numbers will contribute most to the total er-
ror in the expectation value of a one-particle op-
erator. For boron, the five largest occupation
numbers are well above 0.9, and the total error can
be expected to arise mainly from these NSO's.
However, the error in ~ is quite small since the

(v; —1) terms in Eq. (6) nearly cancel. We are
therefore able to calculate the pure correlation ef-
fect to good accuracy, whereas the corrections
obtained from the first NSO determinant are not

as reliable.
This is apparent when we compare the expecta-

tion values for NSO and UHF determinants in Ta-
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TABLE I. Expectation values for NSO and UHF determinants (units: a.u. ).
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Orbitals

(s @pQ 1

(s, d)pP1

(s, @p0.2

(s, d)pP2

Sum

NSO
UHF

NSO
UHF

NSO
UHF

NSO
UHF

NSO
UHF

NSO
UHF

436.2923
433.6177

—437.2455
—434.7674

16.3637
18.3395

—15.5545
—16.9657

—0.1440
0.2241

0.7786
0.7828

0.7786
0.7828

—0.0001
0.0002

0.0022
—0.0074

—0.0019
—0.0032

—0.0022
—0.0035

—0.1557
—0.1566

—0.1577
—0.1704

—0.0001
0.0004

—0.0044
0.0147

—0.0038
—0.0063

0.0045
0.0071

—0.3114
—0.3131

—0.3152
—0.2973

ble I. The contribution to d and q from the (s, d)o
orbitals is a polarization correction caused by the
occupied P, o. orbital. The major part is caused by
first-order corrections to the RHF s orbitals and
shows up also in the UHF method. The correction
to q from UHF is essentially equivalent' to the
Sternheimer correction. In Table I we find, how-

ever, great discrepancies between the UHF and
NSO results. The contribution to q from (s, d)oP
is for instance —0. 0001 compared to 0. 0218 from
UHF. From (s, d)on it is —0. 0089 compared to
—0. 0059 from UHF. These discrepancies are
mainly due to deficiencies in the CI wave function.
The d-orbital basis is, to mention one thing, very
small and inadequate in describing these polariza-
tion contributions.

We also note that the l value for the NSOP orbit-
al is lower than the l value for the UHF P orbital.
The RHF value of l is 0. 7755. The UHF P orbital
will be localized nearer to the nucleus owing to the
improved treatment of exchange, giving an l value
of 0. 7828. We expect the NSO p orbital to be still
closer to the nucleus. Comparing with other at-
oms, there is for instance a 7% increase in l for
the Li P state owing to correlation corrections. "
Our result, l =0.7786, is therefore hard to explain
in view of the fact that the 187-term wave function
yields as much as 89% of the correlation energy
and also contains many singly substituted determi-
nants. We contend that the l value for the NSO P
orbital should be higher, which also, of course,
means a numerically larger contribution to d and
q from the P orbital. This correlation correction
to the P orbital is also absent from the polariza-
tion' and first-order functions' since these wave
functions do not include very much correlation.

Electric Quadrupole Term q

Contributions from orbital Nos. 6-9 in Table II

give rise to a large positive correction (+ 0.0184).
This correction is larger than the Sternheimer
correction' which for B is approximately the sum
of the two values given earlier (see Table I),
0. 0218+ (- 0.0059) = 0. 0159. The correction men-
tioned first is caused by ihe double excitations

2s~- 2poa +2po p,

2s ~2P n+2P P .
The 2P, n orbital is occupied, which makes the
following excitation impossible:

2s 2P, n+2P P .
Since we have

f YooY~o Y~o= 2/(5)'

J YooYi$ Y» = - 1/(5) ' ",

(7)

(8)

(9)

there will be a positive correction to q as a result.
We see from Table II that the high occupation

numbers from orbitals 6-9 correspond well to the
decrease from unity of the occupation numbers of
the 2s orbitals (Nos. 4 and 5), and thus we can con-
clude that the excitations in Eqs. (7) and (8) are
involved. This conclusion is also supported by
other calculations on the "2s-2P degeneracy ef-
fect". ~4 The occupation numbers from these pa-
pers agree well with ours for the 2Po n, 2PoP,
2P n, and 2P, Porbitals.

Let us compare this result with the polarization
function and first-order function results. It is
evident from the construction of these wave func-
tions that the first one exhibits only the Stern-
heimer effect whereas the latter includes also the
2s-2P near-degeneracy effect. The absolute value
of q for both functions is probably too small, how-
ever, because of lack of correlation effects on the
P orbital as mentioned in the Introduction.

The orbital Nos. 10-14 contribute —0. 0053 to q.
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TABLE II. Expectation values in the density matrix expansion (units: ap ) and the pure correlation effects cu accord-
ing to Eq. (6) as calculated from the 187-term wave function.

1
2

4
5
6
7
8
9

10
ll
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35-82
Total

(sq d) pQ

(s, d) pP

P+Q

(s, d)pQ

(s, d)pP

P Q

Pp~
PpQ

P+P
d+ +Q

p P
d~Q

P~Q

d~P
(s, d) pQ

(s, d}pP
d,P
(s, d}pQ
d P
(s, d) pP

(s, d) pQ

d P
P+Q

p+P
d Q

Po~
P Q

PpQ

p P
(s, d)pP
d Q

P+P

p P
d~Q

0.999006 7
0.999001 5
0.978 001 7
0.948 282 0
0.931 926 6
0.026 976 5

0.026 709 5
0.024 951 6
0.024 731 2
0.009 258 0
0.008 483 7
0.004 684 8
0.003 462 5
0.002 900 7
0.002 480 0
0.002457 7
0.001 517 6
0.001 082 8
0.000 396 4
0.000 338 8
0.000 328 7
0.000 267 8
0.000 215 3
0.000 203 9
0.000 201 0
0.000 184 9
0.000 183 0
0.000 180 8
0.000 180 0
0.000 177 3
0.000 158 8
0.000 156 8
0.000 1390
0.000 104 3
0.000 668 1
5.000 000 0

vf', fi
435.8590

—436.8089

15.5174
—14.4956

0.1181
—0.1990

0.1023
0 ~ 4

—0.5220
0.4891
oee

—0.0040
0 ~ d

0.0008
0.0572
0.2012

v;E]

0.7615
0 4 0

—0.0243

0.0224
0.0041

—0.0078
0.0010
0.0023
0.0013

0.0003

—0.0003

—0.0001
0.0123
0.0076

—0.0001

—0.0131

—0.0121

—0.0001
Q.0055

—0.0011
0.0001
0.0023

0.7617
—0.0169

vgdf

—0.0001
0.0022

—0.1523
—0.0018
—0.0021
—0.0049
—0.0095

0.0090
0.0045

—0.0006
0.0016
0.0001

—0.0005
0.0002
O.QQQQ

—0.0000
—0.0000
—0.0000

0.0000
—0.0000
—0.0001
—0.0000
—0.0025

0.0015
—0.0000
—0.0052
—0.0026

0.0052
0.0024

—0.0000
0.0000
0.0011
0.0002

—0.0000
—0.0003
—0.1545

0.0032

—0.0001
—0.0044
—0.3046
—0.0036

0.0042
—0.0097

0.0191
0.0180

—0.0090
—0.0012
—0.0031

0.0003
—0.0009
—0.0004

O.QOOQ

0.0000
0.0001

—0.0000
—O.QOQl

0.0000
—0.0002

0.0000
—0.0049
—0.0031
—0.0000

0.0104
—0.0052

0.0105
—0.0048

0.0000
0.0000

—0.0022
—0.0004
—O.OQOO

—0.0006
—0.2960

0.0192

The quite high occupation. numbers of these orbit-
als are due mainly to correlations between the pn
and sj3 orbitals. The occupation number for the

2P, & orbital decreases below the value 1 of the
independent particle model as a result of these cor-
relation effects, which leads to a lower absolute
value of q. The total effect of the Pn-sP correla-
tions is therefore very small.

The remaining effects are small. The s corre-
lations cause large individual contributions to q
(from orbital Nos. 23, 24, 26-29, and 32), but
this time these contributions cancel each other.

Spin Dipolar Term d

The 2s-2P near-degeneracy effect does not con-
tribute, since the excited n and P orbitals tend to
give contributions of the same magnitude but dif-
ferent signs. ln our case, we find as the only dis-

tinct effect a, positive contribution of 0.0034 aris-
ing because of the decrease of the 2P, n orbital
occupation number. This decrease is to a large
extent apparently due to the excitation

2P, o. +s P-d„n+P P. {lo)

The created d„orbital has a much smaller{r- )
value than the P, and P orbitals and the net effect
is a positive correction.

Orbital Magnetic Moment l

Excitations of type (10) cause a negative contri-
bution here. The individually large contributions
from orbita. ls No. 6, 9, 23, 24, 26, 27, 29, and

32 caused mainly by s correlations cancel out.
%hen the first NSO determinant value is subtracted
from the total I value from the density matrix, the
net result is —0. 0169.
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The correlation effect described by (10) was in-
cluded in both the polarization function and the
first-order function. ~'P By looking at Eq. (2) of
Ref. 3 we see that excitations of the above-men-
tioned kind occur in the 1s~2s2Pdl configuration.
The values of l from the two wave functions are
0. 0154 and 0.0256 lower than the UHF value, re-
spectively, in quite good agreement with our re-
sult. Comparing with the corresponding values
for d we find that the polarization function result
is 0. 0044, and the first-order function value
0. 0071 above this value. This should be compared
with our result of 0. 0032. Correlation effects of
the kind (10) are probably best described by the
first-order function. Our values would then be
somewhat too small, in absolute value.

Fermi Contact Term f
This is perhaps the most interesting expectation

value. The contact term is the only one that con-
tributes to hyperfine structure in spherically sym-
metric systems. There has been much discussion
in the literature about the validity of the SPHF and
UHF methods for calculation of the contact term. '
The total correlation error is mainly associated
with the correlation between electrons of different
spins. ' One consequence of this is that the occu-
pation numbers of the strongly occupied (s, d)p ol-
bitals of the true wave function are higher for
those with the same spin as the unpaired electron
(s). In our case it is 0. 948 for (s, d)p n and 0. 932
for (s, d)p P of the L shell. The excited orbitals
are only to a. small extent s orbitals. The contri-
butions from these excited s orbitals cancel each
other. The correlation effect seems therefore to
be caused primarily by the difference in the 2(s, d)p
occupation numbers. The correction will be pos-
itive and unexpectedly large. By comparing with
Table I we see that it is of the same magnitude as
the UHF correction to RHF (the RHF value is zero).

COMPARISON WITH EXPERIMENTS

The magnetic hyperfine-structure constants cal-
culated from different wave functions are listed in
Table III. We have also listed the sum A. g/p+A 3/p
which is independent of the contact term [see
Eqs. (5a) and (5b)]. The UHF value is very close
to the experimental value of this sum. Although
the first-order function should account for the
same kind of polarization as UHF plus important
correlation effects, it yields a value which is too
low. This can be explained by the fact that the
first-order function is missing the correlation ef-
fect on its strongly occupied P orbital, whereas
the UHF function is missing both this correlation
effect and the pure correlation effects, giving a,

cancellation of errors. The first-order function

TABLE III. Magnetic hyperfine constants {MHz) of
B"calculated from different wave functions.

Wave function Au2 A3/2+A«2

RHF
SPHF
mF"
Polarization

function ~

First-order
function

187-term
function '

Experiment

70.7
79.5
78.3
72.0

353.9
348.7
364.5
361.0

424.6
428.2
442.8
433.0

69.7 426.8

71.4 419.2

73.3 366.1 439.4

D. A. Goodings, Phys. Rev. 123, 1706 (1961}.
Reference 7.

~Reference l.
~Reference 2.
'Reference 3.
Reference 6.

value of A& &p+Ap~p should be increased by 3. 0/o

to agree with the experimental value. If the (t)'
value for the strongly occupied P orbital is in-
creased by about 3.0%%uq, the major part of I and d
will also increase by 3.0/o in absolute value:

l =1.030l =0.7799,

d =1.030l =0. 1682,

where the unprimed l and d are the first-order
wave function values. The resulting l and d
should be quite reliable. Then using Eqs. (5a) or
(5b) and the corresponding experimental values of

/ p and +3 / p we may calculate the contact term

A „,= 114.0039 (I '+ ,' e(d '+
3f-)j,

A, ( p
= 114.0039 (2/ '- —', q(10d '+ ',f '))—

The results are f = 0. 095a-p' from the first equa-
tion, and f = 0.097 a-p' from the second. Such a
close agreement supports our assumptions in the
above procedure.

Presently there are no reliable calculations or
measurements of the Fermi contact term for bo-
ron. If our values of about 0. 096ap for the Fermi
contact term and 0. 201a p for the pure correlation
effect are correct, then we would have a negative
value of f for the best overlap determinant. Since
the UHF function is valuable only as an approxima-
tion of this determinant, we conclude that the UHF
method, which gives a, positive value of 0. 224, is
inadequate for the calculation of the Fermi contact
term for this state.

In Table IV we have listed the electric quadru-
pole constants as calculated from different meth-
ods. The polarization function and UHF function
give similar values which can be expected, since
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TABLE IV. Expectation values q=4(~q&)~~ (y &I ym. (i)Iraq))
from different @rave functions,

RHF
SPHF
UHF"
PolR1'1ZR'tlon function
First-order function
187-term function

0.3102
0.3128
0.2973
0.2975
0.2733
0.2960

~D. A. Goodings,
Refer'ence 7 ~

CReference l.
Reference 2.
Reference 3.

Phys. Rev. 123, 1706 (1961),

We found an important correction to the electric
quadrupole interaction as a result of the 2 s- 2P
degeDeracy effect. Fox' I aDd d we fouDd quite

they both take into account the polarization effect
which is equivalent to Sternheimer shielding. The
fll'st-ordex' wave function lDcludes also the 28-2p
degeneracy effect, and therefore yields the most
accurate result. %'6 may also improve it further
by scaling it upwards by 3.0% to arrive at q
= —0.2815. This corresponds to a. shielding factor
'Y= —(9„ t- qaaF)/gasr of 0.093, which is appre-
ciably larger than the Sternheimer (UHF) shielding
fa«o»um= -(euaF - qa~)/ca~ = o 03~.

small pure correlation corrections (= —2%). Our
results indicate the first-ox'der wave-function val-
ues of l, d, and q are the most reliable ones cal-
culated so far, but that they should probably be in-
creased by about 3% to account for the remaining
corxelation effects. For the Fermi contact term
we found a surprisingly large pure correlation
corx'ection.

By comparing our results with those from other
methods, we found that the first-order wave func-
tion of Schaefer, Klemm, and Harris seems to
have incorporated most of the polariza, tion and

pure correlation effects but is still missing corre-
lation corrections to its strongly occupied P orbit-
al. The UHF function includes only the polariza-
tion effect fx'om the 2p orbital. It gives 3D uDre-
liable value for the contact term.
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The spontaneous emission of a set of N identical two-level atoms interacting with a quan-
tized electromagnetic field is studied. The atoms are assumed to be close together com-
pared to the mean wavelength of the emitted radiation, and their initial state is either a
IXicke state or a superposition of the ground and excited state for each atom. Approximate
expressions are obtained for transition probabilities, expectation values, and correlations as
functions of time. The spontaneous emission for a very large separation of the atoms is
also studied. In this case the directional properties of the emitted radiation, as well as
the time within which the atoms decay to their ground state, depend on the position of each
atom.

I. INTRODUCTION

In the following the evolution in time of a set of
N identical atoms interacting with a quantized
electromagnetic field is studied. It is assumed
that the atoms lie far enough from each other so
that their wave functions do not overlap. In addi-
tion it is assumed that only two levels of the en-
ergy spectrum of each atom are involved in the
process of evolution, so that each individual atom
is treated as a two-level system. The initial con-
dition of the system is such that at t= to there are
no photons present in the field and the set of atoms
is in an excited state which can be prepared ex-
perimentally.

When the electromagnetic field consists of a
single mode it is possible to diagonalize the Ham-
iltonian' and the problem can be solved exactly.
It may be shown then that the energy of the excited
atoms is exchanged back and forth in time between
the set of atoms and the one mode of the electro-
magnetic field. Hence no energy dissipation of
the system of atoms occurs on a long time average.
In the present work it will be assumed that the
electromagnetic field consists of an infinite num-
ber of modes. In this case the atoms return to
their ground state after a long time interval.

When the electromagnetic field has an infinite
number of modes there are various methods of

approach in solving the problem approximately.
The method of approach that will be adopted here
is to deal with the equations of motion of the ma-
trix elements of the evolution operator. It turns
out that there is only a finite number of such ma-
trix elements, so that there is also a finite num-
ber of coupled equations of motion. In addition,
these equations of motion are linear and hence
easier to solve than, for example, the equations
of motion of the operators themselves which are
nonlinear. This same method of approach was
used by Weisskopf and Wigner~ for the first time
to study the spontaneous emission of a single atom
and rather recently it was also used by Ernst and
Stehle' to study the spontaneous emission of N
atoms. The latter investigators consider the par-
ticular case where all the atoms are excited ini-
tially, while the initial state of the set of atoms
considered here is a superposition of the ground
state and the excited state for each individual
atom (sec. Iv).

Following a completely different approach,
Dillard and Robl have also treated the spontaneous
emission of N two-level atoms which lie close
together compared to the mean wavelength of the
radiation. Some of the results obtained in their
investigation are duplicated here in order to show
explicitly that either method of approach gives
identical results. In most of the present work the
condition that the atoms lie close together com-


