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A general and formally exact class of integral-transfo~ electronic wave functions may be
defined in terms of a distortion operator. This operator, which depends on one or more run-
ning parameters, maps some zero-order approximate wave function onto any part of a Hil-
bert space. The set of all such distorted functions may then completely span the space. The
most effective discrete set of n configurations for the approximation of the exact integral
transform is considered from the standpoint of a numerical analysis. It is taken to be the
set which permits the most accurate n-point evaluation of an integral expression for the ex-
pectation value of the energy. In practice, the diophantine integration scheme may be used
to provide such a set of configurations. The value of the optimal transform weighting func-
tion for ground and excited states at each of the n points can be inferred back at the end via
the solution to a conventional linear matrix eigenvalue equation. Preliminary applications
are made to the calculation of the radial correlation limits for the helium, lithium, and beryl-
lium atoms.

I. INTEGRAL APPROACH TO THE CALCULATION OF
%AVE FUNCTIONS

Efficient general methods for evaluating a defin-
ite integral of some function E(x) as a sum of val-
ues of the integrand at a set of points (i, j, k, . . . ,
m) are afforded by numerical analysis':

f Z(@dz Z; Z—Z '' Z 'A(f, j, k, . . . , m)

xZ(f, j, a, . . . , m) .

The expected error is minimized with respect to
the choice of weights A(i, j, )t, . . . , m) and points.
The relative efficiency with which a function can be
integrated over a given range, besides that with
which the same function can be interpolated, can
be made to increase very rapidly with the number
of dimensions over wh1ch the funct1on 18 defined.
The electronic wave function 4' of an atomic or
molecular system is a many-dimensional function.
Moreover, it normally appears during its calcula-
tion within the usual integral expression for the
expectation value of the energy E:

Z = J @*H 4 dr/ J 0 "4 d7

It is the purpose of this paper to suggest a method
in which the error analysis implicit in numerical
integration methods can be used directly to fix, in
an effective rational way, certain features in the
construction of a wave function, such as the choice
of basis functions, which are normally settled on
arbitrary grounds. The wave function is expressed
as an integral transform, which can formally be
regarded as having a variationally optimal weight-

ing function. This can be reduced, using the nu-
merical approximation which can be evaluated
separately, to the established framework of con-
figuration interaction. Each configuration P,
represents effectively a point in a many-dimen-
sional surface, and the expansion of the wave func-
tion

O'=Bc) Qg (3)

is to be regarded then not as an interpolation form-
ula but as a provider of a set of weights and points
for an integration formula. It can be reasoned that
the use of the conventional approach in which all
the configurations from a given one-electron basis
are used for configuration interaction is analogous
to the process of making a numerical integration
using a hyperrectangular grid of points. Far more
efficient integration schemes have been devised,
particularly when a large number of points can be
used.

II. DISTORTION OPERATOR

A functional form for the exact solution to the
Schrodinger equation is indicated. To construct the
wave function, a complete set of functions is speci-
fied, whose members are distinguished by a vec-
tor varying continuously between defined limits.
The free-particle eigenfunctions

g(k) = 8'"'
provide one well-known example. For bound-state
problems, basis functions extending to infinity are
not convenient, since the energy eigenfunctions
have effectively a finite extent. There is no com-
plete orthogonal set of energy eigenfunctions of
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some other convenient Hamiltonian similarly in-
dexed by a continously varying parameter. We are
forced to use a nonorthogonal set.

In a formal way, the "many-dimensional" infinity
of configurations which are needed to expand an
arbitrary function in Hilbert space may be de-
scribed by defining a distortion operator

D(u„n„. . . , n„) = D( u )

This operator maps some arbitrary zero-order
generating function $0 onto any other member P&
of the basis set for the space,

(4)

In this way, each configuration Q& is indexed by a
point or vector u. One particular point u may
define an identity operation

Since there is a one-to-one correspondence between
members of the basis set 2nd points e, it is con-
venient to describe the basis set by the running in-
dex u. Equation (4) may be rewritten as

A(u) =D(n) P(u') .

The distortion operator is defined here to act only
on the generating function $0= /(n ).

To take a specific example, a one-parameter
distortion operator D(n) might be defined to act on

a 1s-type Gaussian orbital of unit exponent centered
at a particular point in space by the equation

D(n)e" =e ", 0~a~~ . (7)

D(1) applies the identity operation. The operator
D thus generates every other possible Gaussian
orbital centered at the same point. The set of all
possible 1s functions centered at a point constitutes
a complete set for the expansion of any spherically
symmetrical radial function. Equation (6) is then

just a many-dimensional extension of the same con-
cept. D may be defined to apply distortions to
one-, two-, or many-electron parts of electronic
wave functions. The definition of a complete set
(or subset) of functions thus requires the definition
of a suitable distortion operator D(u), a range of
application for the components e& of Q. : a&& n&& n~&,

and a generating function P(u ).
Considerable care is needed in formal manipula-

tions with such a set, since it is not orthogonal
and is likely to be overcomplete. The former at-
tribute occasions little practical restriction, at
least with small systems, and most of the difficul-
ties introduced by the latter are removed in prac-
tice by the numerical approximation.

Other definitions of a zero-order function and
distortion operator are feasible. The present de-
finition is convenient because it provides a basis

D(n) g (no), whose members each satisfy the ap-
propriate boundary and continuity conditions on the
solution to Schrodinger's equation.

III. INTEGRAL-TRANSFORM WAVE FUNCTION

Any function ( which can be expanded in terms of
the set D(u) P (u ) may formally be written as an
integral transform

g = f ,"„C(n)D(u) P (n') du,

e"=(1/2') f a "e"' e '" dn
0

In this case then the transform weighting function
is the known function

C(u) n-1.5 e-0.25/ 0t (10)
The exact transform has of course not been given
explicitly for any many-electron system.

A form of the variational principle appropriate
to this functional type of wave function follows
immediately. The function C(n) associated with
the ground-state wave function ( has a form such
that the integral expression

0,&
E=f, du f;; dn' C(n) C(n') H(n, n')

~f Mf

&&[ f, dn f, du' C(u) C(a' )S(u, u')] '
(11)

is stationary and a minimum with respect to its
variation. For excited bound states, the expres-
sion is stationary and a minimum, subject to the
restriction that the wave function is orthogonal to
all lower states. Here, we have

H(n, u') = f dvD(u) p (no)HD(a') p (no),

S(n, u ') = f d7 D(u) y (u 0) D(a') (gn 0) .

d7' refers to all space and spin variables and H is
the Hamiltonian operator. A function such as C(n)
or an approximation to it might be described as a
"configuration relaxation function" to distinguish
it from two relaxation functions previously intro-
duced. '

The exact solution to the integral variational
principle [Eq. (11)]might be approximated in sev-
eral ways. The most straightforward would be to
put in arbitrary functions C(u) containing adjust-

in terms of some arbitrary function C(u) of m vari-
ables. We may seek, for example, to use the de-
finition of Eq. (7) to investigate the ground-state
wave function for the hydrogen atom. Karplus and
Shavitt described the transform
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able parameters and possibly adjustable limits of
integration: then, to carry out the integrations
analytically or numerically. Such a procedure has
been independently suggested by Somorjai et a1.7

The approach raises interesting possibilities and
may prove very useful for small systems. There
do, however, seem to be serious difficulties in
applying it economically to systems of several
electrons. The least attractive feature seems to
be that a large number of nonlinear parameters
would have to be used. Moreover, a considerable
degree of intuition is likely to be implicit in the
choice of functional forms. Indeed, in this form,
application so far has only been made to two-elec-
tron systems. The need in the general case for the
solutions to be calculated using linear equations is
a near-cardinal constraint. An alternative ap-
proach based on Eq. (11) and the use of differential
equations derived from it is under consideration.
The analogous relationship between integral and
differential relationship for range and pass relaxa-
tion functions is developed in the next paper of
this series.

We consider, in what follows, a different
scheme, which can be applied to systems of sev-
eral electrons and might be expected, moreover,
to converge in a predictable and rapid way on the

energy and wave function for the true configuration
relaxation function. Though it avoids some of the

problems, particularly the need to vary nonlinear

parameters, the scheme in its present form is not

itself devoid of difficulties in its application to

larger systems. Some of these are pointed out in

later sections.

significant numerical estimate of the integral.
Ttus numerical integration would reduce Eq. (11)
to the form

A((Z, o, '), ) C(Z); C(n');H(Z, Z');

QQilltS ( Pg @ & ).
A((Z, n');) C(o'); C(u'), S(a, o"),

which may be rewritten as

E- Z;B(~, o. '),.H(n, o, '),. /Q, .B(n, o'),.S(o o ),
(»)

The coefficients 8 have absorbed both the weighting
coefficients A and the unknown transform weighting
function.

This "most significant" m-point integral repre-
sentation of the expectation value of the energy can
be put into a form in which the variational princi-
ple can be applied to determine B(n, Z'), . This
can obviously be done if the set of points

f(u, n );) in 2m-dimensional space is chosen from
all possible products of two I-dimensional sets
fo'&)-=(o' '&J. Any point (u, o.''), can now be found

among the set of m points (n„g'&), i, j = 1, 2, . . . ,
rn. Thus for each coefficient we have

B(o', ~');=&(~&)&(n',) .

Then Eq. (15) becomes

IV. DETERMINATION OF THE CONFIGURATION

RELAXATION FUNCTION

The most efficient known method for integrating
arbitrary many-dimensional functions such as the

components of Eg. (11) is the diophantine technique

of Hazlegrove, Conroy, ' and Boys. ' With this
techniclue, (or with any comparable numerical
method) the function I' must be evaluated at a set
of points On, n ');)f = 1, . . . , n, and the integral is
approximated as a weighted sum of these values;

which, for the discrete set of points Q.;, is just a
variational form of the conventional matrix eigen-
value equation

where n'~ = a,', a~', . . . , u„' runs over the full set of
points in m dimensions. The solutions of the
equation supply, as usual, the energies of both
ground and excited states. Actually, the restric-
tion of having two identical sets may be relaxed:

A((n, o.' )&) is a weighting coefficient determined by
the numerical procedure. The integrals of Eq.
(11) of course cannot be carried out at this point
since we are ignorant of the function C(n). How-

ever, even with the crudest knowledge of its distri-
bution, the numerical method can be used to de-
termine the set of points at which the integrand
KOQld AQ58 AQd to be evaluated to give the most

The solution of Eq. (18) then still leads to an esti-
mate of E which converges on the true energy. '
In the specific examples used here, the same set
has been used for $ o, ) and (n,.'$.

The numerical scheme has allowed a reduction
of the many-dimensional variational integral-trans-
form expression to a set of discrete configurations
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among which interaction is allowed. The informa-
tion which is lost in going from the exact trans-
form to this approximation to it is supposed to be
of the least significance from the standpoint of the
evaluation of the expectation value of the energy.
The set of points from the numerical integration
procedure provides, in this sense, the most effi-
cient set of configurations with which to carry out
the m-dimensional integration:

J dn C(n) H(n, n '), f dn C(n) S(n, n ') .

The method with (n&) =fn, ') yields an upper
bound to the energy. Moxeover, the energy is the
lowest schick could have been obtained seitA, any
function C(n) which might have been inserted in
Eq. (11)using the same set of points to approxi
mate the integraL with the best possibLe set of
weights. This is important, since the approach
i.s not now confined to an integral transform of any
particular type. The method, in contrast to that
of Ref. 7, yields the optimal transform (within an
n-point approximation). The inefficiency inherent
in the transfer of functional forms from fragments
to aggregates is thus excluded from the start.

The value of the optimal transform weighting
function C(n) at the integration points can be de-
termined at the end if necessary, since the weight-
ing coefficients are given and b(n)) are known
from the solution of Eq. (18). They might be used
as the basis for an interpolation if the function
m'ex'e deslx'ed.

Conroy' has indicated that his diophantine inte-
gration scheme might be used to evaluate integrals
over 12-dimensional functions, for example, with
errors of the order of parts per million using
about 6000 points. Conventional secular equations
of over twice this size have been routinely solved. '3

However, the application of the variational princi-
ple allows the use, with impunity, of very sparse
grids of points, which mould be totally unreliable
for numerical integration.

V. POINT DISTRIBUTION FUNCHON

An effective way to carry out a Monte Carlo
oriented integration involves the use of a function
whose derivative varies approximately as the inte-
grand. ' '" This is used to meight the distribution
of points most heavily in the most important parts
of space. Each integral might then be considered
a special case. Homever, although the over-all
character of such a function significantly affects
the convergence, the details are unimportant. The
x'ough form may be based on the zero-order func-

0tion Q (n ) or on any other convenient crude approx-
imation to the wave function. In common mith the
aims of the two previous papers, semitheoretical

arguments may conveniently be introduced to give
rough forms to certain functions which may be ex-
pected to help speed convergence. This is valid
when there is a, defined limit which readily can be
attained for small problems and mhich is indepen-
dent of such props. The point distribution func-
tion can clearly be handled in this way. %ith a suf-
ficiently great number of points, the x'esults are
independent of the function. Moreover, mhen a
rather smaller set is used, the results are anti-
cipated to be insensitive to crudities in its form.

In the following simple applications to approxi-
mate the radial-limit wave functions for some
small atoms, the function a(g, r &r') has been used.
f. 18 defined as the 1ntegral of the eleetx'on density
of a normalized Slater-type orbital y('g, r) of ex-
ponent g outside a radius x'. In spherical polar
coordinates, me have

It is a function varying smoothly and monotonically
with x' between one and zero, whose derivative
m'ith respect to x' represents an approximate mea-
sure of the relative importance of the integrand

+efteotivs X( )~ r
Analytical expressions fox & for Slater orbitals
have been given previously. '

The maximum radial density of an ox'bital,

r tl 1 g'Y ~(g y)

(Slater or Gaussian}, which is a product of radial
and angular functions, with an exponent $ and prin-
ciple quantum number ~, is a distance r from the
orgin:

A distribution function was chosen to weight the
basis orbitals with maximum radial density at x
in proportion to the derivative of the curve of x '
against e(g, r &r '). Thus (where g is the orbital
exponent of the corresponding orbital in the gener-
ating function), we have

fl(&) rn-1 nr -r r&-

where e(g, r & r ') has been inverted to give r ' as
a function of &:

r'=o(g, ~) and y=n/mr'

The point distribution function for m = 1 (Slater
basis) or m = 2 (Gaussian basis) to represent the
integral transform of a function which is a, 1s orbi-
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tal of exponent g in zero order is

d($) = (n/n1$)""+ "~~(1/m() exp[ —21l(n/m)) "].
(24)

This particular distribution function is not intended
to be represented here as having anything better
than a crude, but convenient, form.

The point distribution is itself a "relaxation
function" whose form might be determined by the
condition that the expectation value of the energy be
stationary with respect to its variation. Thus,
even for a meager grid of points there is recourse
to an objective criterion which might override any
intuitive form. General variations are nonlinear
operations, and thus unsatisfactory for the present
purpose. There is, however, one particular vari-
ation, a uniform scaling of the distribution, which
can at least for atoms be optimized with recourse
to the solution of linear equations alone. At any
rate, for fairly small changes of scale, the effect
of such a scaling is entirely equivalent to that of
applying the same radial scaling' to each of the
configurations Q;. The whole calculation does not
have to be repeated for a succession of trial values
of the scaling factor. It is, however, necessary to
determine how the transform weighting functions
C(o.), , at the points where the function is evaluated,
relax with change in scale factor to keep the ener-

gy expectation value at a minumum for all values
of the scale factor. Linear perturbation variation
equations which may sometimes be used for carry-
ing out the appropriate reduction are proposed in

Paper IV. This rescaling transformation requires
no new matrix elements.

The curve for a Slater orbital basis has its max-
imum at 0. 5 (that is, half the exponent of the gen-
erating orbital), and the numbers of basis orbitals
are distributed equally about Q. 75. This ad A,oc
distribution function may thus appear to be far
from perfect. Gross imperfections in the weight
of the distribution can, however, be eliminated by

applying the optimum uniform scaling to it, to
bring the maximum into a more favorable position.
The rescaled results quoted later may be taken
then merely to illustrate the effect of altering the

point distribution functions in a computationally
simple way to one of the same over-all form but a
more favorable general position. When a suffi-
ciently large basis can be used, such refinements
should become unnecessary.

Since the configuratiens are essentially random,
any other arbitrary configuration [p(1x0) for ex-
ample] can be included with the set.

VI. RADIAL-LIMIT CALCULATIONS FOR He; Li AND Be

Preliminary applications were made to approxi-

mate the radial limit of the helium atom. The
Eckart function'

y(& 0) y(& 0 O|0) (&-1,19r1e-2.18r2 e-2.18r1

TABLE I. Radial limit of the helium atom.

10

26-point
configuration

interaction
(CI) treatment

Hazlegrove"
Conroy, case 1
Conroy, case 2

Hazlegrove,
random number
generator reversed
Hazlegrove, row 1
res caled
Conroy, case 1,
row 2 rescaled
Conroy, case 2,
row 3 rescaled
Conroy, case 1
Conroy, case 1,
row 8 rescaled
Conroy, case 2,
y (n') =1s'

Slater or
Gaussian
transform

G
G

Energy
(a.u. )

—2. 878 59
—2. 878 61
—2. 878 55
—2. 878 44

—2.878 98

—2.878 96

—2.878 96

—2.866 76
—2. 873 30

—2. 878 68

Exact energy=2. 87903 from C. Schwartz, Phys.
Rev. 126, 1015 (1962); C. Bunge, ibid. 168, 92 (1968).

"All, except the tenth treatment, use as a generating
function the Eckart function (Ref. 17) E (Q(n ) ) =- 2.8757.
In no case was P (e ) included with the set of configura-
tions.

The point at the origin was arbitrarily approximated
as (10 ', 10 ').

"ft)(Q ) = —2.84765.

xe '""2) x~~", = Q(1. 19, 2. 18) (25)

was used for the generating function. The distor-
tion operator was defined to act according to the
equation

D(n ) Q(n ) =D(n„n2) $(1.19, 2. 18)

= (e 1 "1e 2 2 —e 2 le 1 2) Xy~1

(28)

Using the pseudorandom numbers of the numeri-
cal integration procedure and the point distribution
function, setsof 26 configurations of the form of
Eq. (28) were generated using Hazlegrove's meth-
od and Conroy's' method. The tendency towards
near-linear dependencies among the matrix ele-
ments, characteristic of overcompleteness, indi-
cates a need for special methods in the solution of
the secular equations (18). A convenient method
is discussed elsewhere. '

In the first three rows of Table I are compared
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TABLE II. Radial limit of lithium atom. ~ Slater
transform used throughout. Q( & ) energy —7.418. See
Ref. 20. In no ease was (II)(0. 0) actually included in the
set.

26-point treatment

Conroy, case 2
Conl oy ~ case 2, 10% 1
rescaled
Conroy, case 2,
lg point distribution
function shifted
to have maximum at
exponent of P(e 0)

Conroy, case 2, row 3
res caled

—7.446 79
—7.447 35

Cf. values —7.44756, Ref. 19; —7.447 20,
A. W. gneiss, Phys. Hev. 122, 1826 (1961);—7.44771,
S. Hameed, S. Seung Hui, J. I. Musher, And J. M.
Schulman, J. Chem Phys. 51, 502 (1969); —7.44733,
L. G. Heikes and G. A. Gallup, J. Chem. Phys. 52,
888 (1970).

three methods of generating the pseudorandom
configurations. (The case numbers indicated are
Conroy's designation. ) There seem to be no sig-
QlficRnt differences, The 1nacculRcy RppeRrs in
each case in the fifth significant figure. This is
at least as good as would be expected for an in-
tegration using such a, sparse set of points. '0 In
the fourth row is shown the application of the dis-
tortion operator Eq. (26) to a generating function
P(2. 18, 1.19) [where the orbitals have been re-
versed as compared to Eq. (26)j. As expected,
there is no significant difference.

8
The results obtained by rescaling the first three

treatments (rows 6-V) show a narrowing of the en-
ergy deficit. (The scale change to correct the
distribution function optimally is close to 2, which
shows how poor the original distribution function
actually was).

Using a Gaussian transform [row 6, m = 2 in
Eqs. (22) and (24) ]gives a substantially less accur-
Rte 26-conf lgur ation function), though some Xm-
provement is obtained by rescaling (row 9). (There
is in practice no weight in this distribution func-
tion for orbitals of exponent greater than 10, so the
electron density in energetically important regions
close to the nuclei cannot be represented properly. )

The expected insensitivity of the method to the
generating function Q(n ) is confirmed for this
system by the results in row 10. In this case,
(5(n ) was a function in which both electrons were
confined to a single Slater orbital of exponent
1.6875.

In the case of lithium, the exact radial limit is
not known, though it is close to —V. 448. ' Four

TABLE III. Radial limit of beryllium atom. (Hartree-
Fock energy: —14.573; S-limit energies: —14.5920, "
—14.5865, ' —14.5895, d —14.5911,' —14.5883, '
-14.5900. ')

30 point, Hazlegrove
30 point, rov(r 1 rescaled,
point distribution function
19 point, Hazlegrove ~

19 point, row 1 rescaled,
point distribution function

—14.562 94
—14.585 45

aE. Clementi, IBM J. Bes. Develop. Suppl. 9, 2
{1965).

"C. Bunge, Phys. Rev. 168, 92 (1968).
CR. E. %'atson, Phys. Hev. 119, 170 (1960).
dU. Kaldor and F. E. Harris, Phys. Hev. 183, 1

(1969).
A. m. Weiss, Phys. Hev. 122, 1826 (1961).
J. S. Sims and S. Hagstrom, (unpublished), (22 con-

figurations anth optimization of some nonlinear
exponents) .

~L. G. Heikes and G. A. Gallup, J. Chem. Phys.
52, 888 (1970).

E(p(Z )) —14.557, Ref. a.
E(p(n )) —14.528, Ref. 21, and Eg. (27).

treatments were carried through, using in each
case Clementi's minimal Slater-type orbital wave
function Rs the generating function. In the first
row of Table II, the point distribution function Eq.
(24) was used. Rescallng (row 2) produces a signi-
ficant improvement. In row 3, the reasonable im-
provement of making the distribution function for
the 18 electrons peak at the exponent of the corres-
ponding orbital in p(n ) was effected. The last
row indicates that this result is, as expected, less
sensitive to rescaling of the point distribution
function.

The results of four treatments of the radial limit
of beryllium are shown in Tables HI and IV. In
the first calculation, 30 points were generated
using Hazlegrove' s scheme. The point distribution
function Eg. (24) for the ls orbitals was scaled by
a factor of 2, and the generating function (5(n ~)

was taken to be Clementi's optimized 18 28 Rater
orbital based function. 0 Even for this extremely
sparse 30-point grid, the error appears in the
fourth significant figure and can be reduced to the
fifth by rescaling the point distribution function.

An alternative generating function was formed
from four 1s Slater orbitals of different orbital ex-
ponents, the two inner Rnd t%0 outer orbltRls being
paired as a singlet. In conventional notation, we
have

p(n ) = mls 1s' ls" ls"'i + (1s ls' ls" Is"'(
p 0. p p n p 0.
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TABLE IV. Exponents and coefficients for 30-point
Be wave function (Table III, row 1).

DtÃ, i q ~ZO~

exponents coefficients

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

4. 581 42
3.742 86

11.899 67
5.556 68
2. 903 33
8.387 14
6. 833 85
l.770 29
6. 591 10
8.78968
3.051 10
5.380 44

12.933 40
3.877 12
4. 436 85

25. 357 63
4.729 64
3.608 89

11.066 20
5.740 78
2.746 91
8.023 73
7.093 60
2. 136 17
6.363 17
9.240 18
3.193 10
5.211 20

14.274 44
4.012 30

19.459 02
14.527 44
12.098 27
10.543 53
9.421 13
8. 551 65
7.845 81
7.253 22
6.742 77
6.294 00
5.892 69
5.528 56
5. 19384
4. 882 42
4. 589 33
4.310 27
4.041 27
3.778 37
3.517 17
3.25204
2. 974 50
2. 668 78
2. 293 98
1.54218
2. 204 87
2. 604 53
2. 918 83
3.200 19
3.466 91
3.728 37

0.832 29
0.380 88
0.779 55
1.867 94
0.890 18
0.46276
0.730 44
l.506 43
0. 955 31
0. 51949
0.683 72
1.310 83
1.030 70
0.568 58
0.638 25
1.177 24
1.121 35
0.614 67
0.592 78
1.075 56
1.236 10
0.659 97
0.545 61
0.993 02
1.393 64
0.705 90
0.493 73
0.923 02
1.644 83
0.753 61

l. 096 64
0.778 25
0. 555 36
0.466 00
0.697 72
0.960 68
1.596 62
1.295 08
0.868 94

. 0.632 47
0.314 62
0.621 63
0.855 06
1.260 33
1.676 07
0. 977 84.
0.708 86
0.480 53
0.543 75
0.766 24
1.074 44
2.762 26
1.120 03
0.790 47
0.566 75
0.450 38
0.686 68
0. 94411
l. 529 26
l.332 91

—0.000 192
—0.004 573
—0.001 249
—0.009 068
—0.059 665

0.005 640
0.032 880

—0.054 634
—0.038 468
—0.012 003

0.006 562
—0.037 802

0.009 571
0.221 006

—0.155 871
—0.001 133

0. 220 878
0.069 530
0.046 960

—0.312 922
0.067 344
0.010 428
0.290 338

—0.010 369
—0.248 991
—0.049438

0. 107 157
0.518 701
0.002 485

—0.444 247

is is is" is
p p o. p o. o. p,

(27)
where o., P refer to the spin function, and

~ ~

re-
fers to a determinantal product. The four expon-
ents had been approximately optimized. ' For the
last two calculations, only 19 points were used.

VII. DISCUSSION

One significant distinction between the form of
configuration interaction advocated here and that
conventionally used is that each separate config-
uration is on the same footing as all the others;
there is no distinguishable ground-state configura-
tion. It may not be desirable to order them in
some hierarchy according to the sizes of their
coefficients in the expansion [Eq. (3)] or in terms
of their contribution to a perturbation sum. If
any one of them is extracted from a more or less
complete set, compensating changes run all
through the remaining members. The pseudoran-
dom nature of the configurations is illustrated in
Table IV by the set of orbital exponents which
define the configurations for one particular treat-
ment of Be (each orbital appears in only one con-
figuration). It is not to be expected that the removal
of any one of these configurations would alter the

energy in a dramatically more extreme way than

the removal of any other, if the set were more or
less complete.

There are advantages in this simplicity. %hen
a large set of points is used, for example, it is
not obvious that a basis of Gaussian orbitals would
be any less satisfactory than one of Slater orbitals.
There are no nonlinear operations, and "correla-
tion" is built in from the start.

There is considerable divergence of opinion as
to the accuracy which is possible using diophantine
integration. For these particular very simple and
naive applications, the accuracy which might have
been expected of a diophantine integration scheme'
was indeed attained. However, even if the method
in the context of certain integrations is less ac-
curate than might be expected, there is consider-
ably greater hope for accuracy in the present ap-
plication, since the result is pinned by a varia-
tional upper bound. In a loose sense, one might
visualize the coefficients arising from the varia-
tional minimization of the energy as correspond-
ing to some optimal regression or progressive
procedure. In any case, the approach is not tied
to a particular integration procedure, ' and others
may give advantages in different contexts. The
calculations themselves are intended to be mainly
of pedagogical and exploratory interest. Monte
Carlo oriented techniques only become relatively
efficient for problems of high dimensionality;
four or five dimensions has been quoted as the
break-even point. The technique is likely then to
be of more use for calculations of greater scope.
It should be possible to extend considerably the
number of configurations used without great diffi-
culty.

As convergence towards a radial (or any other)
limit is pursued, the problem of overcompleteness
will become more and more pressing. It is inher-
ent in the randomness with which the configurations
are selected. Techniques other than direct solu-
tion of a matrix eigenvalue equation may have to be
followed.

The most serious difficulty with systems of many
more electrons will probably be the large number
of two-electron integrals which must be calculated;
even though only a very small portion of the total
number implicit in the basis are actually required.
New, perhaps statistical, methods for their gener-
ation and use may be indicated.
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A calculation is made of the radiative electric dipole transition probabilities coupling the
vibrational levels of the 2p& II„and the 2so Z~ electronic states of hydrogen. The radiative
lifetimes for those vibrational levels lying above the ground state are found to be approxi-
mately 100 @sec. The lifetime of the ground vibrational level, decaying by magnetic dipole
and electric quadrupole emissions, is estimated to be 1 msec. Finally, a calculation is
made of the dependence of the radiative lifetimes upon an external electric field.

I. INTRODUCTION

The 2pm II„electronic state of the hydrogen
molecule is especially interesting because the ra-
diative lifetimes for this state are three to four
orders of magnitude longer than the radiative life-
times for neighboring electronic states„The rea-
sons for these long lifetimes are threefold: The low-
est vibrational level of the 3H„state lies lower
than any g (gerade) level of the triplet spectrum
and radiative dipole transitions from this vibra-
tional level are forbidden'; for the higher vibra-
tional levels, dipole transitions can occur to the
~0' Z~ state but here the transition probabilities

are relatively small, in part due to the small ener-
gy differences and in part to large scale cancella-
tions in the Frank-Condon factors.

The lowest vibrational level of the 3H„electronic
state can undergo radiative decay to the SZ„state
through a combination of magnetic dipole and elec-
tric quadrupole emissions and with a lifetime esti-
mated to be approximately 1 msec. Thi.s level is
also susceptible to spontaneous predissociation in-
to two ground-state atoms arising from yerturba-
tions coupling the 2pm II„and 2po Z„states. For
the "allowed predissociations, " induced by rota-
tional-electronic perturbations, 3 the Kronig selec-
tion rules allow for yredissociation of the II„vi-


