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The solution to the nonrelativistic Schrodinger equati. on for a one-electron ion in a general-
ized central-field potential is investigated using high-order perturbation theory. It is shown
that by utilizing a finite expansion of the perturbation-theory wave function in tex'ms of as-
sociated Laguerre polynoInials» pertul'l3ation theory results can be obtained fox' any n, L state
to arbitrarily high order. Results for the wave function and energy are explicitly given to
third and fourth order, respectively. It is also shown that by reexpressing the high-order
perturbation-theory energy expansion as a series of rational fractions (Pads approxixnants),
accurate eigenvalues are obtained, even for large values of the expansion parameter.

I. INTRODUCTION

In this work we considex a one-electron ion in a
generalized central-field potential of the form

Letting $ = Zr and expanding the Z{Xy) term, Eq.
(3) becomes

and 80= 1. Thex'efol6, we Rre considering a, clRss
of problems including the screened Coulomb poten-
tial, a potential of the form —Z(e '" costs)/r, etc.
The method we utilize is an expansion of the per-
turbation wave function in each order in terms of
associated Laguerre polynomials. The advantage
of the present work over the author's previous
work on the screened Coulomb potential' is that the
wave function and energy in each order can be
written down explicitly for any arbitrary n, $ state
in one calculation. %'6 are also considering here
a wider class of potentials whose physical impor-
tance has been widely reviewed in the literature. l '

%'6 obtain explicit results for the fourth-order
energy in terms of the 8&'s. %e also show that by
resuming the high-order perturbation theory as
Pade approximants, rapid convergence is obtained
to Rccux'Rte numerically lntegx'Rted elgenvRlue x'6-

suits.

II. HIGH-ORDER PERTURBATION THEORY

The x'RdlRl SchrOdinger equRtlon fox' RQ electx'on
in a generalized potential of form Eq. (l) is

&d'y(~) l dy(r) Z („) ( )
l f(f+i)

2 dt' 'r dt'Y '2

where & = &j&. We now expand 4 and Z in pertur-
bation-theory form

E, =Kz,.e,
i "0

Substituting Eqs. (5) and (6) into Eq. (4) and set-
ting the coefficient of &~ equal to zero we obtain

l II l I l l l(l+ l)
+ 2 +k EG+2 $ $ 0 2

= & (-a, .g"- -'+z, „)e„.
Letting g = (2n)y, we look for a solution to Eq. (8)
of the form

@,(y) = e ""y'u, (y).

Substituting Eq, (9) into Eq. (8), we obtain, the in-
homogeneous Laguerre dNerential equation in u,
Rs

I/ I
ywy + (&+ l —y)Qy. + gQp
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k-1
= K (B,.n(any)"

where the prime indicates differentiation with re-
spect to y and

&=2l+1, q=n —l- 1.

The homogeneous solution of Eq. (10) is the as-
sociated Laguerre polynomial

that

j+(k-w)
y' I,;(y) = 5 r(i, j,k- w)L,'(y),

i = j-(k-w)
(14)

whereby making use of the normalization proper-
ties of the Laguerre polynomials, one readily ob-
tains

I'(i, j, k- m) =(i!/[(i +n)!]')

uo(y) =L (y).

Let us note that I,,'(y) satisfies the relation

yI.; (y) = —(n+j )3L, , +(n+2j+1) L,
—[(j + 1)/(n+ j+1)]I.,",

(i2)

(13)

xJ e 'y" "L((y)L,'(y) dy.

The above integral has been evaluated4 to obtain

r(i, j, k —su) =(i![(k —ur)!] /(i+ n)! ] S(i,j, k —u),
(i6)

Successive applications of this formula indicate where

(. .
) ( )g+, (g+ n)!

y [n+(k- K)+ v]!
(i + n)!, v! (i —v)! (j —v)! [v+ (k —u) —i ]![v+ (k —u) —j ]! '

j+(k-w)
E I'(i, j, k —w)L; ——', noE„

i= j- (k-w)

x+A„, 2, r(i, j, I)L,'], (IS)

where A0 j ——5j, . Working out a few low-order re-
sults leads one to a sth-order perturbation wave
function for the (n, l) or (q, n) state which is a fi-
nite sum of Laguerre polynomials

q+S

u, = ~5 A, qLq.
j q

Therefore, our final equation for determining the

A, j 's and the
E
j's is obtained by including the

proper limits on the j summations:

where v,„ is the larger of i- (k- w) or j —(k —m),
and o,„is the smaller of i or j. A tabulation of
various values of I'(i, j, k- w) appears in the Ap-
pendix.

Let us now look for the solution, in any order 0,
as a sum of associated Laguerre polynomials of the
form

u, =E', A, ,I, (i7)

Since I
q

satisfies the homogeneous part of Eq. (10)
with q replaced by j, we obtain

k-2

5 (q-f)A„,L, = & [B, „n(-,'n)" ZA. ,,
j w=0 j

q+k k-1 q+ w5 (q-i)A, , , L, = Z 5' B, .n(-'.n)'
w=0 j=q-w

j + (k-w)

i = j (k-w)

F ( q- )iA, , L,
= ,'n'(B, -E, ) & r(i, q, 1)I, ,

i =q-1 i =q-1

(2i)

from which we obtain

E1=B1 (22)

in order that the coefficient of the I., term on
right-hand side of Eq. (21) is zero. It then follows
that A. ..=A, ,„=O. We choose A, , =0 also.
The above result occurs since the first-order per-
turbation is a constant B,. For second order
(k = 2), we set the coefficient of the I,, term equal
to zero first to obtain the energy E2 as

Em=oBan, ' ' = —,
' B2[3n —l(l+ 1)]. (23)

We obtain the coefficients of the Laguerre polynom-
ials entering the second-order wave function as

A2„o = &Ban'r(q —2, q, 2) =-', Ban'(n+ l) (l+n —1)',

(24a)

+1

x I'(i, j, k —ur) L&' —n( —,n)E, +~ I"(i,j, 1)L; A
i =j-1

(20)

We now proceed to solve Eq. (20) through suc-
cessive orders. For k= 1 we obtain
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AL, , =-,'Bgn ~I'(q —), q, m) — ' ' )'(q-l, q, ))
sj' r{q,q, 2}

F Q') Q') 1

=--,'a,n'(n+ I)' [n(n- 2)+ I(I- 1)], (24b)

&s„s=-@lan ll(q+), q, R)- ' ' rtq+), e, 1)
s

t' r{q,q, 2)

=-,'a,n' [n(n+2)+l{f+ 1)],
,n+ l+ 1

(24c)

(25)

, (n- I+ 1)(n- I)
Am /+2 8apn r(q+ 2$ q) 2) 8amn

( I 2)( I 1)

(24d)

where we have again chosen the coefficient of the
homogeneous term equal to zero.

Proceeding in higher order in the same way, one
obtains in third order

Smith. Calculations through tenth order have been
obtained for the ground state and to fifth order for
states with /=n- 1 and the 2S state by the present
authors. ' For the screened Coulomb potential,
using Eq. (29) in Eq. (28), Z, is observed to go
over properly to the authors's earlier results for
the states above.

It is clear that Eq. (20) may be utilized to obtain
higher-order perturbation-theory results in a
straightforward way for any arbitrary state and
central-field potential of the assumed analytic
form.

IH. PADE APPROXIMANTS

The usefulness of high-order perturbation-theory
results can be markedly extended by reexpressing
the original perturbation-theory expansion (to kth
order) as a series of rational fractions, Pade ap-
proximants, of the form

A. ..=-', a,n(-', n}'r(q —s, q, 3),

X. ..=-,'a, n(-', n)'r(q-s, q, S),

A,„,=a, n(-,'n)'(r(q- 1, q, 3)

—r(q, q, 3)/r(q, q, 1) r(q- l, q, 1))

(28a)

(28b)

(28c)

Z=& Z, "=a.")(.)=La, "y& 5, ", (SO}
i=0 &=0 l=0

subject to the condition that

(31)

Equating coefficients in Eq. (30), we find that

A, ,+, =- a, n{-, n)

x I'@+1,q, 3 — ' ' I q-1, q, 1
r(q, q, 3)
I'q, q, 1

(2M)

{28e)A, ,„=——,
' a,n(-', n)'r(q+ 2, q, 3),

A, ,„=--', a,n(-,'n)'r(q+ 3, q, 3).

Using the appropria, te values of F in the Appendix,
the third-order energy correction [Eq. (25)] be-
comes

Z, =-.'n'a, [5 '-Sf(I+1)+1].

-(n- f)(n+ I+ 1)[n(n+ 2)+ f(f+ I)]']). (28)

Equation (28) is a new result for a general n, I
state. Correct results for an arbitrary n, l state
for the problem of the screened Coulomb potential
where

have been derived correctly through third order by

The final expression for the fourth-order energy is

Z, = a,(-,'n'(SS '(n'- 1) —30n'(I+ 2)(f- I)

+Sf(I+2)(f+ I)(f- I)$)+a',(~~n'((n- I- 1)(n- I-2)
x(n+ I)(n+ I- I) —(n- I+ 1)(n- f)(n+ I+ 2)(n+ I+ I)]

+~n((n+ l)(n —l- 1)[n(n —2)+ f(I+ 1)]3

~~ b&Z, ~
= as (s =0, 1, , k),

/=0

where a, =0 for 8&m, and 5;=0 for j&n. The a' s
and k's can be uniquely determined from Eq. (32)
once we choose

The utilization of Pade approximants has been
shown to be effective in greatly accelerating the
convergence of many slowly convergent sequences
and in inducing convergence in many divergent
sequences.

We will now apply this technique to our previous-
ly calculated resultsv for the ground-state energy
of an electron in a screened Coulomb potential to
tenth order in perturbation theory. An analysis of
that expansion showed it to be divergent. We were,
however, able to show very good agreement with
numerical integration calculations for e & 0.4.
Note that for the original perturbation series, an
e = 0. 8956 led to a fifth-order correction which was
larger than the fourth-order correction. There-
fore, the series was terminated after four terms.
This gave a value of —2 times the energy equal to
—0. 3064, whereas the correct result is 0. 0501.
Now by reexpressing our entire tenth-order per-
turbation series as an R,",0'approximant (see Table
I}, we find agreement up to the third significant
figure with numerical integration results. Thus,
obtaining high-order results and utilizing Pade-
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TABLE I. Tabulation of diagonal terms R„~~& of the Pads table in order of increasing k, the order of perturbation
theory.

R(2)
11 a/4& R44'(8) --, ENT.~Z --, Zv„b/Z '

0.9802
0.8141
0.6536
0.6511
0.5818
0.5153
0.3968
0.2962
0.2123
0, 1437
0.1305
0.0895
0.0503
0.0488
0.0210

.0. 9802
0.8140
0.6522
0.6496
0.5789
0.5102
0.3846
0.2727
0.1724
0.0820
0.0631
0.0000

—0.0715
—0.0746
—0.1429

0.9802
0.8142
0.6471
0.6447
0.5758
0.5970
0.3810
0.2783
0.1671
0.0758
0.0568

—0.0070
—0.0793
—0.0825
—0.1515

0.9802
0.8141
0.6536
0.6511
0.5819
0.5153
0.3970
0.2972
0.2148
0.1492
0.1370
0.1006
0.0723
0.0692
0.0561

0.9802
0.8141
0.6536
0.6511
0.5818
0.5153
0.3968
0.2963
0.2124
0.1441
0.1309
0.0903
0.0517
0.0503
0.0235

0.9801
0.8141
0.6536
0.6510*
0.5818 0.5818

0.5153
0.3968
0.2962
0.2123
0.1437

0.1304*
0.0894

0.0206

0.0100 ~ ~

0.1000 ~ ~

0.2000 ~ 0

0.2017 ~ ~

0.2500
0.3000 ~ 0, ~

0.4000 ~ 0 0

0.5000 0.2962
0.6000 4 ~ ~

0.7000 ~ e ~

0.7222 ~ ~

0.8000 ~ ~ 0

0.8956 0.0501~ ~ ~

0.9000 0 ~ 0 ~ ~

1.0000 ~ ~

"EN~" refers to the result of numerical integrations of Harwood (Ref. 10) as well as those of Rouse(Ref. 9)
indicated by * .

""Ev~"refers to the variational results of Harris (Ref. 11).

approximant procedures leads to eigenvalues in
close agreement with the numerically integrated
ones, even for divergent series and for nonpertur-
bative values of e(e -1).

Typically the R"„' results comprise a Pade
table. Generally superior accuracy is obtained by
considering the diagonal elements of the table
—that is, those entries for whichthe degrees of the
polynomials in both the numerator and the denomi-
nator are the same. Thus, in our table, we have
utilized second-, fourth-, sixth-, eighth-, and
tenth-order perturbation-theory results to obtain
the diagonal approximant sequence Rj&', R,'z', R33',
R' ' and R" ' It is observed that the R,'~ ' re-
sults agree to four figures with numerical ' and
many-parameter variational calculations" for
& ~ 0. 7. Even for c = 1, agreement to two signifi-
cant figures is found utilizing the tenth-order re-
sult.
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APPENDIX: EVALUATION OF 1 (i, j, k —~)

The tabulation of various values of I' requires
evaluation of Eq. (16), namely

r(i, j, k u) = (i![(k —w)! ] /-(i + n) .jS(i,j, k —u),

(Al)

where

S (i,j, k —w) = S(j, i, k —w),

it then follows from Eq. (Al) that

(A3)

r(j, i, k-w)= —.
'

.
' r(i, j, k-w). (A4)

jt (i+n)! '
i! (j+ n)!

This expression, in addition to giving I"(j, i, k —w)

in terms of I'(i, j, k —w), is also useful for obtain-
ingI'(j+q, j, k —w) asafunctionof I'(j —q, j, k —w)

(q =positive integer). In this regard, letting i=j —q,
(A4) becomes

(j q+ n)!—
r(J, J —q, k —w)=(. )i (. )i

XI'(j —q, j, k —w). (A5)

Moreover, replacing j by j+ q reduces Eq. (A5) to

(j+q)! (j+ n)!I (j+q, j, k- w) = j t (j+ &+@)

X[r(j —q, j, k —u), ,„]. (A6)

S(i,j, k w) = (- 1)"—' .. .. (j+ n)!

(n+(k- w)+ aj!
, , a!(i - a)!(j a)!(a+-(k —w) —i)!(a+ (k - w)'- j] .

(A2)

Since S(i,j, k- w) obeys a reciprocity relation
with respect to i and j (including a,„and a,„)
that is
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Thus, Eq. (Al) together with Eqs. (A4) and (A6)
facilitate generating all nonvanishing I"s of in-
terest.

Inspection of Eq. (14) shows that, for a given j
and (k- w), i varies from j—(k —w) to j+ (k —w)

indicating that there are 2(k —w) + 1 nonvanishing
r's. For example, with (0 —go) =1, i ranges from
) —1 to j+ 1. It then follows by direct application
of Eqs. (Al) and (A6) that

(A7a)

(A7b)

(A7c)

all other r(i, j, 1) being zero. These coefficients
are. found to be in complete agreement with those of
the recursive relation in Eq. (13). Since o.'=2(+ 1
and j = n —I —1, Eq. (A7) can be written in terms
of n» l as

r(j+ 1,j, 2) = —2(n —I)(an+ I)/(n+ I+ 1), (Agd)

r(j+2, j, 2) =(s- I)(n- I+ I)/(n+ I+ 2)(n+ I+ I);

(A9e)

r(j-s, j, s) =-(s+I)'(~. I- I)3(„I 2}3

r(j —2 j, s) =6(~+~)'(~+I I)-'(&- 1},
r(j- l, j, s) =3(n+I)'((&

+ 3(& —I - 2) (n+ I + 1) + (n+ I+ 2) (n+ I+ I)], (AIOc)

I (j,j, 3) = 4n[S '- SI(I+ 1) + 1)], (AIOd)

I"(j+ l,j, 3) =- [3(n- I)/(n+ I+ l)](n- I- 1)

x(s- I-2)+3(n- I- I)(n+I+2)

+ (n+ I+ 3)(n+ I+ 2) ],

r(j- i, j, I) =-(I+n)'

r(j, j, 1) =an,

r(j+I, j, l)=-(n I)/(n-I+I).

(ASa)

(Aab)

(Aac)

r(j + a~i ~ 3}= 6(n —I+ 1)(n —I)(s+ I)/(n+ I+ 2)(n+ I+ I),

r(j+s,j, s) =-(n-(+2)(n-I+ I)(n- I)

Various other 1"'s needed to complete the fourth-
order results are» for O' —'N= 2»

x,[(a+I+ 3)(s+ I+ 2)(s+ I+1)]-';

(Alog)

r(j- 2, j, a) =(a+I)'(~+I- 1}',

r(j- l, j, 2) =- 2(n+I)'(as- I),

r(j, j, a) =2[3m'- I(I+ 1)],

(Aoa)

(Aob)

(Aec)

and for 0- re=4,

r(j, j, 4) = an[SS '(n'- I}- SOn'(I+ 2)

x(I- 1) + 3(l+ 2)(I+ l)l(I 1)]. (All)
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