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A recently developed method to study ion-motion effects on plasma line broadening in the
dipole approximation is extended to the general interaction. Coupling-constant and binary-
collision expansions are obtained for the "width and shift" operator. This operator is investi-
gated for a model system to show the limits of the static-ion approximation.

I. INTRODUCTION

The spectral line shapes for atoms emitting
radiation in a plasma are determined by the in-
teraction of the atom with all the components of
the plasma. ' For a large portion of the line pro-
file, the relatively heavy ions may be treated as
static and their effects accounted for by the intro-
duction of an ion microfield. ' It was shown re-
cently that the ion microfield function can be in-
troduced formally exactly, thus explicitly ac-
counting for the large static-field contributions
without the usual static-ion assumptions. The
dynamics of the perturbers in interaction with
the atom was treated in a collisional approxima-
tion by second-order perturbation theory. The
resulting expression for the line shape is for-
mally similar to earlier work, ' with generaliza-
tion to include ion motion. Another important
advantage is that ion-electron interactions need
not be treated in an indirect manner.

Here, this method of investigating the role of
ion dynamics will be continued and extended. Ref-
erence 3 was limited to the case of dipole inter-

action between the atom and perturber. This is
extended in Sec. II to the general case in which
all charges interact through a Coulomb potential,
The width and shift operator is determined to
second order in the plasma-atom interaction.
Since the Coulomb interaction is large for small
distances this result cannot be correct for close,
or strong collisions. To account for these, a
binary-collision expansion of the width and shift
operator is given in Sec. III. The first term in
the expansion is essentially the impact approxima-
tion' including ion-motion effects. In the last
section, a random-phase approximation is used to
determine how close to the line center a static-
ion theory should be used. The region in which
ion motion is important is found to be an order of
magnitude larger than usually estimated. However,
it is indicated that this result is not realistic
due to an unjustified extension of the electron
strong-collision cutoff procedure to the ions. The
cutoff for the electrons has been studied by Shen
and Cooper by an evaluation of the atom-electron
t matrix. The starting point for a corresponding
study of the ions is provided by the results of
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The essential details of the line shape are con-
tained in the function f(w), '

I(w) =Re[(m) ' J dte™Trp,p~d ~ d(t)], (2. 1)

where Tr indicates a trace over a complete set of
states for the atom and plasma, p, and p~ are,
respectively, density matrices for the atom and
plasma, and B(t) is the Heisenberg operator,
ct(t) =e' 'Be '"'(in units such that 8=1). Here,
8 is the atomic dipole operator and the Hamil-
tonian H is of the form

II.+II&+ (2. 2)

H, and H~ are the free-atom and plasma Hamil-
tonians, respectively, and Hl is their interaction
(a coupling constant X is introduced for later use).
The Liouville operator for the system may be de-
fined by

Lf =i[H,f] (2. 6)

where f is an arbitrary operator on the Hilbert
space of the system. It is readily shown that(2. 1)
may be written

Z(w) = —(w) 'ImTr p, p~8 R(w)B,

R(w) = (w —iL) ' (2. 4)

Sec. III. Nevertheless, it is expected that the
qualitative aspects of this model are correct.

An important investigation of the ion dynamics
has been carried out by Kogan, who considered
an ideal gas of electrons and ions in dipole (and
quadrupole) interaction with the atom. First-
order corrections to the static microfield contri-
bution, which for his model is the Holtzmark pro-
file, were calculated. Since his calculation, it
has become clear that correlations due to inter-
actions have an important effect on the micro-
field itself, as well as the dynamics. Thus, the
model considered by Kogan is not realistic, al-
though it serves well to describe the qualitative
aspects of the dynamics with respect to the Holts-
mark profile, and reconsideration of Kogan's
work with more careful numerical evaluation
could be instructive. The result of Sec. III be-
low is exact for the model considered by Kogan.
The most complete realistic description of the
entire line profile has been given recently by
Smith, Cooper, and tidal. ' They assume static
ions, but claim to describe the entire line shape
outside the region of breakdown of this assump-
tion. It is shown below that the result of Sec. III
obtained here reduces to their "unified line-shape
approximation" if contributions from ion motion
are neglected. Contact with the impact and one-
electron theories is thus made through Ref. 10.

II. GENERAL THEORY

R(w) is the resolvent operator for L .The trace
in (2. 4) may be performed in two stages by choos-
ing the complete set of states to be formed from
the direct product of sets complete in the atomic
and plasma subsystems. Since p~ commutes with
ct, the line-shape function may be written

I(w ) = —(v) ' Im Tr p, d ' (R (w) ) d (2. 6)

where the brackets ( ) indicate an ensemble aver-
age over the plasma

(f) = Tr p~f

Equation (2. 6) may be solved algebraically for
M(w), using familiar properties of the resolvent
operator. A straightforward expansion to second
order in the coupling constant X leads to resultsob-
tained previously in this way for electron broadening
with the obvious changes to include corresponding
ion terms. The above is essentially the method
proposed by Fano. Expansion in parameters
other than the coupling constant are possible (such
as considered in Sec. III).

The principal interest here will be in describing
the line shape for frequencies large enough for
static-ion effects to dominate. One of the pur-
poses here is to provide a formalism capable of
defining this region more accurately. In prin-
ciple, (2. 6) may be used over the entire line
profile. However, the complexity of M(w) re-
stricts its practicality to cases for which finite-
order perturbation theory in some parameter is
meaningful. In particular, it is possible to show
the static-ion contributions to M(w) may not be
obtained by finite-order perturbation theory.
Therefore, a better starting point is the static-
ion approximation, in which the ions are assumed
not to move at all and their static-field contri-
bution is calculated from an average ion micro-
field function. The electrons are then treated in
a manner corresponding to (2. 6) for the electrons
alone. A principal result of Ref. 3 was to show
that it is possible to introduce the static-ion
microfield function without the static-ion assump-

The line shape can therefore be calculatedfrom
the plasma-averaged resolvent. Before proceed-
ing to the case of interest here we note for future
reference that inside the ion plasma frequency,
i. e. , very close to the line center, there is no
large static contribution to (R(w) ) since these
frequencies correspond to times sufficiently large
for all charges to move. In this region, it is use-
ful to define an operator M(w) by

(R(w)) =[w —iL, iM(w)] —', Lg=i [II, ,f] . (2. 6)
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tions. Therefore, in this formulation, the sup-
posed dominant static-ion contribution is ac-
counted for while including whatever ion motion
still contributes. This is then the proper starting
point for finite-order perturbation approximations
when static-ion effects are important.

Reference 3 was restricted to the case in which
the atom and plasma interact via a dipole poten-
tial. This interaction is adequate only for perturb-
ers that remain sufficiently far from the atom.
In the following, the results of Ref. 3 are extended
to the general interaction in which the perturbers
interact with each atomic component by means of
a Coulomb potential. Since the ion field now does
not occur in the Hamiltonian, the introduction of
an average ion microfield distribution function
must be considered somewhat artificial. Never-
theless, it can be seen that the dominant static
contribution comes from those ions sufficiently
far from the atom as to allow the dipole approxi-
mation. Indeed, inside the region of breakdown
of the dipole approximation even slight motion
changes the value of the interaction potential sig-
nificantly, whereas the same motion for more
distant ions yields little change. This indicates
that the ion microfield function gives the dominant
static contribution, even when the interaction is
not dipole. These comments are not made to
justify any approximation but rather to motivate
the formulation below which follows as an identity
from (2. 1).

Corresponding to the decomposition of the
Hamiltonian (2. 2) the Liouville operator is writ-
ten

N/2

L„(E,)f =i I.E d, f], E;= Z )q;I

i.e. , E& is the electric field due to the ions. De-
fine an operator 5c in the atomic subsystem (inde-
pendent of plasma coordinates) by

(R(n))) =([ie —iL.-iXL;, (E;) —i X(~)] ) . (2. 9)

It is important to realize that (2. 9) is a definition
of X, and although the dipole interaction term
L„(E;)appears on the right-hand side, no approx-
imation is implied. For this reason, as mentioned
above, the introduction of L„(E;)is artificial in
the sense that its contribution to the average in
(2. 9) must be compensated for by terms in K. The
argument of K(m) anticipates the fact that it depends
on zu.

The reason for such a peculiar definition is, as
shown by the corresponding case considered in
Ref. 3, that the average microfield function may
be introduced without assumption,

([u —iL, —iXL..(E;)—iX(u)] ')
= f d'h (5 (g —E;) [n iL. -iXL;,(-E;) —iX (w)]

' )

= f d~g (5 (g —E;) [w —iL, —ixL;, (g) —inc(su)] ' )
= f d'g (5(g -E, ) ) [u iL. i~L-„(8-) iX(n)]-'-

or f(se) = f d~g Q (8)d(u, g )

e(~) = (5(a —E;) ), (2. 10)

Z(gg, g) =(v) 'Im Trp, d [nr —iL,
a

—i&L, (&) -& (~)]
L =L,+Lp+ XLq (2. 7)

N/2 1 1

q. ; i ~~, -q

N/2 1 1V„=e
l~, —q„ l I&„-q, i

(2. 9)

The quantities x„and r, are the positions of the
atomic nucleus and atomic electron; q; and q,
denote the positions of the nth ion and electron,
respectively. The system has been chosen to be
charge neutral. Equation (2. 5) shows the ma. in

task is to calculate (R(w)). This will be done

in a manner paralleling Ref. 3, as follows. I et
L;,(E) be the I iouville operator for the atom-ion
interaction if the dipole approximation were used,

in an obvious notation. The interaction operator
L~ may be further written

L I ia+ ea r

corresponding to the ion-atom and electron-atom
interactions

The important step above is the replacement of
L „(E;) by L „(8) after the 5 function is introduced,
which is possible only if E; commutes with every-
thing in the denominator. This latter point is mo-
tivation for definition (2. 9). We emphasize that
(2. 10) is an exact consequence of (2. 1) in which

no dipole interaction for any of the perturbers is
implied.

The operator K (go) must be determined from
its definition, (2. 9). This is not practically pos-
sible in all generality. However, since the large
static-ion contributions have already been summed

in the microfield function, we may expect finite-
order perturbation theory to be meaningful for
X(w) [whereas it is not for M(u) in (2. 6)]. If it
is assumed that the dynamical effect of the ions
and electrons on the atom is weak, R(nr) may be
expanded in the coupling constant X. For close
encounters between perturbers and the atom this
assumption is not valid, and the case in which
contributions from such collisions are important
is treated in Sec. III. A straightforward
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X (w) = l). [ ( L,KL, ) —( L „(E;) K,L „(E;) ) ]
(2. 11)

K= (w —iL, —iL&), K, = (w —iL, )

This differs from Eq. (2. 22) of Ref. 3 in that LI
here is defined in terms of the exact interaction
(2. 8) whereas the other holds only in the dipole
approximation. Following the analysis of Ref. 3
it is found that the matrix representation of X (in
terms of eigenvectors of H, ) is

(p I&f I p) = P X „„e„.f„.„r
VI

where

X,„,, „(w)

R (E (
2„.„.. (kre„„.) ——.d, „)d...

2

+ ~ pp~, vv~ ~Kv~j 3 d„„.~ dvv As'„,
2V' R j.

l(. ~ 5rrre G)4)ee ~ )eee (ke (Awrrrr 4 ) 3 d rev'' L

&E ~ &
2

Ad „r ~„+5 d &
~ G „r „r ~ „.r „(- dkr W „e r

& )
SV vv"

2(E.&
dv'v" ' dv"v (2. 12)

Here b, w„„is the difference w —(8, —fI „) and

@„,~ „are eigenvalues of H, . The functions
G (w) and G (w) are defined by

G",„„„(w)= [G'. . ...(»)]*,

expansion of the left- and right-hand sides of (2. 9)
determines ~(w) to second order-in X as

The atomic wave functions in (2. 14) are in the
relative coordinate system. Expansion of the
bracketed term in (2. 14) to lowest nonvanishing
order in k yields, in conjunction with (2. 13), the
dipole approximation results of Ref. 3. Further
investigation of these results is provided in Sec.
IV.

III. BINARY-COLLISION EXPANSION

R(w) =K+iKI iR (3. 1)

where K is defined following (2. 11). Define a, T
operator by

The expression for R (w) given by (2. 11) is
essentially a Born approximation in the atom-
perturber scattering. This description breaks
down for close collisions and to account for these,
an expansion in two-body t matrices will be ob-
tained. These two-body t matrices describe the
exact scattering of a perturber and atom in the
presence of all other perturbers. Collisions in
which more than one perturber is involved with
the atom are accounted for by terms containing
products of two-body t matrices. If the system
being considered were a simple one-component
gas interacting by means of short-ranged forces,
the two particle t matrices would be proportional
to the scattering length. For particles without
internal degrees of freedom this leads to an ex-
pansion in the density. Here, the interaction is
long ranged and one of the particles involved in
the scattering has internal structure, and this
interpretation of the binary-collision expansion
must be modified as discussed below.

The operator ~ (w) must again be determined
from its definition [E(l. (2. 9)]. The left-hand side
of (2. 9) is rewritten in a convenient form by ob-
serving that the resolvent operator satisfies

00
z

+ —I'
7r

co

, n(~')

TK=-iLrR

Use of (3. 2) in (3. 1) shows

T =-iLr+LrXT

Then, in terms of T, we obtain

(R(w)) =(K(w)) —(K(w) T(w) K(w))

(3. 2)

(3.3)

sink tR I sink IR'I
la I tz'l (2. 14)

dk rmd(k, re') a (k)] (4 (4)
Ih(k (o) I'

e(k, w) is the exact dielectric constant for the two-
component plasma, ' n (w) = (e ~"—1), a.nd

d„, , , (k)=de ffd Rd re'

&&(j)*(R)(t). (R) (t)*, (R ) 4.(R )
JR —8 j

(R(w)) =-K, (w) —K, (w)(T(w)) K, (w) . (3.4)

Use has been made of the fact that (L~K) = Q.
Thus, (R(w)) may be determined from ( T(w)).
The two-body operators are -defined by

t~ = —iL~+iL~Kt~ (3. 5)

where L,f=i [V, f), V is the interaction poten-
tial between the nth perturber and the atom. Since
one of the particles in the two-body scatterings
considered is always the atom, the single. param-
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eter n is used to label the perturber involved.
The T operator m3y be expressed in terms of the
tn as follows': Let t be defined by

tn = —iL + TKiL

so T(w)= Z t (u) (s. 8)

But

—t + t K t„= (TK —1)iL, (Kt, —1) = (TK- 1) t

Ol
t~ = t~ —(T —t„)Kt~

t =t —2 t8Kt
/An

(3. 7)

Equations (3.6) and (3. '7) provide the desired ex-
pansion of T in t . The labels & may be ordered
to form two sets such that for» &N, refers to
electrons and for & - 2N refers to ions. There-
fore, t is an ion-atom or electron-atom t matrix,
depending on Q. However, t mixes the two kinds
beyond the first term. This mixing comes about
because general m-body collisions, m = 3, 4. .. ,
N, are being expanded in terms of two-body col-
lisions. Hence, e. g. , a three-body collision in-
volving an ion, electron, and atom will require
an ion-atom and an electron-atom t matrix.

The above allows expansion of the left side of
(2. 9) in two-body operators. In order to do so for the
right-hand side, we must express L„(E,) =P, L
x(E,), iu terms of the corresponding t matrix:

in (3. 10) averaged over an equilibrium ensemble.
This allows the potentials to become "dressed, "
or shielded, so that in effect they are finite ranged.
Further, the scattering of interest to line broad-
ening is predominantly that for which the atom is
not ionized, so that although there is internal
structure, the atomic electron remains in asmall
bounded region about the nucleus. Expandingleft-
and right-hand sides of (3. 10) to first order in a
gives X (w) to this order;

N N 2

X(u)=i Z (t,(w)) —i (t,'(w))
n- i

(s. ii)

Since particles of the same species are indistin-
guishable (3. 11) may be written

X (w) = —,
'

iiV f (t, (w) ) +( [t; (w) —t (w)]) ] . (3. 12)

Here, t, (w) and t;(w) represent, respectively, the
single-electron-atom t matrix and the single-
ion-atom t matrix. For particles without internal
degrees of freedom and short-ranged forces t
-1/0, A=volume. Since the t matrices in (3. 12)
are averaged, it may be expected that they repre-
sent effective short- ranged forces, as discussed
above. Therefore, (3. 12) results from an expan-
sion analogous to a density expansion [strictly
speaking, (3. 12) is not the leading term in a den-
sity expansion, since the statistical factor p~, and
therefore (tJ, is density dependent] . Finally,
the impact limit' is given by

t =iL(E )+iL(E )K, t„ (3.8)
x(o) = —,'er((t, (o))+([t, (o) —t,'(o) ])],(3. is)

This t matrix differs from (3. 5) for n ~ 2N in

the replacement of the exact two-particle L by
the dipole approximation L(E„), [L&,(E) =Z
x(E,)], and the replacement of K by K . Equa-
tion (3.8) may be solved for L(E„) to give

tLt. ,(E) =- f g tl. (K, t„')' .
n-I P-0

(s. 9)

Equations (3.4), (3.6), (3. 7), and (3.9) allow the
defining equation for X(w), (2. 9), to be written in

the desired form

K.+K. (T) K.

N 3

=([u -iL, + Z 't( Kt.')'- tX( w)]-'). (3. 10)
n- i p-0

Suppose now that a parameter a is formally
introduced by t -at, t ' —at ', This corresponds
in the simple case mentioned above to consid-.

ering the t matrix to be proportional to a scat-
tering length. This formal procedure is still
meaningful here in the following sense. For long-

range forces, the expansion (3. 7) almost certainly
does not converge. However, this expansion occurs

[w —iL, iL„(tT) —i X(w—) ]C(w) =1

or, in terms of the inversetransform ofC(w),

8

,—,c(t)+L,c(t)

t
dt' x(t-t') c(t'), c(o) =1,

0

Lo L,+L;,(tt)——

Introducing an "interaction representation" by
C(t) =e O'E(t) e 0', we get

t—F(t) = —
J

dt'X (t, t )F(t )

X, (t, t') =e'o'X(t-t')e-"" .
(s. 14)

which is the usual result with corrections to the
dipole approximation.

The more general expression (3. 12) is the de-
sired result. This result is closely related to the
"unified line-shape approximation" of Smith,
Cooper, and Vidal. To make this relationship
clear we may write, from (2. 10),

Z(w, g) = —(m) Im Tr p, d (C(w)Z),
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This equation is formally the same as Eq. (25) of
Ref. 10. It is exact, although not very practical.
If the second term in (3. 12), due to ion motion, is
neglected Eq. (3. 14) becomes

9—F(t)
8$

= —2N dt (L„(t)U(t, t ) L,2 (t ') ) F(t ')
0

(t) e (Lp+ L2)tL1 -(Lp+ L&)t
ea «e

(3. 15)

U(t, t ) = T exp — dt "L„(t')
0

Here, I „is the interaction operator for one elec-
tron with the atom. This result is very close to
the unified-line shape approximation, and indeed
is the same as Eq. (50) of Ref. 10 under their
assumptions of classical path and statistically
independent quasiparticles. Thus, aside from
the ion-motion terms in (3. 12), our binary-c»-
lision result agrees with that of Ref. 10. The
latter demonstrates that this result encompasses
both the usual impact theory and the one-electron
wing theory. It is felt that the binary-collision
expansion technique clarifies some of the assump-
tion involved in the impact approximation, first
of all by providing a formal expansion to generate
corrections. In addition, the assumption that
collisions do not overlap in time is seen here to
be related to the requirement of effective short-
ranged forces, whichis possible because t always
occurs in an average over the plasma.

Finally, connection with the work of Kogan is
possible. If one considers noninteracting perturb-
ers, and classical dynamics, the result (3. 12)
is essentially exact. This may be seen by observ-
ing from (3.7) that corrections to the density ex-
pansion leading to (3. 12) involve terms like

tion is dominated by the ion-motion effects. For
these frequencies one must expect the perturba-
tion expansions of Secs. II andri III to break
down as indicated by a sharp increase in the R (w)
operator due to ion motion. The usual static-ion
theories are unable to demonstrate this breakdown
of the region of utility of the microfield function
since the mechanism for ion motion is neglected
from the outset. In this section the operator X (w)
will be investigated further to show how this break-
down of the static-ion approximation is signaled.
The form for X(w) obtained in Sec. II is given as
a, linear function of G",„„.„.(w) defined by Eqs.
(2. 13) and (2. 14). The plasma dynamics are con-
tained in the dielectric constant e (k, w) whose form
is not yet calculable in general. Here, we shall
evaluate G „„„... (w) in the random-phase approxi-
mation, for which the dielectric constant is known.
In addition, a strong collision cutoff will be intro-
duced for both ions and electrons, to make reason-
able the use of the Born approximation of Sec. II.
While this model has been justified to some extent
for electron broadening, no corresponding study
has been made to indicate its relevance when ions
are included as well. We therefore emphasize
that the results obtained here are not intended to
be interpreted as quantitatively realistic but rath-
er as a model which should be qualitatively ac-
curate, and instructive as to the nature of the ion
contribution.

The dielectric constant in the random-phase
approximation for a two-component, nondegen-
erate plasma with uniform temperature is

e (k, w) =1+(-,' pwca, )'(1/2x') [p (x+a/x)

+ Q (x —a/x)+ &t& (x/p. +att/x) + P (x/p, —an't/x)

+t'tt' e '(e ' —1) [I (x)+I (w jp, ) ] ]

[(tp«. ) -(tp) &.(t.) ]. 2, tt)(x)=e" f dte', f(x)=e (4. 1)

which vanishes under the above assumptions.
Thus, (3. 12) is an exact result for the model
considered by Kogan, although in quite a differ-
ent form.

IV. RANDOM-PHASE APPROXIMATION

Sections II and III have been concerned with
the descriptionof the line shape for values of the
frequency separation from the line center for which
the dominant influence of the ions is a static-field
effect. This was done by summing the important
static-ion contributions explicitly in the micro-
field function, and the ion motion (as well as elec-
trons) was treated in aperturbation approximation.

As the line center is approached these results
can no longer hold since the static-ion contribu-

where a = -,' P w and x = (P/8m)'/2 k are dimension-
less variables, m is the electron mass, u~, the
electron plasma frequency, and p. is the ratio of
the ion mass to the electron mass. It is sufficient
for the purposes here to consider only the first
term in (2. 13), which will be donated by G,„,.„(w).

G„„,.„.(w) =(4)t) 'n (w)

dk Ime(k, w)
le(k) w

Use of (4. 1) in (4. 2) gives two terms; (4. 2)

(&)1/2 p2 2

G ~„~s„.(w) = e

*"p dx I (x)
x le'(x, w) l'
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"o dx I (x/y, )+
l

~
I

'( ) JpA,'„,.„,(x)
(4. 3)

The first term in (4. 3) is due to electron motion
and the second originates from ion motion. The
upper limit on the integral results from the pre-
viously mentioned strong-collision cutoff and re-
flects the fact that both the random-phase approxi-
mation and (2. 12) are inadequate for the strong
collisions represented by large 0 (or x). This
has been justified to a considerable extent, for
the electron-broadening calculations, by Shen
and Cooper who evaluate the average t matrix
as an average over the impact parameters (-1/0)
in a classical-path approximation. They show
that the t matrix oscillates sufficiently for small
impact parameters to allow their contribution to
be neglected, i.e. , a small impact-parameter
cutoff. They emphasize that this property is a
result of their approximations preserving the
unitarity of the t matrix. Unitarity is automatic
in the binary-collision expansion given here, and
it will be assumed that this qualitative behavior
is still meaningful in some sense when the ion-
motion terms are included as in (3. 12).

The impact-parameter cutoff used here is that
suggested in Ref. 8. For the corresponding range
of x integrated over, A„'„„.„.is well approximated
by the first nonvanishing term of power-series
expansion in x. The resulting contribution is that
which would have been obtained if the dipole ap-
proximation were made from the outset. Closer
analysis of the justification of the cutoff proce-
dure, however, will require the formalism with-
out the dipole approximation and is the reason for
retaining all generality to .this point. The re-
sulting expression for G",„,.„.(w) is proportional
to a function G(w),

tens at the ion plasma frequency rather than the
electron plasma frequency, and is multiplied by
ILL. The ion term goes to zero p. times faster than
the electron term but is p, times greater. The
sum of these two terms is given in Fig. 1. For
zv &0. 8 su~„ the static-ion approximation is valid.
For smaller sv the function rises sharply due to
the ion-motion contributions. Even though the
function eventually flattens out again at the ion
plasma frequency this sharp increase marks the
failure of the static-ion limit, and corresponding
use of (2. 10).

The onset of ion motion indicated above occurs
for values of zo about an order of magnitude larger
than expected. This is probably due to the cutoff
procedure not accurately accounting for strong
ion-atom collisions. The utility of the simpler
expansion of Sec. II thus requires a more detailed
study of the ion cutoff, or better, evaluation of the
strong-collision expression (3.12). G(w) has been
evaluated under the assumption that the ions and
the electrons are in quasiequilibrium at different
temperatures. If the ion temperature is taken to
be one-tenth the electron temperature, the region
of ion motion is reduced by roughly 50%.

V. DISCUSSION

The results of Sec. IV, although tentative, in-
dicate the roles of the various descriptions of line
shapes presented here. In the line center, both
ions and electrons move appreciably and one ex-
pects (2. 5) and (2. 6) with M(w) calculated by per-

6o-

40 "

20

G;(w)=
Q

dx I (x)
x le(x, w) I

dx I (x/g)
x i e (x/p, , w) I'

G(w) =G, (w)+G, (w)

(4. 4)
103

I
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I
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"/w,

I Io

where the cutoff is xo = 0. 1 (for a system with
electron density and ion density of 3 &10 and
temperature T = 10 ). These integrals have been
evaluated numerically. The electron term differs
from previous calculations only in a dip for small
se. This occurs as a result of additional shielding
(by the ions) included in the dielectric constant,
and becomes effective approximately at values of
u corresponding to the ion plasma frequency. The
ion term is qualitatively the same only scaled dif-
ferently by the mass change; thus the curve flat-

I

IO2
I

IOI

"/w,

Io

FIG. 1. Above: plot of G(zg) versus zo/ge& for T= 104,
n =3 && 10; below: same G(ge) showing detail of the onset
of ion motion. Dashed curve is the contribution from
G (le) [see Eq. (4.4)].
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turbation theory will provide an adequate descrip-
tion. Figure 1 shows that ion motion becomes
less important at larger frequencies (beyond the
ion plasma frequency). For larger frequencies
the static-ion contributions dominate and should
be summed by the introduction of the microfield
distribution function. In this region, then, the
results of Sec. II should be used. However,
the treatment of perturber motion in a Born approx-
imation is not adequate for close atom-perturber
collisions. The proper treatment of these colli-
sions was given in Sec. III. It is felt that this
provides the necessary formalism to extend smooth-

ly the static-ion approximation to the line center.
Meaningful line shapes in the region of interest
here will be obtained following the determination
of a more justified cutoff procedure for the ions,
or evaluation of Eq. (3. 12), presently under con-
sideration.
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