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Numerical Solution of the Two-Electron Schrodinger Equation
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Numerical solutions to the S-limit equations for the helium ground state, excited triplet
state, and the hydride-ion ground state are obtained with the second and fourth difference
approximations. The results for the ground states are superior to previously reportedvalues.
The coupled equations resulting from the partial-wave expansion of the exact helium atom
wave function are solved giving accurate S, P, D, E, and G limits. The G limit is —2.90351
a.u. , compared to the exact value of the energy of —2.903 72 a.u.

I. INTRODUCTION

It is a well-established approach to the study of
electron correlation to analyze the many-electron
system as a series of simpler two-electron prob-
lems. Sinanoglu' has shown how the first-order
equation can be reduced to two-electron pair equa-
tions for the many-electron atom or molecule. He
also discusses the equation for "exact pairs"
which describes the pair correlations beyond
first order. Nesbet has been successful in re-
ducing the total wave function and energy for first-
row atoms into their Hartree-Fock and two-body
components. The general topic of electron cor-
relation is reviewed in Refs. 3 and 4.

We are not concerned here with the derivation
of the various pair approximations, but with how
to accurately and efficiently solve the resulting
equations. There have been two standard ap-
proaches in the past, both of which are variational.

The first dates back to the early calculations of
Hylleraas' who used a trial function containing
inter electronic coordinates. The unspecified
parameters are determined so as to minimize
the two-electron energy. This method is capable
of high accuracy if enough terms are included,
but leads to difficult integrals to evaluate. In-
deed, considerable research effort has gone into
the study of these integrals themselves. The
most successful approach is to use a configura-
tion interaction (CI) trial function. The popularity
of this method is due in part to its general appli-
cability. When applied to the pair equations, the
CI method obtains the pair energies and properties
without dealing directly with a two-electron equa-
tion. Instead, the total N-electron wave function
is constructed from a set of Slater determinants
so as to describe the correlation between a spe-
cific pair of electrons, while treating the remain-
ing N-2 electrons in the Hartree-Fock approxi-
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mation. The energy is found by diagonalizing the
total Hamiltonian in this basis. This is equiva-
lent to solving a Schrodinger equation describing
the pair of electrons correlating in the Hartree-
Fock field of the remaining N-2 electrons. The
principal disadvantage of the CI method is the
slow convergence relative to the use of interelec-
tronic coordinates. Schwartz"' has pointed out
the disadvantages of using orbital expansions to
represent correlated wave functions, with partic-
ular attention to the convergence as higher angu. -
lar configurations are included.

We have chosen an alternative to these ap-
proaches by simply solving the equations numeri-
cally. Since it is not possible to treat a six-di-
mensional equation, we first eliminate the angular
variables by a partial-wave expansion. Then, the
resulting equations for the functional coefficients
are solved numerically. The method is not varia-
tional and does not necessarily give an upper bound
to the two-electron energy. However, once the
basic techniques are established, any set of two-
variable equations can be solved with high accu-
racy. This allows one to consider a variety of ap-
proximations to the pair equations (pseudopoten-
tials, etc. ) without additional complications. The
numerical methods are highly computer oriented,
since the differential equation is reduced to a set
of difference equations which are solved by stan-
dard matrix techniques.

In two earlier papers, " we applied the matrix
finite difference (MFD) method to the solution of
the S-limit Schrodinger equation and the first-or-
der pair equation for the helium atom. The re-
sults were accurate; however, in order to apply
the method to excited states of two-electron atoms
and to the valence electron pairs in first-row
atoms, it was necessary to reexamine the numeri-
cal techniques. The most obvious problem orig-
inates from the diffuse nature of the wave function
describing these electron pairs. This requires
that the point at which the solution is required to
vanish must be taken further out and, consequently,
the number of points needed to obtain an accurate
solution becomes unreasonable. Another refine-
ment is needed when considering the solution of
exact pair equations. The partial-wave expansion
of the exact pair function leads to a set of coupled
equations, in contrast to the first-order pairs
which give uncoupled equations. The exact-pair
functions are solutions of eigenvalue equations,
differing from the two-electron atom Schrodinger
equation only in the presence of the potential due

to the A-2 "core" electrons and orthogonality con-
straints. In order to solve these, we have to iter-
ate among the equations determining the functional
coefficients of the partial-wave expansion. To

keep the problem within limits, we must be able
to obtain accurate solutions with a small number
of points.

We have corrected for the possible diffuse na-
ture of the pair functions by transforming to a
new set of variables which are just the square
roots of the original variables. In order to guar-
antee greater accuracy with fewer points, fourth
differences have been included in the approxima-
tion of the derivatives. Combining both of these
modifications with an extrapolation procedure,
we have found the S limits for the ground states
of helium and the hydride ion. The equations were
also solved using both transformed and untrans-
formed coordinates and second differences only.
With the three sets of results for each atom, we
can compare the effectiveness of the modifications
for a tightly bound pair (helium) and a diffuse pair
(hydride ion). Finally, we have applied the MFD
method to the exact Schrodinger equation for the
helium atom using successively higher partial
waves up to the G limit. The results proved supe-
rior to any previous CI calculation of the angular
limits. The properties predicted by the numeri-
cal solution compare well to the exact values.

II. PARTIAL-WAVE REDUCTION OF THE TWO-
ELECTRON EQUATION

The partial-wave expansion of the solution of
the two-electron Schrodinger equation has pre-
viously been considered by Luke, Meyerott, and
Clendenin' for the 'S state of Li+. For a spheri-
cally symmetric pair of electrons, the exact wave
function can be expanded in Legendre polynomials
of the cosine of the relative angle between the two
electrons,

@(ri&2gi2) = ~ )I)((&i&a)
L =0

(2/ + 1)'~'
x P ((cossgp)

By substituting this into the equation, we get

(-—,&, ——,&~ + i (~)+ P(y~)+ 1/y„) + = E4', (2)

multiplying both sides by (2l + 1)' /4m P, (cos8,~),
and integrating over all angular variables, we ob-
tain the lth member of an infinite set of coupled
equations for the functional coefficients
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where M, r = Z C (l0, l'0)
a=I &- i' I

4 A+ 333 Q 2 + ~ ~ ~

er 0
(6)

III. REVIEW OF FINITE DIFFERENCE METHOD

The second derivative can be expanded in terms
of differences as follows:

4 i 0
0 K &60 1860 + 90 60

ef y yg

(4)

where
50 —$(ro+ }4) —2'(ro) + g(00 —@),

~0 = tlt(&0+ 2@) —4((so+ k) + 6y(ro)

~'o = 0(&o+ &@)—6t}(r, + 2')+ 15)(4,+ h)

—20&(ro) + 16g(ro —h)

- 6g(ro - 2h) + g(ro —2h), (6)

and h is the grid size." The first approximation
to the second derivative is just 8 f/sr' (I/}'4') 6'. -
In order to find the difference error, we expand
the second difference in terms of derivatives

I 2 0 ~
2 Tf 8 4

r ( = min(r„4, ), r) = max(r„4 0),

and C~(l0, l'0) = —,
' [(2l+ 1) (2l'+ I)]'~'

x f (Pi( cos8g 0) P4(cos8 go) Pit (cos&go)) d(cos8yo)

Up to this point, we have not made any approxi-
mations, although it is clearly an impossible task
to solve an infinite set of coupled equations. The
expansion is usually truncated when the energy is
determined to the desired accuracy. Vfhen using
the MFD method it is convenient, but not neces-
sary, to begin by solving the 8 limit (l= 0 partial
wave only) and then use this as an initial guess
to determine the P limit (l = 0, 1 partial waves

only), and so forth. After two partial waves, the
addition of further terms to the expansion has a
small effect on the known functional coefficients,
and the iterative method of solving the coupled
equations converges extremely rapidly. There-
fore, the slow convergence of the partial-wave
expansion pointed out by Schwartz' is not a serious
drawback.

It is easy to show that a similar reduction of the
Schrodinger equation can be made for pairs that
are not spherically symmetric. The main differ-
ence appears in the angular integrals which couple
the equations together. Also the nonlocal poten-
tials which occur in the Hartree-Fock pair equa-
tions offer little complication since the equations
already contain nonhomogeneous terms. The nu-
merical techniques needed to solve these equations
are presented in Sec. IG.

and as a consequence of choosing central differ-
ences, the error contains only even powers of h.
Bolton and Scoins" have shown that the energy
found with a grid size h can be expresseg as a
power series of the form

E(h) =E(0)+Col4 +C4h + Coh + ~ ~ ~, (7)

where E(0) is the exact energy corresponding to
h= 0. For most two-dimensional equations, it is
not possible to use enough points to compete with
the accuracy of variational methods, therefore,
(7) is used to extrapolate the energies found at
several grid sizes to the exact value. "

Fox' has argued that a substantial amount of the
difference error can be eliminated by including the
next term in the difference expansion of the deriv-
ative in the MFD equations. The difficulty in
using fourth differences is satisfying the boundary
conditions. The usual conditions are to require
vp(0) to vanish at r=0 and 0 = r,„, where r
approximates infinity. The fourth difference of
((r) at 4 = l4 requires that we know the function at
r= —h, and therefore introduces uncertainties into
the MFD equations. A similar difficulty occurs
at the other boundary. One solution of this prob-
lem is to extract the asymptotic behavior of if'(4') at
~= 0 and z= ~ from the differential equation and
use this to relate the unknown values of g(4) out-
side the defined grid to the values within. This
is the approach we have taken for the first-order
pair equations; however, for the eigenvalue equa-
tions, it is simpler to replace the fourth difference
approximation at the boundary with the usual sec-
ond difference approximation. This does not ap-
preciably affect the accuracy when combined with
the coordinate transformation to be discussed
later.

Unfortunately, the fourth difference approxima-
tion does not sufficiently reduce the difference
error to be used without extrapolation. The ap-
proximation does allow accurate results to be ob-
tained from relatively few grids. These various
methods are illustrated for the 8-limit equation
in Sec. IV.

IV. SOLUTION OF THE S-LIMIT EQUATION

Truncating the partial-wave expansion at l = 0,
we then obtain the following equation for the two-
electron atom,

, ————+ —uo(r, 4;) = Euo(4'i4'0)
Br g es2 rg r2 (6)

where uo(pro) = rqropo(rqro). If the derivatives are
replaced by the second difference approximation,
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Grid size

9/20

25

30

35

40

50

60

TABLE I. S-limit energy of the helium-atom ground state.
Initial

energies
(a.u. )

—2.417 777 93
—2.782 694 71

—2.549 147 97 —2.860 638 37
—2.825 996 74 —2.876 028 34

—2.633 740 65 —2.871 003 04 —2.878 624 31
—2.848 040 64 —2.877 975 31 —2.878 986 31

—2.690 595 75 —2.875 251 77 —2.878 914 80 —2.879 026 36
—2.859 945 51 —2.878 624 84 —2.879 01995 —2.879 027 78

—2.730 287 10 —2.877 125 69 —2.878 993 67 —2.879 027 59 —2.879 030 50
—2.866 732 74 —2.878 860 89 —2.879 026 01 —2.879 030 20

—2.758 923 84 —2.878 010 64 —2.879 016 38 —2.879 029 75
—2.870 792 79 —2.878 953 40 —2.879 028 82

—2.789 238 40 —2.878 454 74 —2.879 024 59
—2.873 325 66 —2.878 992 95

—2.796 344 90 —2.878 690 21
—2.874 964 83

—2.808 902 25

(8) is transformed to a set of linear equations of
the form

Du= Eu

where D is a symmetric-banded matrix with non-
zero off-diagonal elements in only two superdiag-
onals and two subdiagonals. The eigenvectors at
D represent the ground and excited states of the
two-electron equation and would be exact if we
used an infinite number of grid points and satisfied
the correct boundary conditions. Since we are
usually satisfied with the lowest state, and pos-
sibly a few excited states, a finite number of
points are employed and a reasonable radial cutoff
is chosen to approximate the boundary conditions.

We have solved the S-limit equation for the first
two states of the helium atom and for the ground
state of the hydride ion using the second difference
approximation. The radial cutoff for the ground
state of helium was taken at 9 a.u. and for the ex-
cited state at 20 a.u. For the hydride ion, the
solution was required to vanish at 25 a. u. Equa™
tion (8) was solved for several grid sizes and the
eigenvalues extrapolated using the polynomial
representation of the difference error. From (V),
we see that two eigenvalues are needed to elimi-

TABLE II. The S-limit energy of the helium-atom
triplet excited state.

nate the h term, three for the 0 and 5 terms,
etc. Ne have done this for the three states and
present the results in Tables I-ID.

The extrapolation of the S limit for the helium
ground state predicts an energy of -2. 879 031 a. u. ,
with an uncertainty in the last figure. The pre-
vious best limit was found by Davis" and by
Schwartz' to be -2.879028 a.u. Table I shows
the extrapolated values found using successively
more of the initial energies to be converging from
above. Thus the best extrapolant should be an up-
per bound to the true S limit. This value falls
within the error bounds on Davis's predicted limit.

The results for the S state of helium and the
ground state of the hydride ion are less satis-
factory. Davis' " places the S limits of these
states at —2. 1742652 a.u. and -0.5144940 a.u. ,
respectively. The MFD method is more difficult
for these states because of their large radial ex-
tent. To achieve the accuracy that we have, it
was necessary to diagonalize a matrix as large
as 22 500 by 22 500 for the 'S state and about 15 000
by 15 000 for the hydride ion.

In order to avoid this problem, we made the fol-
lowing coordinate transformation:

2+1 &1 &2 &2

Grid size

20/50

75

100

125

150

Initial
energies

(a. u. )

1.921 557 42
—2.145 824 78

2.046 150 40 —2.171854 06
—2.165 346 74 —2.174 11134

2.098 298 80 —2.173750 17 —2.174 254 68
—2.170 724 94 —2.174 238 75

2.124 372 21 —2.174 11661
—2.172 609 20

2.13911129

Grid size

25/50
75

100
125

energies
(a.u. )

0.482 652 39
—0.499 282 47
—0.505 694 01
—0.508 781 34

—0.512 586 53
—0.513 937 41
—0.514 269 92

—0.514470 16—0.514 456 95

TABLE III. S-limit energy of the hydride ion on the
linear grid.

Initial
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which leads to the following equation for U, {X,Xz):

1~ 1 e 2 1 8' 2

2 4r, sx, 4rh 4r~ exp 4'
z s 1

+ ~ +o xixa =E~o xgx {12)

This equation was solved for the hydride ion with
a 25 a.u. radial cutoff (5 a.u. on the square-root
grid) using grids ranging from 25 to 50 strips.
The results were extrapolated to E= —0. 514497
a.u. and were converging from below. Represent-
ation of the difference error using only even pow-

ers of h was not as efficient for the new coordi-
nates, giving an energy of —0. 514557 a. u. , also

TABLE IV. S-limit energies for the helium atom
and the hydride ion on the square-root grid.

Grid size

3/20
25
30
35
40
45
50
55
60

30)1/2/25

30
35
40
45
50
55
60

Second differences

(helium)

—2.946 122 43
—2.923 13414
—2.910423 77
—2.902 606 78
—2.897 435 38
—2.893 826 42
—2.891 202 57
—2.889 232 04
—2.887 71261

(Hydride)

—0.523 875 59
—0.521 513 23
—0.51996146
—0.518 883 29
—0.518 10167
—0.517 515 82
—0.517 064 69

Fourth differences

—2.916524 55
—2.902 536 97
—2.895 141 53
—2.890 761 50
—2.887 954 43
—2.886 047 78
—2.884 693 60
—2.883 697 18
—2.882 942 65

—0.522 003 14
—0.519603 70
—0.518 19644
—0.517300 55
—0.516 694 99
—0.516 266 49
—0.515 952 12
—0.515714 63

and solved the Schrodinger equation on an evenly
spaced grid in x& and x2. The effect of this is to
give a dense distribution of points near the nucleus
and a sparse distribution in the tail regions, as
viewed in the untransformed system. Not only is
the radial cutoff less important in the new system,
but since this is a more optimum distribution of
points for our problem, we can use fewer points
without losing accuracy.

Substituting the transformation into {3), the de-
rivatives become

82

er er 4r eX' X eX

The first derivative is eliminated by the transfor-
mation

gp(+gXg) —+0{+1&2)/+1 +23/2 3/2

TABLE V. Polynomial fits for the helium atom S limit.

Grids used in the
polynomial fit

(2O-25)
(20-30)
(20-35)
(20-40)
(2O-45)
(20-50)
(20-55)
(20-60)

(20-25)
(20-30)
(2O-35)
(20-40)
{20-45)
(20-50)
(20-55)
(20-60)

hhh '''

—2.882 266 07
—2.880 952 96
—2.880 070 81
—2.879 681 14
—2.879 469 67
—2.879 342 22
—2.879 260 80
—2.879 200 98

—2.877 670 16
—2.878 864 55
—2.878 981 18
—2.879 012 72
—2.879 022 53
—2.879 025 00
—2.879026 82
—2.879 028 86

h'h3h' "
(Second differences)

—2.882 266 07
—2.880 661 16
—2.879 548 72
—2,879 302 72
—2.879 183 52
—2.879 122 50
—2.879 093 07
—2.879 035 06

(Fourth dkfferences)

—2.877 670 16
—2.879 129 97
—2.879 050 20
—2.879 040 11
—2.879 031 81
—2.879025 23
—2.879 031 94
—2.879 036 98

h'h4h' "
—2.882 266 07
—2.880 952 96
—2.879 970 00
—2.879 559 36
—2.879 352 27
—2.879 237 38
—2.879 171 24
—2.879 11356

—2.87( 670 16
—2.878 864 55
—2.878 994 51
—2.879 022 57
—2.879 027 66
—2.879 026 45
—2.879028 96
—2.879 032 36

'Square-root grid with a 9 a.u. cutoff.

TABLE VI. Polynomial fits for the hydride ion 8 limit.
Grids used in the

polynomial fit
h'h'h' "

(3O-35)
(30-40)
(30-45)
(30-50)
30 55)

(30-60)

—0.514597 13
—0.514 790 82
—0.514 663 52
—0.514 604 82
—0.514 572 61
—0.514 547 15

(25-30)
(25-35)
(25-40)
(25-45)
(25-50)
(25-55)
(25-60)

—0.514 150 43
—0.514454 61
—0.514479 61
—0.514 487 79
—0.514 489 98
—0.514491 88
—0.514 491 72

'Square-root grid with a 30 a.u. cutoff.

h'h'h'"

(Second differences)

—0 514 597 13
—0.514 745 69
—0.514 577 09
—0 514 538 88
—0.514 522 80
—0.514 487 62

{Fourth differences)

—0 514 150 43
—0.514 527 03
—0 514 495 63
—0.514 495 84
—0.514 491 72
—0.514 496 35
—0.514 487 20

h'h"h"' ~ ~ ~

—0.514 597 13
—0.514 790 82
—0.514 646 55
—0.514 583 22
—0 514 551 57
—0.514 521 28

—0.514 150 43
—0.514 454 61
—0 51448274
—0 51449060
—0 514491 20
—0.514 493 70
—0 514 490 81

converging from below. Therefore a polynomial
containing both even and odd powers, but leading
off with h~, was used. The square-root grid re-
duced the computation time by a factor of 7 for this
case.

In an effort to improve the MFD method further,
the fourth difference approximation was used to
resolve the equations for helium and the hydride
ion on the square-root grid. The cutoff for helium
was kept at 9 a.u, but the cutoff for the hydride
ion was taken at 30 a. u. The energies obtained
using both second and fourth difference approxi-
mations are given in Table lV. While the fourth
difference results are improved, the accuracy is
not sufficient to be used without extrapolation. In
order to find the appropriate extrapolation method,
the energies were fitted to various polynomials in
the grid size using successively finer grids. By
studying the trends in the extrapolants and the co-
efficients of the power series, we can determine
the most efficient form to represent the difference
error. The results for the polynomial fits of the
helium energies are given in Table V.

The best representation of the difference error
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TABLE VII. Comparison of the properties predicted by the S-limit wave functions to the radial configuration inter-
action and Hartree-Fock results for He and H .

Property

E
V

V/E
&i/r&g

&&/r, + i/rg
&r, +rg
&~'+ ~')

FD

—2.879 03
—5.758 1

2.000 0
0.986 7
3.3724
1.869 0
2.422 1

Helium ('S)
RCI

—2.879 00
—5.758 0

2.000 0
0.986 7
3.3724
1.868 8
2.420 6

HF

—2.861 68
—5.723 8

2.000 0
1.025 8
3.374 8
1.8546
2.369 6

FD

—0.514 49
—1.0290

2.000 1
0.298 3
1.327 3
6.207 9

34.518

Hydride ion
RCI"

—0.514 46
—1.028 9

2.000 0
(0.297 3)

6.207
34.44

—0.488 0

1.371 4
5.007 8

18.821

The basis set for the RCI calculation consisted of
orbitals with f = 1.5427.

"W. A. Goddard, J. Chem. . Phys. 48, 1008 (1968);
K. E. Baynard, J. Chem. Phys. 48, 2121 (1968).

1s, 2g, and 3g Slater orbitals with g =3.7530 and 1s' and 2g'

the value in parenthesis is from a G& calculation.

for the second difference approximation is given by
the polynomial containing a cubic term in h. For
the fourth difference results the polynomial

E(h) = E(0)+ C~h + C4h + C~h'+ Ceh + (13)

appears to give the best extrapolant, but by elim-
inating odd powers entirely we obtain accurate re-
sults and uniform convergence from above. We
should point out that while the error in the fourth
difference approximation leads off as h4, using
second differences at the boundary introduces the
h term. Table VI gives the equivalent information
for the hydride ion. The fourth difference approx-
imation predicts an S-limit energy of —0. 514491
+0.000001 a. u. , which is within the error bounds

of Davis' s result.
Even though the wave functions found by the MFD

method are only known at discrete points, there is
no problem extracting the same information
from them that a variational solution can yield. In

fact, the numerical solutions are generally of a
higher quality over all regions of space than the
variational functions. This is illustrated by the
local energy which agrees with the eigenvalue to
six or more decimal places at every grid point.
Properties are easily calculated by quadrature
methods which amount to nothing more than dou-
ble summations. These are then extrapolated in
the same manner as the energy.

We. have calculated several properties from the
fourth difference S-limit functions for helium and
the hydride ion, and compare them to the radial
CI and Hartree-Fock values in Table VII. The
agreement is very good except for (2+ ra), which
indicates that more diffuse basis functions were
needed in the radial CI calculations.

Contour and perspective plots of the two helium
states and the hydride ion ground state are given
in Fig. 1. We have plotted the square of the func-
tions N, (r, rz) in each case. The contour plots show

the regions x&, xz «4. 5 a. u. for the 'S state of
helium, x» x~ «10 a. u. for the S state, and

x„r~ «12. 5 a. u. , for the hydride ion. The nucle-
us is positioned at the lower left-hand corner and
the constant contour increment is given in the
upper right-hand corner. The lowest contour is
labeled. In the 3-D plots the regions shown are
y» x2-7. 5 a. u. for the helium 'S state, x» x~
«13.3 a. u. for the 'S state, and x„x~ «18.7 a. u.
for the hydride ion. Figure 2 gives the viewer' s
orientation for these plots. The functional axis has
the same scale in each case, so that the heights of
the surfaces can be compared. The contour plot
for the hydride ion shows the minimum in the sol-
ution along the line xj = r&. The helium atom shows
a similar feature for large radial distances, but
only slightly. This minimum is not present for
the Hartree-Fock wave function, which does not
predict a stable ground state for the ion.

While including radial correlation relative to
the Hartree-Fock model leads to a stable ion, the
S-limit functions give unreasonable values for
some properties. The exact value of (2+r', ) is
23. 827 a. u. ,

"which is about 3 of the S-limit
value. If we include the higher partial waves in
our expansion of the exact solution, the S wave
contracts and the expectation values approach the
exact results. This is illustrated for the helium
atom in Sec. V.

V. SOLUTION OF THE COUPLED PARTIAL-WAVE
EQUATIONS FOR THE HELIUM ATOM

The MFD method was applied to the sets of
coupled equations that result when (1) is truncated
at l = 1, 2, 3, and 4. We decided to use the second
difference approximation on the linear grid with a
9-a. u. cutoff since this proved to be very accurate
for the S limit. For a more diffuse state the
square root grid would have been used.

The extrapolation tables for the angular limits
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FIG. 1. Contour and perspective plots of the S limit for the (18 ) S and (ls28) S states of helium and the (ls ) S
state of the hydride ion.
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Grid size

TABLE VIII. Extrapolation tables for the angular limits of the helium atom.

9/20

25

30

35

40

45

50

9/20

25

30

35

40

50

9/20

30

35

40

50

9/20

25

30

40

45

50

P limit—2.449 61031
—2.803 933 59

—2.577 16669 —2.881 793 94
—2.847 18934 —2.897 463 39

—2.659 673 61 —2.892 346 83 —2.900 11414
—2.869 307 29 —2.899451 45 —2.900 475 91

—2.715 290 71 —2.896 676 21 —2.900 404 45 —2.900 51310
—2.881 281 20 —2.900 11032 —2.900 507 15

—2.754 19473 —2.898 584 05 —2.900 481 48
—2.888 11689 —2.900 347 86

—2.782 301 85 —2.899 483 59
—2.892 208 90

—2.803 184 19

D limit

—2.453 150 95
—2.806 424 76

—2.580 329 52 —2.884 068 03
—2.849 559 91 —2.899 709 53

—2.662 594 36 —2.894 602 10 —2.902 355 48
—2.871 621 39 —2.901 693 99 —2.902 71970

—2.718 050 51 —2.898 923 72 —2.902 647 76 —2.902 759 87
—2.883 566 16 —2.902 353 39 —2.902 753 44

—2.756 843 24 —2.900 829 09 —2.S02 727 02
—2.890 386 08 —2.902 592 51

—2.784 870 75 —2.901728 44
—2.894 469 33

—2.805 694 48

F limit

—2.454 238 36
—2.807 14175

—2.581 283 58 —2.884 659 52
—2.850 207 18 —2.900 266 97

—2.663 454 68 —2.895 170 66 —2.902 904 73
—2.872 230 11 —2.902 245 29 —2.903 268 75

—2.718 844 08 —2.899481 76 —2.903 196 84 —2.903 31188
—2.884 152 71 —2.902 903 15 —2.903 304 98

—2.757 588 29 —2.901 382 54 —2.903 277 95
—2.890 959 55 —2.903 143 02

—2.785 579 7S —2.902 280 38
—2.895 035 05

—2.806 376 29

6 limit

—2.454 71902
—2.807 446 77

—2.581 701 01 —2.884 890 07
—2.850 470 82 —2.900 471 29

—2.663 825 12 —2.895 383 54 —2.903 100 98
—2.872 468 89 —2.902 443 55 —2.903 463 46

—2.71917959 —2.899 685 74 —2.903 39186 —2.903 505 56
—2.884 376 26 —2.903 099 17 —2.903 498 82

—2.757 897 56 —2.901582 09 —2.903 472 08
—2.891 17363 —2.903 337 83

—2.785 869 08 —2.902 477 52
—2.895 243 03

—2.806 650 13
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u(r, , r, )

IE

Viewer FIG. 2. Viewer's
orientation for the per-
spective plots.

are given in Table VIII. The results converge
from above so that the best extrapolants should be
upper bounds to the true limit. These are com-
pared to various CI calculations in Table IX. We
note that the numerical G limit is superior to each
of the other calculations. Tycko, Thomas, and

King were only able to obtain an energy of
—2. 90344 a. u. using 15 partial waves. This il-
lustrates the difficulty in representing the func-
tional coefficients with orbital products for the
higher partial waves. As pointed out by Schwartz, '

TABLE IX. Comparison of the angular limits for the helium atom.

Numerical Weiss Nesbet" Tycko c

S
P
D

G
Exact~

—0.021 48
2 90051

0 00225
-o.ooo 55—2.903 31

2 90351 0'00020

—2.903 72

—2.878 96
—2.900 39
—2.902 58
—2.903 07
—2.903 20

—0.021 43
—0.002 19
—0.000 49
—0.000 13

—2.878 87
—2.900 29

0.021 42
—0.002 09

2 902 38pppp3—2.902 76

—2.878 92
90p 44 0 op 21 52

—2.902 69
2 90323
2 90337

A. W. Weiss, Phys. Rev. 122, 1826 (1961).
"R. K. Nesbet and R. E. Watson, Phys. Rev. 110,

1073 (1958).

D. H. Tycko, L. H. Thomas, and K. M. King, Phys.
Rev. 109, 369 (1958).

C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

TABLE X. Electron repulsion matrix.

(l I1/r» lo)

0.988 972
—0.020 919
—0.002 646
—0.000 695
—0.000 255

0.964457

Q la/~„[i)
—0.020 919

0.004 461
0.000 428
0.000 107
0.000 038

—0.015 885

(l Il/y» ]2)

—0.002 646
0.000 428
0.000 225
0.000 041
0.000 014

—0.001 938

(l t 1/~» I3)

—0.000 695
0.000 107
0.000 041
0.000 033
0.000 008

—0.000 506

(l l 1/+» t4)

—0.000 255
0.000 038
0.000 014
0.000 008
0.000 0078

—0.000 187

0
1

3
4

Zs

TABLE XI. Partial-wave analysis of the energy for
helium (a. u. ).

T ~r nuc

—6.732 944
—0.018653
—0.000 810
—0.000 110
—0.000 024
—6.752 541

-5.768 487
—0.034 538
—0.002 748
—0.000 615
—0.000 211
—5.806 599

2.877 088
0.022 998
0.002 222
0.000 542
0.000 194
2.903 044

—2.891399
—0.011490
—0,000 527
—0.000 073
—0.000 017
—2.903 506

TABLE XII. Partial-wave analysis of expectation
values for helium. ~= +i&r, (i4)

this led to the erroneous conclusion that the ma-
jority of the error was in the S limit and that the
contribution from the higher waves could be neg-
lected. The CI calculations generally do worse
for the higher angular limits, because to keep the
calculations from becoming intractable, fewer con-
figurations are used to represent the functional co-
efficients. The MFD method actually becomes
easier for these equations since the coefficients
have less and less amplitude and are concentrated
nearer the line r, =~&.

The energy can be expressed in the form

(yi + gpss (pi+ @
0
1
2
3
4

Z,
Exacts

1.850 14
0.008 37
0.000 39
0.000 06
0.000 013
1.858 97
1.858 94

2.376 18
0.010 64
0.000 50
0.000 07
0.000 016
2.387 41
2.386 97

C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

OI~) + 11~&,

3.366 47
0.009 33
0.000 41
0.000 06
0.000 012
3.376 27
3.376 63

~i &~&is&ir

0.964 46
0.015 89
0.001 94
0.000 51
0;000 19
0.945 94
0.945 82

where

Using the G-limit solution, we have calculated the
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FIG. 3. Contour plots of the functional coefficients

for the helium G-limit wave function.

6-PARTIAL WAVE FOR THE HELIUM ATOM
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FIG. 4. Perspective plots of the 8- and P-wave functional coefficients for the helium atom.

different terms in this expression. The electron
repulsion matrix elements 2& (f I 2&/H~

'
I
l')

xC~(fo, Po) are presented in Table X and the energy
analysis in Table XI. These results illustrate the
small but important effects the higher partial
waves have on the energy. Several properties
mere studied in the same manner and compared to
the exact values in Table XG. The accuracy is
very good, being about four decimal places in
every case except for (r, + H~). The value is still
too large and would improve if more partial waves
were used.

The contour plots of each functional coefficient
for the G limit are given j.n Fig. 3. Again the
squares of the functions u, (r,xa) are plotted over
the region x„x~ ~4. 5 a. u. The peakedness of
the higher partial waves about the line r, = ~, is
quite evident. Since the amplitude of the functions
for /& 0 is negative, their effect is to reduce the
electron density in this region. Figure 4 gives the
perspective plots of the S and I' waves using the
same scale along the functional axis. By integra-
ting over the radial variables, we found the volume
under the P-wave surface to be 0. 4'%%uq of that under
the S wave. The remaining waves were too small
to be shown with this scale, but the same integra-

tion showed the D wave to be 5% of the P wave and
the F wave about 17'%%uo of the D wave

VI. DISCUSSION

The results presented here demonstrate that the
numerical solution of partial differential equations
can give accuracy competitive with variational
methods. The values found for the S limits of hel-
ium and the hydride ion are superior to any pre-
vious calculation and agree well with the predicted
limits given by Davis. More importantly, the
same accuracy was found when the coupled equa-
tions were solved for helium. The equations de-
scribing the pair correlations in atoms offer vir-
tually no new considerations once they are derived.
The same program which was used for the helium
atom has been used to calculate the valence pair
correlation energy for beryllium, and the MFD
method has been applied to the first-order hydro-
genic pair equations for lithium. The results were
consistently accurate in all cases.

The calculations reported here were carried out
on the CDC 6600 and IBM 360-75 computers. The
IBM 360-75 results were found using double-pre-
cision arithmetic to avoid round-off errors.
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Theory of Stokes P Ise Shapes in Transient Stimulated Raman Scattering
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The theory of transient stimulated Raman scattering has been extended to include an arbi-
trary shape of the laser pump pulse. It is shown that the maximum Stokes gain depends on
the total energy content per unit area of the pump pulse, and not on the instanteous intensity
for an exciting pulse of short duration. The Stokes pulse has a leading edge which rises
sharply to a maximum, where the maximum occurs with some delay with respect to the maxi-
mum of the pump pulse. The trailing edge follows the decay of the pump. In a nondispersive
medium, the gain is not reduced by frequency broadening of the laser output, while in a dis-
persive medium, considerable gain reduction is expected. Numerical results for various
laser-pulse shapes and spectral distributions are presented.

I. INTRODUCTION

Several experimental investigations of the stim-
ulated Baman effect induced by a train of picosec-
ond pulses from a mode-locked laser have recently
been reported. ' It has been demonstrated6 that
the Stokes light is emitted in the forward direction
in picosecond pulses with a duration which is equal
to or shorter than the laser pulses. One purpose
of this paper is to show that some important con-
clusions about the shape of the laser pulses may
be drawn from this observation.

The theory of transient stimulated Brillouin and
Baman scattering has been developed for the case
that the input laser power is a step function. If
coupling to anti-Stokes and higher-order Stokes
waves may be ignored, the stimulated Baman ef-
fect is described by a set of four coupled equa-
tions ' ' for the laser field, the population differ-
ence in the initial and final vibrational states, the
Stokes field, and the normal vibrational mode of
the material system, corresponding to the off-
diagonal elements of the density matrix connecting
the initial and final states. The interest in the
present paper is focused on the transient buildup
of the Stokes and vibrational oscillations. The la-
ser field will therefore be treated as a prescribed,
but time-dependent parameter, and the population
difference will be taken as constant. In other
words, the effects of laser-pump depletion and
saturation of the material system are ignored.

In the usual manner, "the fields are expressed
in terms of the slowly varying complex amplitudes
by

g E (s g) stttgs —t(oL t

g E ( g) e tilts —to&t t

q q(& t) et'&hg- t s&zht

(la)

(lb)

(lc)
where the wave vectors and frequencies are cho-
sen to satisfy the conditions corresponding to con™
servation of momentum and energy, respectively,

k~ =k's +k'~„,

COI, =(ds +Mph

(2a)

(2b)

The fretluencies in Eq. (2b) are related to the
wave vectors in Etl. (2a) by the dispersion rela-
tions of the linear medium. The parametrically
coupled equations for the Stokes and vibrational
complex amplitudes then assume the form"

,—,+~, „—, +rq =t~,E,E, (s, r),
+ —=-t~,q Z, (s, t) .BZs aEs

vs 9

(sa)

(sb)

In these equations v, „and vs are the group veloci-
ties of the vibrational and Stokes waves, respec-
tively; F ' is the damping or dephasing time of the
optical phonon wave. The parametric coupling
constants are proportional to the change in molec-
ular polarizability with the vibrational coordinate


