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Exact and approximate methods for determining the momentum distribution of electronic
systems from Compton scattering measurements are presented. The method used previously
to analyze Compton scattering measurements, the impulse approximation (IA), is derived from
first principles, and its accuracy is compared with the exact calculations for Compton scat-
tering from a hydrogenic system. It is shown that the IA gives very accurate results for
weakly bound electrons and that exact calculation may only be necessary to subtract out the

contributions to Compton scattering from deeply bound core electrons. Experimental results
for Compton scattering from helium are presented as a test of the above ideas. Analyzing
the results of the experiment in the IA gives a momentum distribution for the weakly bound

helium electrons which is in excellent agreement with the momentum distribution obtained
from Clementi Hartree-Fock wave functions.

1. INTRODUCTION

Following the discovery and explanation of the
Compton effect, ' it was suggested '3 that it would

be useful for measuring the electronic momentum

density (EMD) of electronic systems. Recently,
there has been renewed interest in utilizing this
rather unique microscopic probe. 4 8

At present, all the experimental results have

been analyzed utilizing a theory [impulse approxi-
mation (IA)] which assumes that the electrons which

are doing the scattering may be treated as free
rather than bound. The binding is included only

in so far as it produces a spread of initial free
electron energies or momenta. No rigorous the-
oretical justification for this approximation or its
limits of validity has been given. In addition, all
of the accurate experiments todate were performed
on systems for which the uncertainty in the
ground-state electronic wave function was large
enough to preclude an "experimental" check of
the IA.

In this paper, we intend to study the Compton

scattering from an electron initially in a hydrogen
1s ground state with arbitrary Z.

The nonrelativistic Compton cross section may
be written down exactly for this system. This
calculation is outlined in Sec. II. In Sec. III, we
will derive the so-called IA from first principles.
Its limits of validity and the accuracy with which

it describes the scattering from bound electrons
will be clearly displayed.

It is well known that it is the outer or weakly
bound electrons which are of greatest interest in
solid-state and molecular physics. It will be
shown that these outer electrons produce a scat-
tered photon spectrum which, under the experi-
mental conditions used by the recent investigators,

is very accurately described by the IA. However,
both in solids and molecules there is a scattered
spectrum due to the tightly bound electrons which
must be subtracted from the measured result to
obtain information about the outer electrons. The
results of our calculation clearly indicate the re-
gion of validity for using the IA to subtract out
the core contributions as well as indicating the
exact procedure that can be followed when the IA
breaks down.

In Sec. Dt, we will compare some experimen-
tal results obtained in He with the IA and with the
very accurate and very well-known Hartree-Fock
ground-state calculations for this system. The
very good agreement obtained substantiates the
theoretical calculations and indicates the potential
of the Compton scattering technique.

(d = UPS —403, k=kg-k2 .

In the x-ray region, one is typically concerned
with values of m&

- 20 keg and k& = 2m/X& =- 10 A '.
The values of these parameters imply that one
may investigate the behavior of the scattering

II. HYDROGEN ATOM

Consider the incoherent scattering of x rays
from a system containing electrons. Such a scat-
tering process is shown schematically in Fig. j..
The incoming monochromatic x-ray beam is
characterized by the frequency & and wave vector
k&. The scattered x ray is characterized by the
corresponding quantities &3 and ka. If the sys-
tem is almost transparent to the incoming x-ray
beam, i.e. , only a small quantity is scattered in-
to the final beam ka, then the scattering cross
section may be completely characterized by the
two quantities
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FIG. 1. Schematic diagrams of incoherent process.

cross section over a large portion of the &, 0
plane.

Since the scattering is weak, we may calculate
the cross section by using lowest-order Born ap-
proximation. Suppose the electronic system has
a Hamiltonian of the form given by

H =P /2m+ V(x)—:82+ V(r) . (2)

The quantity p is the electron's momentum, and
V(r) is the external potential in which it moves,
i. e. , for the hydrogen atom V(r) = —Ze'/~.

In order to find the coupling to the electromag-
netic field, we replace, in the standard manner,
p by p —e/cA. The coupling Hamiltonian below
then contains two distinct types of terms:

H, =e2A2/2mc2-ep A/me .

To find the cross section for Compton scatter-
ing, we must go to second order in the vector po-
tential A, i. e. , to first order in the A term or
second order in the p A terms in Eq. (3). For
unbound electrons U(r) =0, all of the Compton
scattering is given by the A term in Eq. (3), i. e. ,

(4)

In Eq. (4), the final frequency &s2 is related by en-

ergy conservation to the initial frequency by

(dg —&d2 ——kk /2m

This A or Thompson approximation can be shown
to be accurate to quantities of order 5, where

is given by

6e =- (k~, /mo')'

xg&Q,.
~
(f

~

e''"'
~i)

~
~(E& &, ~).

For the hydrogen atom, the final-state wave
6

function for an electron in the continuum is given
by

~f) =(2v/pa) ~ (1 —e 't~') ~~

xe'2'F(i/pa, 1, i(p~ pr-)),
with E&——p /2m .

(7)

In Eq. (7) the function F is the standard confluent
hypergeometric Mnction. The initial state in Eq.
(6) is simply the ls hydrogenic ground state with

energy - IE& I. For transitions to the continuum,
the sum over final states is replaced by an inte-
gral over the wave vector p, i. e. ,

p, -f "~, .

The square of the matrix element in Eq. (6) may
be evaluated exactly; it is given by"

IMi I'-=1 &tie'" l~) I'=(;.~)'
I

1-e exp —tan-Pff/Pa -1 2

Qa k +8-
x [B2+(p-k)2] '[(k (k-p))2+(p k/pa)']

x [(k2 p2 fi2)2 4p2~2]-1

where 8 =1/a =Zme /8

Averaging Eq. (9) over the directions of P, one

finds that
283' (1-e""')'
p

x [k'a'+ -', k'a'(1+ p'a')]

taken in second order, can be important. For the
values of && which are used in Compton scattering
experiments, it will be shown in the Appendix that
they are not significant. In the ensuing treatment,
we will only discuss the contributions to the Comp-
ton cross section from the A term in lowest-or-
der perturbation theory. In this approximation the
cross section for a one-electron atom may be
written

do', (do'

dgdM -Iidn Th M2

x [(k2 2 1 p2a2)2 4p2 2]-2 (10)
When 6 is not small compared to unity, one must

go to a completely relativistic formulation, i. e. ,
the Klein-Nishina formula. One cannot patch up

Eq. (4) by using the p. A terms.
For bound electrons, the p A terms in Eq. (3),

The cross section is now found by simply in-
serting Eq. (10) into Eq. (6) and fixing the mag-
nitude of p from the energy-conservation 5 func-
tion, i. e. ,
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p'/2m=- ~Z, ~+(u .
If we assume that the energy and momentum

transfer involved in the x-ray scattering are large
relative to the characteristic energy and momen-
tum of the bound state, then the wave vector p of
the final-state electron is a large quantity, and we
may expand Eq. (10) as a power series in (pa) '.
If we do this, we arrive at an expression for the
cross section

(12)

EquRtloII (12), RpR1't fl'oIII the &3/(tel fRctol', is
close to but not exactly the same as the formula
derived by Bloch. There are, apparently, some
small numerical errors in this early calculation.

The details of the expansion are not very impor-
tant. What is important, however, is that it is
clear from examining the exact expression [Eq.
(10)] that an expansion in powers (pa) ' is not a
very good approximation. There are correction
terms to Eq. (12) which are of order 2II/Pa. Un-
der typical experimental conditions, this quantity
is not particularly small.

For the moment, let us leave our exact expres-
sions Eqs. (6)-(10) and their expanded version
Eq. (12) and go on to a derivation of the IA. Hav-
ing derived the IA, we will then return to our ex-
act formula and make a detailed numerical com-
parison between it and the IA. The IA will turn
out to be a much more accurate approximation to
the exact expression than the expansion given in
Eq. (12).

III. IMPULSE APPROXIMATION

In this section, we will develop an approxima-
tion scheme for the exact expression given by
Eqs. (6) and (10). This approximation will be
shown to be valid for large electron recoil ener-
gies, i. e. , w»E~.

Tile exRct lloI11'elRtlvlstic forllMIR [Eq. (6)] IIlay
be rewritten. In Eq. (6), we replace the 5 func-
tion by its Fourier representation, i.e. ,

5(~ (@ E ))
—(I/2 ) f+ tire-(HI-zt)1tdt (13)

The exponentials are replaced by the Hamiltonian
operator acting on the appropriate eigenfunction,
l. e.

y

e s =e ~ 'E ~ (14)

Using Eqs. (13), (14), we may simply rewrite Eq.
(6) as

do /do' (t'I 1
dQd(d QQ T„u&, (2ti)

+( t
~

e iift -tit r iH-t +I'k. r~t)

(15)

The Hamiltonian operator (e'"') may be expan-
ded using a well-known theorem as

eiHt iHptei Vt -[Hp, V]t~/2 (16)

exp (- ,[Ho, V—]t )-=1 .
Equation (IV) is the essence of the IA. " Our

expansion, Eq. (16), is essentially an expansion
in powers of the time I;. %'e will see how good an
approximation this is shortly. If we drop the
commutator in Eq. (16), then Eq. (15) may be re-
written as

sl(k, (d) = (1/2tt) f „dte'"'

X (I ]esHot iVte t(T I'e-(Vt iHot +1% r-[ )Ie

= f dte' tEr(t) .

Since V(x) commutes with r, the quantity e'"' may
be commuted through the ei, and we obtain

S'(u, ~)=(I/2H) f e*

X(t ~e(Hote (I re (H-ote. +tr -r~t) .

The potential V has eanisked from our approxi-
mate expression [Eq. (19)]for the scattering
cross section. Although it looks as if we have
completely neglected V, the physics of the situa-
tion tells us that we have not neglected it, but
that the V has cancelled out of the energy for the
initial and final states. This is the central fea-
ture of the IA. For short times, the potential
that the electron is moving in may be thought of
as a constant. The energy of the electron is mea-
sured, in both the initial and final states, relative
to this constant instantaneous potential.

Equation (19) is now simply evaluated by inser-
ting a complete set of states which are eigenfunc-
tions ofHp. These states are simply the usual
plane-wave momentum eigenfunctions. The inte-
gral over t is then easily performed, and we find
that

The higher-order terms in Eq. (16) involve mul-
tiple commutators, and are higher order in powers
of the time t. If we reexamine Eq. (15), we im-
mediately see that those times which are of im-
portance in the integration are of order ~ '.
When & is much larger than all of the other char-
acteristic energies associated with the ground
state of the electron, one can set
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Before making a numerical comparison between
the IA and the exact calculation for our model hy-
drogenic system, a general evaluation of the ac-
curacy of IA is supplied by comparing moments
of S(k, &u) for the two approaches. Since we have

S(k, ~) = (I/2v) f e*"'F,(t)dt, (22)

the frequency moments for fixed k are given by

S„(k) =—f d&u v"S(k, &u) = '" 1F," 1(0) . (23)

Here F), is the nth time derivative of F„(t).
The first four moments n ~ 3 are easily compu-

ted for the exact Hamiltonian H [Eq. (2)]. After
a good deal of algebra, we find that

f d~s(k, ~) =1 (24)

f d(d Ms(k, (d) =k /2m,

de% 8k(d = +—,26

dM(U$ Q, (d

+-,' (k'/2m) ( v'V)/2m . (27)

The quantity f (p, ) is the Fourier transform of
the ground-state wave function yo(x), i. e. ,

f(t)0) = f e"0 ')t)0(r) d'r . (21)

Equation (20) is what one would have obtained if
one had assumed that the initial state of the elec-
tron was one with momentum Po and energy Po/2m,
not —)E&l. The energy 6 function tellsusthat the
scattered photon is shifted in frequency both by
the momentum transfer term k /2m and the dop-
pler shift component (k po/m). Thus in the IA,
the essential nature of the Compton scattering
process is clearly revealed to be a doppler broad-
ening of the scattered photon energy. The spec-
trum of the scattered photons is simply related to
the distribution of momenta in the physical sys-
tem by Eq. (20). The function If(t)0) [ gives the
probability of finding the initial electron with a
given momentum Po. The integral in Eq. (20) es-
sentially states that at each k, +, the scattered in-
tensity is proportional to the number of electrons
having a fixed value of momentum in the direction
of the photon's scatteriog vector k. The value of
the momentum projection is fixed by the energy
5 function in Eq. (20).

IV. VALIDITY OF IMPULSE APPROXIMATION

(s, -s,')/s, = f (z,/E, )', (29)

where Ea = ka/2m . (30)

In order to see, in more detail, how good a
characterization the IA is, we will go to a detailed

numerical comparison in hydrogen. Before doing

this, however, we would like to make two points

relating to the exact and approximate forms of the

moments of the distribution function.
(i) The moments given in Eqs. (24)-(2't) are

frequency moments for fixed momentum transfer
k. This is not equivalent to integrating ovex' the

outgoing frequency of the photon for a fixed angle.
In the experiment, as we scan across the line,
for fixed scattering angle, the 4 vector changes.
This implies that we make errors in computing

the moments from the experimental data which

are of order ~/&d, . In a given situation these er-
rors may be Significant and in principle correc-
tions should be made.

(11) The 811111 1')lies givell ill Eqs. (24)-(2V) ilave

contributions from the bound-state terms as well

as the continuum (i. e. , the final electron state
can be a discrete bound state as well as the con-
tinuum). For pure A coupling, the bound-state
contributions to cross section involve matrix ele-
ments of the form

M„, = &n ~e'""~t) . (31)

Here the quantity ln) is some excited bound hy-

Equations (24)-(2V) are correct independent of the

explicit form of the one-electron potential V(r).
The expectation value of p1/2m and VaV(r) is
taken in the ground state. The details of this
evaluation ax'e not essential to the argument.

In the derivation of the IA, it was clearly shown

that the form of S(k, ~) is the same as in the ex-
act expression [Eq. (15)j except that the potential

V(r) is absent (i.e. , H-Ho). In other words, for
the IA one can evaluate Eq. (23) for the nth mo-

ment with a Hamiltonian which only contains the

kinetic energy. In this case, all terms in the

various moments which are proportional to the

potential energy will be identically zero. Thus,

moments zero through two will be identical in the

two calculations, while the third moment will dif-
fer by the last term in Eq. (2'I).

In the limit of large recoil energy, the error in

the third moment 83 is given by

S,—S,' -,'(k'/2m) ( V'V)/2m
(k'/2m)'

Fol the hydrogen atom, Eq. (28) is easily eval-
ulated, and we find a relative error in the third

moment for large k which is
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drogenic state.
A general expression for the cross section for

the discrete transition for our hydrogenic system
is given by'

Ql RAYLEIGH

QE RAMAN

COMPTE

(n —1)'/n'+ (ka)']" '
1[(n + 1)/n]' g&a)']"' (82)

ln Eq. (32), pg is the principal quantum number.
A special case of this is when v = 1, vrhich corres-
ponds to Rayleigh or elastic scattering, such that

do' do'
1 y~ 3 „4

One immediately notes that for ka &1 both the
Rayleigh and Raman. components decrease as
(1/ka)', and thus for ka ~ 2, they will not make a
significant contribution to the total scattered in-

ko(UN] TLEss)

FIG. 2. Compton, Hayleigh, and Baman cross sec-
tions as a function of ka.

------ C0RRECT
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Fi:G. 3. Compton spectrum for hy-
drogenic systems with different Z's.
A comparison between the results of
the exact calcu].ation [Eq. (11)j and
the IA [Eqs. (15) and {20)j for Mo K~
radiation (+& = 17.4 keV and E& 940
eV).

7300 .7400 7500
WAVELENGTH (A)

7600 .7700
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tensity. In Fig. 2, we have indicated how the
various contributions to the total scattered inten-
sity vary as a function of ka.

Figure 3 gives the Compton spectrum for hy-
drogenic systems with different Z's. The dotted
curves are the exact results. The solid curves
were obtained by using the IA results [i.e. , sub-
stituting Eq. (20) in Eq. (15)j. In Fig. 3, the
incident x-ray energy is 1''. 4 keV; the angle be-
tween the incident and scattered beams is 133.75;
and the recoil energy at the center of the line is
approximately 940 eV. The trend is clear. The
long wavelength large recoil portion of the spec-
trum is given extremely accurately by the IA. As
one approaches threshold &=-E&, the deviations
become larger. For the high side of the line,
&u &k'/2m, the IA holds uniformly to something of
order iE,/E~)'.

There is an interesting phenomenon associated
with the threshold behavior of curves given in
Fig. 3. The cross section at threshold is a con-
stant and not proportional to the square root of
the energy above threshold. The reason for this
may be found by examining the exact final-state
wave function given in Eq. (6). As the kinetic en-

ergy of the final electron goes to zero (i. e. ,
p-o),

~
p) p1/2815 P (34)

The normalization of the wave function blows up
in just such a way as to cancel the density-of-

peiL r; (35)

In second-quantized notation, the density opera-
tor p, given in Eq. (35) may be written

states factor present in the cross section. This
so-called Sommerfeld correction to the wave func-
tion is a well-known effect. The IA neglects it
entirely. In practice, no sharp discontinuity need
be observed because the discrete transitions whose
cross sections were given in Eq. (32) will have
intensities comparable to transitions to the con-
tinuum.

In Fig. 4, we have taken a higher value for the
energy of incident x-rays (59.3 keV). The recoil
energy at the center of the line is -9.V keV. The
cross sections are evaluated in this case, and we
see that the IA is a still more accurate description
of the cross section.

In summary, the IA seems to be very good. It
can be used with a confidence determined solely
by the parameter (Es/Ez) .

To this point we have concentrated our attentions
on the IA and its application to a simple one-elec-
tron hydrogenic atom. This kind of technique can
be applied in a straightforward manner to more
complicated many-electron systems. The operator
e' 'for many electrons is replaced by a sum of
the contributions from the different electrons,
l. e. ,

-------CORRECT

WPULSE

COz
LUI-
K
LLJ

bl
K

.2400 .2500
WAVELENGTH (A)

FIG. 4. Compton spectrum for hydrogen systems with different Z's, for tungsten K~, radiation (~& —= 59.3 keV and

Eg 9.7 keV).
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(36)
HELIUM

where a' and c are the standard creation and an-
nihilation operators, respectively.

In the IA, the Compton cross section from an
atom containing many electrons, one neglects all
commutators of the kinetic and potential energies.
The result for the cross section is then simply
given by

do' do
d&udQ dQ T„&uz (2m)3

k k p
2m

I.O

0.7

0.6

0.5

0.4

vt'here np =(sp ego)

Rnd Q' = k'po

(»)
(39)

0.2

Equation (3'7) is directly analogous to Eq. (20);
the only difference is that the Fourier transform
of the one-electron wave function has been re-
placed by the probability of finding an electron
with momentum Po, i.e. , n~ .

V. EXPERIMENTAL RESULTS OF HELIUM

100
HELIUM

90

& 70

w60

~50

l-—40

lU 30

20

10

q(a. u. )

FIG. 5. Experimental Compton profile for helium.
The variable q is equa]. to the projection of the electrons
momentum po on the scattering vector k.

Compton scattering experiments were perfor-
med on liquid helium using 0.'7093-A molybdenum
radiation. The details of the experiment parallel
closely those used by Phillips and %eiss4 and will
be described shortly in a subsequent publication. '~

In Fig. 5we show the experimentalCompton profile

0.
0 2

q(a, u. )

FIG. 6. Comparison of experimental Compton profile
and that calculated by the IA. The areas under the two
~ere made equal to 2, the number of electrons per
atom in helium. The solid line is the experimental pro-
file, and the calculated profile is the dotted line.

for helium. About 10 counts were obtained at the
peak. This profile is obtained from the measured

spectrum by subtracting the low background (less
than 3%) and performing the Rachinger process4
to separate out the K and K components.sl Qt~

T'he wavelength of scattered radiation was de-
termined by Bragg scattering from the I iF(400)
reflection. The projection of the electron's ini-
tial momentum on the scattering vector k (the
parameter q) is determined by the relationship be-
tween it and the scattered wavelength implied by
the 5 function in Eq. (3'7). It is the parameter q

which is used in Fig. 5. A resolution correction
is perfomed on the data shown in Fig. 5 and

the resulting experimental profile is plotted in

Fig. 6 as the solid line. In that plot Z(q) has
the meaning indicated in Eg. (SV).

Using EQ. (SV) together with a Clementi Har-
tree-Pock wave function, a theoretical Compton
profile is easily calculated. ' In the Hartree-
Fock Rpploximation the wave function ls R simple
antisymmetrized product of one-electron wave
functions. The scattering takes place from the
two bound electrons separately. Thus, the "many-
body" Compton profile [Eq. (SV)] for helium is
nothing more than the single-electron profile
Etls. (15), (20), and (21) multiplied by a factor of
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2. The resulting Z(q) as calculated in the IA
for helium is plotted as the dotted line in Fig. (6)
for comparison with the experiment. Over most
of the curve the two agree to better than graphical
accuracy. Over the whole curve the two agree
within the experimental error, which is 1% at the
peak.

The above results clearly support the theoreti-
cal conclusion that for weakly bound electrons the
IA is very accurate. For deeply bound core elec-
trons it will probably be necessary to make exact
calculations. These will probably entail numeri-
cal integration of Eq. (6)." For most ground-
state wave functions there is no closed-form ex-
pression for the appropriate matrix elements.

The high possible experimental accuracy of the
Compton scattering probe will undoubtedly result
in the use of corrections to the IA for the deeply
bound electrons. However, because the more
deeply bound electrons have a very flat and broad
momentum distribution, it will be possible to ob-
tain considerably higher accuracy for the sharp
momentum spectrum of the weakly bound electrons
without worrying too much about a very accurate
momentum distribution for the core electrons.
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APPENDIX

In this Appendix, we would like to estimate the
importance of the p A terms in the x-ray scatter-
ing from electrons in solids.

From Eq. (S), the coupling of x rays to the
electronic system can be written as

H, =e3A3/m+ep A/m (Al)

The complete second-order matrix element which
describes the nonrelativistic Compton scattering
is shown graphically in Fig. 7. The solid lines
represent the electronic system, and the wiggly
lines the incoming and outgoing photons. Analyt-
ically, this complete matrix element may be
written

1 &fle, .pe "3''In) &n Ip e, e""&''Ii)
"m E„-Eo+ (ug

40(,k (
opp, kp

k

(c)

FLG. 7. Three scattering diagrams which contribute
to the Compton scattering of low-energy x rays. (a) is
the A piece vrhile {b) and (c) are the two pieces vrhich
come from the p'A terms in the coupling Hamiltonian.

,&flei pe"""ln) &nlrb e,) e *""Ii& . (A2)
E„-Eo+(dq

The first term in (A2) is simply the A piece, i. e. ,
Fig. V(a). The last two are the contributions
from the p. A terms, i. e. , Fig. V(b) and V(c).

If (d& and && are much greater than E„-Eo then
we mey approximate Mf; by

M(f) 'e)s) ()+ ' ' ' ' )A3)(~, ~,)

sin (-,8)
A(dg . 2 (A6)

Corrections to the IA are, as we have seen, given
by

(A6)

A comparison of the above corrections clearly in-
dicate that one cannot simply improve the IA mea-
surements by using higher incident energies.
Even though the correction to the IA is decreas-
ing, the relativistic and p. A corrections are in-
creasing. It is also clear from Eqs. (A4)-(A6)

In (AS), all polarization factors have been dropped.
One notes immediately that for a free stationary

electron the p A correction term is zero (i. e. ,
P;=0). The p A correction term [the second part
of (AS)] can be rewritten as

E me sin'" (-'8) (A4)
Pl C (dg

where 0 is the angle between the incident and
scattered photon. The p A correction terms can
now be compared with the two other known types
of correction to the x-ray scattering expressions
given by Eq. (20). Relativity contributes a cor-
rection form given by Eq. (5), i. e. ,



that the p A correction is never the largest one.
This is of course only true when E~ && @+,. For
@co&-E~ a resonance can occur in the p. A terms
which will make it dominant.

A final remark concerning the p A contribution
to the Rayleigh and Raman terms discussed in
Sec. IV is warranted. The same conditions hold

for those transitions. If ka ~ 1 but ~&, ~~»E~,
the pure A terms will dominate the Raman and
Rayleigh cross sections. If, however, && &~-E~,
then the p A terms will make the dominant contri-
bution as they do in scattering experiments per-
formed using lasers operating at visible wave-
lengths.
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Within the limits set by our experimental apparatus, large-amplitude zero-field oscilla-
tions of H fine-structure amplitudes treated in a recent letter of Macek were not observed
in polarization-versus-flight-path measurements on H&, H~, and Lyo emissions from sud-
denly excited H atoms (50- and 150-keV incident protons). Random initial phases for orbital
and magnetic substates and approximately equal magnetic substate populations are indicated,
in contrast to binary electron capture in gases. A successful test of the theoretical polariza-
tion of 2s Stark quench radiation was also made.

INTRODUCTION

Several interesting suggestions for exploiting
coherent emission effects stemming from zero-
field oscillations of H fine-structure (fs) ampli-
tudes in fast-beam experiments were made in a
recent letter of Macek. Briefly, atoms are im-
pulsively excited (-10 -sec duration passage
through a foil) into a mixture of coherent fs levels.
Oscillations in the intensity of electric dipole lines
of fixed polarization which are subsequently emit-
ted then occur.

While the total intensity of a field-free electric
dipole transition from a coherent mixture of fs
levels

!/MAL)

belonging to some principal quantum
state n to a group of final states n does not oscil-
late in time, Macek shows that in principle the
intensity of each polarization P= 1, 0, —1 under-
goes multiperiodic oscillations. They sum to a
nonoscillatory total, in contrast to cases where a
Stark field is present. The frequencies which
occur are just the zero-field fs level-separation
frequencies. Under plausible random-phase con-


