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The radiative decay of an atom with two excited states coupled by an external perturbation
is investigated. The differential equations of motion are Fourier transformed and the prob-
ability amplitudes are obtained by contour integration. The real parts of the poles in the com-
plex plane are the perturbed energies of the excited states, and the imaginary parts yield the
decay characteristics. The decay probabilities of the excited states contain three different
decay terms; two exponential decays and one modulated exponential decay. The probabilities
of the final states give the frequency distribution of the emitted photons as a function of time.
In an Appendix, the Heitler-Ma formalism is used to eliminate the final states of the system,
and the resulting equations which contain damping terms age compared with the phenomeno-
logical method.

I. INTRODUCTION

When Weisskopf and Wigner' considered the ra-
diative decay of multilevel coupled atomic sys-
tems, they showed that for a certain class of de-
cays it is possible to simplify the set of differen-
tial equations of motion for the system by elimin-
ating the final states. This procedure yields
equations for the decaying states only, with coup-

ling to the final state accounted for by the inclusion
of damping terms. Other authors ' have exten-
ded this method to cases of two or more excited
states which are coupled by external perturba-
tions, and which decay via several channels to a
common ground state despite the fact that the orig-
inal der ivation excluded such situations.

A formalism developed by Heitler and Mav' can
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be used to study the radiative decay of coupled
atomic levels. By applying this method to the de-
cay of two coupled levels, we obtain those results
which have been deduced from the Vfeisskopf-Vhg-
ner method; in addition, we also get information
about the frequency distribution of the emitted ra-
diation.

In the Appendix the Heitler-Ma method is used
to derive the equations of motion with damping
terms which have previously been assumed in the
phenomenological theory.

II. GENERAL THEORY:

DECAY OF TWO COUPLED STATES

%'e consider an atom which has two excited
states a and 5 and a ground state e. Initially the
system of atom plus radiation field is in the state
Io) with the atom in state I a) and no photons
present. In the intermediate state Ij) the atom is
in state I b), and no photons are present. Each
final state I f ) consists of the atom in state I e)
and a photon with wave vector k and polarization
0 emitted.

The Hamiltonian for this system is H = Ho+ H
+ V, where IIO is the unperturbed Hamiltonian for
the atom and radiation field, H represents the in-
teraction of the atom with the radiation field, and
V is a time-independent perturbation.

In relativistic units (8 =m=c= 1)

H= E .. .(b.)e'" '+e'(b, ) e-*" e.(I ) p,
ka tI

where a(k, ) and at(k, } are the annihilation and

creation operators, respectively, for a photon

with wave vector k, polarization o, and polariza-
tion direction e, (k). In the interaction represen-
tation with H,„„„,«,„=H+ V, the state of the sys-
tem at time t is

IU(t}) =b. (t) '"'I ) b, (t) "'Ij}
+ Qy b, (t)e "y'If) . (I)

In Eq. (I) the state vech»s»e

ib, (t) =H,,e' " e "b, (t)
+Z H e' y

—ey&'b (t)

iby(t) =H„e" y
- "b,{t)

+H ei(ey —Ey)gb (t)

&nm= {&IH&ntera. uon I~)

(2c}

The last term in Eq. (2a) states the initial condi-
tion that at t =0 the system is in state I o) .

To so»e Eg. (2), the b's can be transformed
as

b„(t) = (- 1/2vi) f"dE G„(E)e"+

i5(t) =( —I/217i) f"dze' o

&bstituting these expressions into Etl. (2) gives

(E-E.)G, =H„G, +QqH,.y Gy + I
(E —E;)G, = H,, G, + Qq H,yGy.
(E - Ey)Gy = Hy, G, + Hy, G, .

(5)

(6)

(7)

„,„.= Z, H„,-H,./(E E,),
H„= H„—g iy„

The resulting expressions for the (I"'s are
I

H,
(E-E. +-', iy..)(E-E, +-'. iy, , ) -H,'.H.',.

(E-E, + ', i y„)(E E,-+ ,' iy, ,)--Hy'. H-.',

Hy, H,, +Hy, (E —Ey + —', iy„)
(E-E,)[(E—E. +-,'iy..)(E —E, +-,'iy„) —H'. H.',] '

(»)
These expressions are now used in Etl. (3) to ob-
tain integral equations for the probability ampli-
tudes b, (t), b, (t), and by (t):

b, (t) =

f
CO dE (E E x ~

) f(eg —s &t

(E-E.+-'. iy„)(E-E, +-.'iyyy)-H, ".H.', '

The set of E|ls, (5)-(7) can most easily be solved
for the II"s by introducing the following definitions:

with energies E, =&, , && =&y
& &y =&c+&c ~

where gy is the sum over final states which in-

cludes sums over frequency, direction, and polar-
ization of the radiation field.

The differential equations for the probability
amplitudes ar e

ib (t)-H e'" -'y"b (t)

+ ~y H0ye"" 'y"by(t)+i&(t), (2a)

b, (t) =
2wi

dg~» i(Ej - E)k
yoe

(E E0+aiyo. )(E »-+'iy-yy} Hy0Hoy -'

" dE [H„H,'. +H,.(E-E, +-,'iy, ,)][e*"y—"'- I]
~

~

~ ~„(E-E,) [(E-E, +-.'iy..)(E E, +-'.iy„) -H,',H.',),'-.



In Eq. (15) the initial condition bz (0) = 0 has been
Used.

For atomic systems where (E, —Et) «{E,—E,),
it can be shown the Rey„(E) and Rey, , (E) can be
replaced, respectively, by Rey„(z, ) and Rey„(E, )
in Eqs. (13)-(15). Furthermore, the imaginary
parts of y„(z) and y&&(E) can be abosrbed into Eq
and E&, respectively, giving rise to energy
shifts. Thus, in Eqs. (13)-(15)

( )
—1 dz(E —Et + pt yt)e (' (15)
2vt . (E- E,)(z- E,)

~" dEa„e"~& —~"
bt(t}=- .2.t J~„(z-z,)(z-z,) '

z. --,'ty„(z) -z. --', ty,

Et '1—ytt(z) EJ"—'1 yt

- «[~„rf,.+~„(z-z, +-'. ty)][e' ~ ' -1]-
(E E)(z E)(z E )

where y, =Rey„{E,) and y& =Rey&&(E&) .

As will be seen, y, and y, are the radiative decay
constants of the unperturbed atomic states I tt) and
I t]), respectively.

If la) and Ib) are good angular momentum
states, then it can be shown that the cross term
y;,(E) is zero, and thus H,, =H,, = V&, ." To simpli-
fy the expressions for the probability amplitudes,
the following definitions are introduced:

A =E, —~i y„.8 =E) —~ j y~, C =- I H, , )

z, =-.' f(~+a)+ [(~+a)'-4(ca+ c)] t'],

E,=-.' ((A+a) -[(A+a)'-4(xz+g)] tt'] .

(t) [(E E t
)

—(Z, -Z, +-'.t y,.)e*""—'2"](E,-z,) ' (19)

(t) [ t(Et —E1)t et (Et —Ea) t] (E E )-1
t

(20)

The real parts of the poles E& and Ea are the per-
turbed energies of the excited states, and the imag-
lnRx'y parts of Ej Rnd Ep deter1Tllne the decRy chR1'-
acteristics of the system.

The Eqs. (16)-(18) can be evaluated by contour
llltegl'atlo11. 8111ce Im(zt) &0 alld Im(E2) &0 the
path of integration is taken to be a clockwise in-
flnlte semiclrculRx' contour lncludlng the lower
half of the complex plane. Using the theory of
residues, me find

[a„.(Z, -Z, +-tt' y, ) + e,.a„][et(Et —E1"-I] [e,.(Z, -E, +-,'t y,.)+~...If„.][e'&E~ —'2) t I]
(E,—E,)(z, —E,) (E,—E,)(E.—E, )

Finally, the probabilities of the states to), lg) and If) are obtained by multiplying Eqs. (19) -(21) by the11

respective complex conjugates:

It (&&I'= (+'+q')'([(~+x)'+(x+q)'] e i" '" —» ~ [(z, x)s„(x q) ],-r*. ~ *, ~ ca)

-ae '* ' '" [[a' x'-a'-q']' +[(x q)(a-p) —( a)( xq)]'}x(st -xato)}o

l b, (t)
l

= 2 &, (P'+ q ) 1e (ro ' x~"[cosh(qt) —cos(Pt)],

(22)

I5~«) I'= lu, (e) I'&I"-'" 't - "' -2e-"'" ' '-"'«s[l(e -P)t]] l~t(e}l'(I" '

cos[ (e+P)t]]'+2a(&)(e o t" cos(Pt+8)+cos0

e- 1/2(xq + xt —Q) t cos[t {e P) t g ] ]t2{x + E, + q)t [t ( ) (24)
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In the above equations the following definitions have
been used:

~=E. -E, , V,.=&j IVfo&, X. =-,'1...
X, = —'y&, X=X, —X, ,

P= (~'+X')'+ 16 V,', +8V (&~-X'} ~

—26X
cos 2 tan

jo

- S'4

q = '(A~+X ) + 16' y 6V2 (g2 X2)

—22X
sin g tan &~ X~ 4&&& —X +4V~,

2(DQ —XP)
z 3 a a, e =2' —(E, +E,),6 +X —P —Q

"'' =(] i * ]-& ~.&i]]'(&'-@']—ca+q(x. +x,.]],]x*q]]*2J'q 0, P]x,y. ]]

+ ~ ]]H( (& + p) —2V;, Hq] ]72PQ QE P(g X )] (X+ q)]+ (pa @8] + @]X ]]]}
((P'+0')[( + P)'+(X, +X, q)']]-,

&(e)e' =a,(e)aa (e) .

The probabilities of the initial state [Eq. (22) ]
and the intermediate state [Eq. (23)] contain three
different decay terms. Two of them are pure ex-
ponential decays while the third is a modulated ex-
ponential decay. The decay rates are X, +X; + Q
for the pure exponential decays, respectively, and
the modulated decay rate is X, + X, . The decay

probability of the intermediate state agrees with
the result of Wangsness. The probability of the
final states [Eq. (24)] increases monotonically as
a function of time. A plot of

I bz (f)
I

as a function
of frequency of the emitted photons generally shows
two distant peaks. As t - ~, E]I. (24) can be writ-
ten as

( )
I

2 I H~. I' [(K+ ~)'+x',. ] +
I
H„. I' v„+2v„[(K+h) He(H, Hq*;) x; ™(H~oH&,)-1

K'(K+ ~}'+X,'X',. + V,'. + X',. K2+ X.'(K+ ~}'-2 V,'..[K(K+ ~) -X.X, ]
(25)

where K= j'r, —(Eo —E,), b, is the wave number of
the emitted photon, and the other symbols are as
def ined above.

The frequency distribution for an uncoupled ini-
tial state can be obtained from Eq. (25) by setting
V,, =0. This yields

fb, &-) f'=
I H,.I'/(K', X.') . (26)

To illustrate some of the features of the decay of

On the other hand, if one assumes that the decay
constant of the initial state vanishes (y0= 0), then

fbf( )I = IHf, Iv,. /([K(Rya) —. v, , ] +X.K ].

two coupled excited states, we have calculated the
decay of the n = 2, j = —,

' states in atomic hydrogen
coupled by an electric field. In this case the 2S~&
state is the initial state I o), and the 2P«, state the
intermediate state i j) . In Fig. 1 we have plotted
the time dependence of the two excited states. An

electric field of 100 V/cm produces a V~, of 2. 2y,
Fig. 2 gives the frequency distribution of emitted
photons. This curve shows the two peaks charac-
teristic of this type of decay.

APPENDIX

It is possible to use the Heitler-Ma method to de-
rive the differential equations of motion for the
states l o) and I j) which contain damping terms
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Q = l0.6~)

Vjo= 2.2

1.0

5-

FIG. 1. Probabilities of the ex-
cited states t o) and I j) as a func-
tion of time for the case &pp=fgp=o.
Time is in units of the natural de-
cay time P& of theunperturbed state
I j). &=&0- E& is the unperturbed
energy separation of the excited
states.

0 2

to account for the coupling to the final states. For
reference Eqs. (5)-(7) are listed:

(E —E,)G, = Ho, G, + 5~i H,~ G~ + 1,

(E —Ei )G; = H, , G, + F~~ Hiy Gy,

(6)

(6)

(7)

(z-z.)c, = [H., --",t y., (z)]c,. --', iy..(z)c. +1,
(A2)

(E —Ef) Gi = Hy, G, + H~, G; .
Equation (7) can be solved for G&.

G~ = Hyo G, + Hf, G; /(E —Ei ) . (Al)

Using Eqs. (Al) and (8), Eqs. (5) and (6) can be re-
written to yield the following expressions:

dt
b. (t) = z(H. l-iy. ;)e"-" ")'b, (t}

--', y. b. (t)+b(t) . (A6)

(A6)

In the same manner Eq. (A3) can be multiplied

by —(1/2»)e' ) s" and integrated over E to
give

—„b,(t) =- i(H,.—,'iy, .)e'" — "'b —(t)

—-', y, b, (t),
where y, , (E) and y&, (E) are taken to be the con-
stants y, and y„. As was pointed out above,

y&, (E) =y„(E)=0 if I a) and I b) are good angular
momentum states. Equations (A5) and (A6) then

reduce to the following:

(z-z, )c, = [H,.--,'i y,.(z)]c.—', iy, ,(z)c, . -
(A3)

b (t) = —i H e' ' ~ b (t)o og

Both sides of Eq. (A2) are now multiplied by
—I/2»e' o "and integrated over E to give

(- I/2»)f" dz(z-z. )[C.e"e —s"]
=(-I/2))i)e"" —')" f"dz[H, i —ziy g(z)]

&& C, e*' ) — "--,'i[- (I/2') f"dZ y„(Z)
)( G ei(80 —E)t) [ (I/2») f~ dz ((so —E)t]

(A4)

Since y„(E) and y„(E) vary slowly with E, they
are treated as constants and taken outside the inte-
grals in Eq. (A4). Now using Eqs. (3) and (4), it
follows that

."y,b. (t)+ &—(t)—, (A7)

These are the differential equations of motion
which are assumed in the phenomenological theory
for the system of two coupled decaying states.

The solution of Eqs. (A7) and (A8) yields the de-
cay characteristics of the initial state I o) and the
intermediate state I j) coupled to a set of final
states I f ) . The initial conditions as represented
by the 6 function are b, (0) = 1 and b, (0) = b& (0) = 0.
The real parts of yo and y& are the damping con-
stants of the isolated states I o) and I j), respec-
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.OI

~ = l0,65;
Yj -2.25)

tively. For more than two excited states, the elim-
ination of the final states proceeds in exactly the
same way, and the resulting expressions are simi-
lar to Eqs. (AV) and (A8).

The line shape of the emitted radiation can be
obtained from the solutions' of Eqs. (AV) and(A8)
by using the following procedure.

The inverse of Eq. (3) is

G„(Z) =- f f" b„(t)e" —""df . (A9)

Inserting Eq. (AQ) into Eq. (Al) gives

(AIO)

.ool

I

-I [Et4Y) ]
2S~

The intensity of radiation is proportional to
I bq(~) I, and it can be shown that

b, ( ) =[(Z-Z, )G, (Z)j, ,,
The resulting expression for I bz(~) [' agrees with

Eq. (25) above.

FIG. 2. Frequency distribution of final states for the
case of happ= p&p=0. The frequency is in units of the
natural linewidth p; of the unperturbed state )j);
E = zt(Ep-E~) + NJ -E~)] is the average energy of the
excited atomic states above the ground state; 4= Ep —E&
is the energy separation of the excited states when
Vgp=0; and QF+4V&p)~ is the approximate perturbed
energy separation of the excited states.
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