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Coherent spontaneous emission from a system of N two-level atoms interacting with a quan-
tized radiation fieM is treated for the case in which Dicke's "cooperation number" r is mac-
roscopically large. It is shown how to modify the quasiclassical approach to this problem to
incorporate quantum effects that are lost in the self-consistent-fie]d approximation. The
statistics of the emitted radiation are found to vary markedly with the initial state of the sys-
tem of atoms. The photon statistics tend to that typical of blackbody radiation when the initial
state of the atomic system is that which would result from incoherent pumping (m -r). When,
on the other hand, the atoms are initially in a superradiant state (m «r), the emitted radia-
tion may be represented approximately by a coherent state.

I. INTRODUCTION

Several years ago Dicke' introduced the concept
of coherence in spontaneous radiative emission
from a system of N "molecules" which undergo
transitions between two energy levels. In this pa-
per we present a detailed discussion of a recent
paper of ours, in which a nonperturbative solution
of the problem has been given.

The main feature of coherent spontaneous radia-
tion processes is the possibility, in certain config-
urations, of having the radiation rate proportional
to N rather than to N, as one would expect when

the molecules radiate "incoherently, " i.e. , inde-
pendently of each other. Such an anomalously
large radiation rate occurs as a consequence of a
highly correlated motion of the N-molecules sys-
tem, which, as a consequence, radiates as a sin-
gle quantum- mechanical system. These exception-

al states were called superradiant states by Dicke.
They belong to a class of correlated states of the
N-molecules system which are best defined in the
framework of angular momentum theory. '

By representing the single two-energy-level
molecule as a spin- —,

' particle, one can define a
"superradiant" state as a particular eigenstate of
the total angular momentum lr, m). The total
angular' momentum quantum number r was called
the "cooperation" number by Dicke, and is obvi-
ously related to the degree of correlation among
the spins.

On the other hand, m = ~(n, —n ) (n„n give the
number of excited and nonexcited molecules, re-
spectively) is proportional to the energy stored in
the system, and is such that (ml &r& 2N.

Obviously the ( x, m) states are not a complete
basis for the N-spin system. However, from de-
generacy considerations, Dicke' has shown that, if
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the system is in thermal equilibrium, both m and x
are well defined, and satisfy )m) =~. The physical
meaning of the choice I m I

= x is that the macro-
scopic transverse dipole moment proportional to
r -m'has to be zero when no phase relations ex-
ist between different spins. This is the case not
only for a system at thermal equilibrium (m&0),
but also for an incoherently pumped system (m & 0).
The states with m= r, which we shall refer to as
"fully excited" states, radiate proportionally to ~.
On the other hand, it is possible to prepare the
system in a state with r» m, which radiates pro-
portionally to x and is called "superradiant". '
As we shall demonstrate, the radiation process
from a fully excited state requires a thorough
quantum-mechanical treatment, whereas the su-
perradiant states radiate essentially in a classi-
cal way.

We shall address ourselves to the problem of
the spontaneous radiation, once the gaseous sys-
tem has been prepared in a state with definite and
positive values of x and m.

In order to explore the nonlinear quantum fea-
tures of the problem, we limit ourselves to the
simplest physical situation. We shall therefore
make the following assumptions: (i) The single-
molecule wave functions do not overlap, so it is
possible to neglect the problem of the symmetry
of the total wave function. (ii) The system is ther-
mally isolated and embedded in a resonant cavity
which possesses a single mode resonant with the
transition frequency of the molecules. (iii) The
system density is so low that the atoms interact
with each other only via their coupling with the
electromagnetic field.

The Hamiltonian for this simple model is well
known to describe the main features of the one-
mode laser dynamics for times shorter than the
relaxation times. Furthermore the same Hamil-
tonian, by use of the Schwinger representation of
angular momentum in terms of boson creation and
annihilation operators, ' describes trilinear boson
scattering processes. This means that our simple
model is also able to describe the essential quan-
tum features of parametric processes (such as the
coherent Raman and Brillouin scattering) taking
into account the nonlinear behavior due to the de-
pletion of the pump field. In addition to the quan-
tum-mechanical approach of Dicke, the previous
work on this Hamiltonian model can be divided in-
to two categories: computer calculations and
quasiclassical approximations.

The computer calculations have been done for
80 and for a few hundred atoms. The results of
this analysis exhibit a behavior considerably dif-
ferent from the one expected classically. However
such an analysis is hardly applicable to a real-

istic situation where the number of atoms is mac-
roscopically large. In such a case, we expect the
system to evolve in a way closer to the classical
theory than predicted by such computer calcula-
tions. On the other hand, the semiclassical treat-
ment based on the self-consistent-field approxi-
mation is clearly inadequate for at least the fol-
lowing reasons: (a) It does not take into account
the quantum spontaneous emission; (b) It cannot
give any information about the photon statistics.

Our analysis will modify the usual equations by
adding to the source of the field which is respon-
sible for the spontaneous emission, a quantum
source, which is always present and becomes es-
sential in the fully excited initial state where the
classical source is absent. In general the motion
of the system is similar to the classical pendulum
motion but with an intrinsic kinetic energy such
that there is no unstable equilibrium position.

As a consequence, one gets a periodic series of
pulses whose shape is a hyperbolic secant and
whose buildup time as well as period is a factor
lnN larger than the duration of the single hyper-
bolic secant pulses. In particular, the short-time
behavior of our solutions is in agreement with that
of Dieke' s radiation rate.

To our knowledge no previous calculations exist
for quantum dispersion of the photon number for
these nonlinear and nonstationary processes. In
Ref. 7, a closed solution is given only for the
linearized parametric amplifier in which the pump
field is treated as a given function of time. This
approximation is equivalent to neglecting the deple-
tion of the upper atomic level.

We have found two different statistics for the
fully excited state m = x and the superradiant state
m= 0. In the first ease, the dispersion is practi-
cally that of Bose statistics o(n) =n, and in the sec-
ond case that of a binomial distribution which as-
sumes Poisson statistics o(n) =(n)' ~~ when x- ~.
Such different photon statistics can be completely
understood in terms of the different physical nature
of the fully excited and superradiant states.

In Sec. II we will introduce the model Hamilton-
ian for the coherent coupling of an N-spin system
with a one-mode electromagnetic field and discuss
its physical relevance to the trilinear boson scat-
tering processes. The similarity between these
two problems is emphasized by introducing the
concept of "effective population numbers" of the
N-spin system.

In Sec. III, for completeness and for the sake of
comparison, we derive the Bloch equations for our
problem and discuss the analogy of our system with
a rigid pendulum from the Heisenberg equation of
motion in the self-consistent-field approximation.
For the same reasons the Dicke radiation rate is
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The model Hamiltonian we want to discuss is
well known in the literature. ' I et the energy dif-
ference between the two levels be Ro, where ~
coincides with one of the cavity eigenfrequencies.
In the dipole approximation, the resonant part of
the Hamiltonian which describes the entire system
is

H = k&uR, + @~a'a+ Ak(a'R + aR') .
The operators a' and a are the creation and anni-
hilation operators for the electromagnetic mode
under consideration and obey the commutation re-
lation

(2)

The operators R' and R, using Dicke' s notations,
are the sum over all the spin-flip operators of the
N atoms multiplied by the proper phase factor. '
They obey commutation relations of angular mo-
mentum operators:

[R", R ]= 2R3& [RB, R']=aR'. (3)

The eigenvalues m of R, go from ——,'N to —,'¹More
precisely, if n'(n ) is the number of excited (un-
excited) spins, one has

The number I represents the total energy of the
free spin system. The interaction Hamiltonian
describes one-step quantum transitions between
two of these collective energy states. In this mod-

briefly derived in the framework of first-order
perturbation theory. Furthermore, we generalize
the perturbative treatment to obtain the short-time
photon statistics by solving the Schrodinger equa-
tion when the mean number of photons emitted is
much smaller than the effective number of active
spins. This solution is essential to construct the
all- times solution.

In Sec. IV we discuss in a nonperturbative way
the Schrodinger equation, calculating the mean
photon number and the quantum dispersions as a
function of time. In spite of the analytical com-
plication due to the nonlinearity of the problem,
the solution will be expressed in very simple
terms.

The approximations made are perfectly justified
when the number ~ is macroscopically large. The
reader who does not wish to interrupt the physical
discussion can directly go from Sec. III to Sec. V,
in which the results of Sec. IV are summarized,
extensively discussed, and compared with pre-
vious treatments. In carrying out this comparison
we give the limit of validity of the self-consistent-
field approximation.

II. MODEL HAMILTONIAN

R'=a&a» tRI =R(R+1),

R3 2( 2~2 1~1) R ~2(~2~2+ n1 1) '
(6)

One can easily verify that this representation is
consistent with commutation relations (2) and (3).

Hence Hamiltonians (1) and (5), using identities
(6), formally coincide. Furthermore, calling
(x, m) the eigenstatesof [R~zand R, corresponding
to the eigenvalues r(x+ 1) and m, and calling

lnz, n, ) the eigenstates of azaz and a', a„one has a
one-to-one correspondence between such states,
given by the obvious relations

m = —,'(nz —n, ), x= —,'(nz+ n, ) .

The process of coherent radiation emission by a
system of N atoms already prepared in a collec-

el, the N spins interact with the electromagnetic
field as a single dipole vector with components
R', R, and R3. In this sense, the model repre-
sents a coherent radiation process by the N spins.
As is well known, this is the fundamental difference
between laser and conventional thermal sources,
where the single atoms radiate independently of
each other.

As already remarked in the Introduction, the
Hamiltonian (1) is also relevant for the dynamics
of coherent Raman and Brillouin scattering. In
fact, the main features of these processes are
described by a trilinear boson scattering, in which
an incoming photon of frequency &uz (pump field)
gives r se in a nonlinear medium to a photon of
frequency ~, and to a scattered phonon of frequen-
cy (og- co~.

The interaction Hamiltonian for perfect phase
matching' is given by

&g, g
= ~(azalea+ a'a,'az),

where the oscillator operators aa, a„and a de-
scribe the incoming photon, the scattered phonon,
and the scattered photon, respectively.

A classical solution of this problem can be found
in Ref. 9, and can be obtained from the Heisenberg
equation of motion for the a.mplitudes (a,), (az),
and (a), assuming complete facto~ization; i.e. ,
expressions like (aalu a, ) are assumed to factorize
into (a)(a,')(a,). This hypothesis is evidently equiv-
alent to treating the a' s as c numbers.

The formal identity between Hamiltonians (1) and

(5) is pointed out in Ref. 6, where a "quasiclas-
sical" solution of Hamiltonian (5) is obtained by
assuming a partial factorization; i.e. , expressions
like (aa;a, ) factorize into (a) (aza, ).

Such an identity follows from the fact that the
angular momentum operators R' and R can be
represented by means of two harmonic oscillator
operators a& and a&.

' In fact, we set
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tive state I x, m) is formally equivalent to trilinear
scattering processes in which the pumping field a&

and the phonon field a, are prepared in a state
(nz, n,). The correspondence rule is given by Eqs.
(6) and (7).

We note that n, and n of Eq. (4) and n, and n, of
Eq. (7) have quite different physical meanings.
Whereas n, and n give the number of spins in the
two possible levels; n, and n„once the system
has been prepared in the stately, m), give the
effective populations of the two levels which take
part in the coherent process. n, and n, coincide
with n, and n only when the correlation among the
spins is maximum: x= —,'N.

In general the same values of n, and n can cor-
respond to very different values of n~ and n„
which reflect different physical situations. For
example, if the system has been incoherently ex-
cited to some positive value of m = —2(n, —n ), the
number z has to be chosen equal to m. ' Hence, in
this case one gets n&=n'-n and n, =0, which is
equivalent to having a fully excited system with a
total number of atoms equal to n'- n . On the oth-
er hand, if the system has been prepared in a
superradiant state with x= —,'N»n'-n, one gets
n& =n, = —,'N. Once the initial values of the effec-
tive populations have been established, the calcula-
tions can be carried out equally well with Hamil-
tonians (1) or (5), where now the oscillator oper-
ators a& and a, operate on the effective energy lev-
els. This correspondence, which is so simple in
terms of n states of harmonic oscillators, re-
quires a more careful analysis using other repre-
sentations, such as the coherent-states represen-
tation. ' The concept of effective populations is by
no means of academic interest, but makes it pos-
sible to distinguish between two radically different
spontaneous radiation processes. Generally, by
spontaneous emission one means a radiation pro-
cess which takes place starting with a zero initial
value of the eigenvalue n of a'a. However, it is
easy to see that the spontaneous emission by a
superradiant state and by a fully excited state are
quite different in nature. In fact, from Hamilton-
ian (5) we see that the oscillators a, and a play a
completely symmetrical role. Hence, the time
evolution of a superradiant state characterized by
n&=n, = x and n = 0, is the same of a state charac-
terized by n, =0, z~=x, and n=r. This means
that the spontaneous radiation by a superradiant
state is substantially equivalent to the stimulated
radiation by a fully excited state in which there is
already present a number of photons equal to the
effective population of the upper level. In this
sense one can say that a real spontaneous emission
process takes place only if both the effective pop-
ulation of the fundamental level and the initial pho-

H= Rk(a'R +R'a). (9)

In order to have a better insight into the dynam-
ical properties of our system, we briefly derive
the quasiclassical picture in terms of Bloch equa-
tions. This will also allow a closer comparison
between the classical and the quantum picture and
a better understanding of both.

III. QUASICLASSICAL AND SHORT-TIME SOLUTIONS

%'e now shortly derive the Bloch equations from
the Heisenberg equation of motion by making the
self-consistent-field approximation (SCFA).

The Heisenberg equations which follow from
Hamiltonian (9) are

a = —iR, R=- 2iaRS, RB
——i(a'R —aR'), (10)

where time is measured in units of the reciprocal
coupling constant I/O.

This is not a closed system of equations for the
expectation values because expressions like
(a'R ) do not factorize into (a')(R ). Hence it would
be necessary to write equations for a'R which will
still depend on the product of atomic and field op-
erators and so on. In other words, to solve exact-
ly the Heisenberg equation of motion requires solv-
ing an infinite hierarchy of equations. The SCFA
consists in closing this hierarchy at the lowest or-
der, i.e. , in factorizing the mean values directly
in Eqs. (10). This means that the operators of
these equations shall be replaced by their c-num-
ber expectation values:

In this way the system (10) becomes a closed sys-
tem of equations for the quantities r', x„and n.

This system is still nonlinear, but can be solved
exactly. If one sets in -n, one obtains the real
coefficients system

f'3 = —2nf g f'g = 2nf'3 Q = Xy

where r, = x'=x is the real transverse component
of the macroscopic dipole. This set of equations
is well known in the literature as Bloch equations.
Using the two constants of motion

ton number are zero.
We now proceed to analyze Hamiltonian (1), re-

ferring to the N-spin-system problem. Every-
thing can be immediately translated using Eq. (7)
to the trilinear scattering processes. We first
note that the unperturbed part of Hamiltonian (1)
is a constant of motion, i.e. ,

R, +a'a= M= const.

Hence the Hamiltonian in the interaction picture is
time independent and reads
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Hq+ rq =J, M = o,'+ r3, (i2)

P= 2Zsiny. (is)

Hence, the Bloch vector rotates as a rigid pendu-
lum whose stable equilibrium point is y= m. The
radiation from this pendulum is obtained by the
simple relation (15).

This simple pendulum analogy is well known to
describe undistorted pulse propagation in a laser
amplifier" as well as self-induced transparency
phenomena. '

This formalism is quite simple and clear, but
does not take into account the quantum spontaneous
emission. This point deserves a few comments.
From Eq. (13), we see that the initial time deriva-
tive of the field amplitude, if o.(0)=0, is given by
n(0)=x, (0)=J —M, where M=R, (0) is the initial
value of the inversion. If M «J, the intensity of
the field increases proportionally to J~. This is
the superradiant spontaneous emission due to the
presence of a macroscopic dipole ~,. Hence this
spontaneous emission is correctly accounted for by
a classical theory.

We suppose J=M. In this case no radiation is
emitted by the system. This corresponds to the
fact that the initial position of the pendulum is the
unstable equilibrium point with zero velocity p
= 2e = 0. We stress that this is the physical initial
situation for an incoherently excited system.
Clearly this result is in principle wrong because
the quantum spontaneous emission by the excited
spins, which is missing here, has to set the sys-
tem into motion. In other words, we do not ex-

the system (11) can be reduced to a unique nonlin-
ear equation for the field amplitude

(n)'=r', = (P- ~,')=Z'- (M- n')'.
This equation will be useful in order to have a di-
rect comparison with the quantum solution.

To have the analogy of our system with a rigid
pendulum, it is convenient to write Eq. (11) in a
different form. The dipole variables x, and x~ can
be considered as the components of two-dimension-
al vector of constant length which we shall refer to
as the Bloch vector, The time evolution of this
vector is simply a rotation with angular velocity
proportional to the field amplitude n. In fact if
one sets

r, =/sing(t), ~, =/cosy(t),

the first two equations (11) are equivalent to the
equation

(15)

By using the third equation (11), the system re-
duces to a unique equation for the Bloch angle

ln) —= In, M-n, x). (is)
The quantum problem is completely solved once
we know the probability amplitude of having n pho-
tons at the time t:

In order to construct the solution for all times, it
will turn out to be particularly useful to derive the
short-time solutions. For very short times, we can
calculate p(n, f) by means of the first-order per-
turbation theory:

P(n, f)=-i6„,[(r+M)(~-M+1)]'"f,
where we have used the well-known properties

a ln) = (v"n) In —1) a'In) = (n+ 1)' In+ 1), (20)
m) = [(r+ m+1)(ra m)]~ ~2Ir, m +1).

The mean number of photons at time t is given by

n(t)= (r —M + r+M)t . (2i)

This result substantially gives Dicke' s radiation
rate and should be compared with the classical be-
havior of the intensity given by Eq. (13). By solv-
ing Eq. (13) to first order in time, with the initial
conditions n (0) = 0, r, (0) = M, we get

pect our system to have an unstable equilibrium
point. The trick one uses to bypass this difficulty
is to give an arbitrary small initial value to j or
y. The solution for o. (t) is generally a periodic
elliptic function. However, if one lets p(0) and

p(0) approach zero, the period of the pulses goes
to infinity and the solution becomes a single spike,
which is the well-known hyperbolic secant pulse"':

n2= (-,'j )~=2Zsech'[(2J)'~~t].

One can directly verify that this is the singular so-
lution of the pendulum equation (16) which starts
from the unstable equilibrium point at t= —~. Any
information about the buildup time and the period
of the pulses is evidently lost.

We now turn to discuss Hamiltonian (9) in the
Schrodinger picture. We use the representation in
which a'a, R3, and )B) are diagonal with respec-
tive eigenvalues n, m, and r(r+1), which label the
common eigenstates In, m, r).

We suppose the initial state to be a state with
zero photons and a fixed value of x and rn of
10, M, x). As we have already pointed out, there
are two constants of motion, 8 and 8, +a'a.
Hence, the system will evolve in the subspace of
constant r undergoing transitions to states [n, m, r)
such that n+ nz= M. Therefore we can label the
states with only the quantum number n, and In) is
a shorthand for
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a =(4 —M)t . (22)

!p(rr i) I I( i,) 8- r
I 8 (25)-

Krr! n! '

where the mean number of photons n(t) is given by

rT(t) = r't'.
This formula practically coincides with Eq. (21),

Comparing Eqs. (21) and (22) we see that, pro-
vided the cooperation number ~ is identified with
the total length of the Bloch vector 8, the quantum
and the classical expressions differ by a term
(~+M)P.

Therefore, in the quantum equation (21) we may
distinquish two sources of the fieM: (i) that which

goes as x -M, is of classical origin and can be
identified with the classical polarization r& of the
Bloch equations; (ii) that which goes as r+ M, is
the quantum spontaneous emission term which is
Rbsent ln the clR881CRl equRtlon. This term 18

irrelevant for the superradiant states in which

y»M, but becomes crucial for the ordinary spon-
taneous emission in which x = M. The expression
for rr(t) at any time, which we give below, will
coincide with Eq. (21) if specialized for very short
times.

In order to have a suitable expression for the
short-time transition probability, we now solve
the SchrMinger equation with an approximation
less crude than the first-order one. Differentiat-
ing both sides of Eq. (19) and using Eqs. (20),
we get

r$(rr, t) = [rr(r- M+n)(r+ M-rr+1)]'"p(rr -1,t)

+ [(rr+ 1)(~-M+ rr+1)(r + M - rr)]' ra

xp(n+1, r). (28)
We solve this equRt1on with the initial condition
P(n, 0}=5„,in a range of time so short that the
probability amplitude for having n photons is neg-
ligible unless n«x. This range of time will be
later specified. We consider the two interesting
particular cases: the superradiant case M = 0 and
the fully excited state M= x. In both cases x is
assumed to be a very large number of the order of

For I= 0, neglecting ~ as compared with x, Eq.
(23) reduces to

rp(n, t) =r[(vn)p(n- 1, t)+ (n+1)'rap(m+1, i)].
(24)

This is the equation of a simple harmonic oscilla-
tor driven by a constant classical force. This
classical force is here proportional to the length of
the macroscopic dipole ~.

One can easily verify that the exact solution of
this equation is given by

specialized for M= 0. The statistics given by Eq.
(25) are Poissonian, and the dispersion is

o(n)'= (rr')„- n~ = rT.

The region of time in which this solution holds ls
clear].y g1ven by t «t —z ' ~, so that n «x. Hence,
if the system is prepared in a superradiant state,
the short-time photon statistics is that of a coher-
ent rRdiRtlon field.

If M=~, in the same approximation as before,
Eq. (23) reduces to

rp(rr, t)=2r 2[np(n —1, t}+(rr+1)p(n+1, t)]. (2V)

The exact solution of this equation is

!p(n, t)!'=!(- i)" tanh" (2r)'rat

xsech(2r) r t! =n /(1+rr)"'~, (28)

where rr = slnh (2F} (29)

This expression for t 0 is in agreement with Eq.
(»).

The photon statistics for n «0", i.e. , for
i «r,,= —,'ln2r/(2r)' r, are Bose statistics which are
characteristic of an incoherent thermal field. '
The dispersion associated with n is

(r(n)' = rT(n+ 1),
which is larger by a factor (n+ 1)' r~ than the pre-
vious one. Furthermore, the time t, is here long-
er by afactox ln2x than the time t, of a, superra-
diant state.

We remark that Eqs. (28} and (28) are known to
describe the parametric amplifier if in the Ham-
iltonian (9) the pump field a, is replaced by the
constant number (2r }'r .'

The markedly different behavior of the photon
statistics is clearly understandable if one thinks
of the different sources of the field in the two
cases. In a superradiant state the source of the
field is a big macroscopic polarization proportional
to r, which, being a, classical source, drives the
field into a coherent state. In the second case, the
only source is the quantum spontaneous emission,
so that it is no surprise to find Bose statistics
characteristic of a chaotic field.

As we shall see, the photon statistics at later
times basically retain their short-time featu1. es,
except for values of n near their maximum values.

IV. SOLVING THE SCHROMNGER EQUATION

'Qle are now in a position to attack the dynamical
problem based on Hamiltonian (9) and on the relat-
ed Schr6dinger equation (23).

This equation is a quite complicated difference-
dkfferential equation which cannot be solved exact-
ly. However, quite reasonable approximations can
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be made when the cooperation number x is macro-
scopically large.

First of all we eliminate the imaginary factor in
Eq. (23) by means of the simple transformation

p(n, t) - (- t)"p(n, t) .
In this way Eq. (23) becomes

P'(n, t)=[n(r-M+n)(r+M-n+I)]'"P(n- 1, t)

—[(n+ 1)(r- M+n+ 1)(r+M-n)]'~3

A(n, t)= G(n)[A(n-1, t)-A (n+1, t)].
Hence we have reduced Eq. (30) to a more symmet-
rical form.

We now find a simpler expression of the coef-
ficient G(n). The I" functions which define the g
functions in Eq. (30) are conveniently expressed by
the Stirling formula'

r(g)-(Sw)'"e'z'-'" (+ +,+" ),1 1
12@ 288@

xp(n+1, t). (30) Res& 0.
Now the equation has real coefficients, so the

amplitude p(n, t) is real; for t = 0, p(n, 0) = 5„0.
The easiest way of finding a solution of a differ-

ence-differential equation is to approximate it with
a partial differential equation. However, in order
to have a better control of the validity of the ap-
proximation, it is convenient to first make some
transformations in Eq, (30). These transforma-
tions shall be performed according to the following
two steps. (i) Transform p(n) into a new variable
A(n) such that the coefficient of the terms A(n —1)
and A(n+1) are equal. (ii) Change the variable n
into a new variable which varies in an almost
continuous way when x is very large.

We proceed with the first step. We define a
function g(h) as

g(r)=/2r(1+ y)/-,'1(I+h), I =0, I, 2, . . . . (»)

Using the well-known property I'(1 + z) = el'(z) of
1' functions, one can verify that g(k) satisfies the
recurrence equation

g(h+ 1)g(h) = h+ 1, with g(0) = (2/v)s t (32)

Equation (30) can then be written

p(n, t) = [g (n)g(n —1)g(r —M+ n)g(r —M+ n —1)

x g(r+M n+1)g(r-+M-n)]'~ p(n —1, t)

—[g(n+ 1)g(n)g(r-M+n+ 1)g(r- M+n)

x g(r+ M —n)g(r+ M —n —1)]' t p(n+ 1, t),

and setting

G(n) =g(n)g(r-M+n)g(r+M-n),

we get

p(n, t) = [G(n)]' ([G(n - I)]' p(n —1, t)

[G(n+ I)]—' "p(n+ I, t)]].
Finally, if we define A(n) as

A(n, t)=[G(n)]'"p(n, t),

we obtain

To lowest order in I/z, using definition (31) we

get

g(a) = (1+a)' ".
This approximation also gives good results for

small values of h, as the reader can easily check
by calculating g(h) via Eq. (31) and comparing the
result with (1+8) . For h»1, Eq. (35) becomes
g(h) -v (((,, which can be written directly using the
Wallis formula (14). Finally, using Eqs, (33) and

(35), G(n) can be written as

G(n) = [(1+n)(r-M+n+1)(r'+M n+ I)]'~2-, (36)

The second step of our procedure is to define the
angle O„as

n= (r+M) sin 8„,
8„=arcsin[n/(r+ M)]' +.

We note that as m goes from the initial value M
to the minimum value —~, the photon number var-
ies from zero to its maximum value x+ M. This
can be easily seen by remembering that, by defi-
nition, n+ m =M. Correspondingly, the angle 0„
goes from zero to —,'m.

Using Eqs. (14) and (3V), one can easily see that
the angle 0 is related to the angle described by the
Bloch vector by the relation

cos-.'y = [(M+ r)' "/2r]cos8,

which reduces to 8 = —,'y for the fully excited state
M= x. Clearly, if one assumes that ~ is very large
and M is a positive quantity, one sees that the vari-
ation of 0 when n goes from n —1 to n+ 1 is very
small. A quite accurate expression for this varia-
tion is given by

48„=8„„—8„,=[(n+ 1)(r+M-n+1)] ~ . (38)

The biggest value of the jump of the angle 8 is at
the ex".reme values of n.' n=0 and n=x+M. In this
region

t 8„=(r+ M) "' .
%'e remark that this value of ~8 is infinitesi-

mally small compared with the total variation —,'w,
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when r is macroscopically large. Hence we will
assume that the angle 8 has continuous variation.
Therefore it should be clear that the validity of
our calculation rests heavily on the fact that x is
very large, as is physically the case.

I et us now go back to Eq. (35}. Thinking of n as
a function of the new independent variable 8„, we
get

A(8„, t)+ G(8„)[A(8„„,t) A(8—„„t)].= 0.
Using the previous remark, we pass to the con-

tinuum in 8 and get

3 l

+G(8) —„t (8)+!„,(~(8))'+ ~ ~ * =0, (40)

where G(8) and 6(8) are continuous functions of the
variable 8 obtained from Eqs. (36) and (38). Ex-
pl,icitly,

~(8) = f.[I+ (r+ M) s1n'8][1+ (r+ M)cos'8]]-' ",
G(8) =([1+(r+ M) sin 8][1+(r+ M)cos~8]

x[r- M+ 1+ (r+M) cos 8]]' . (4l)

If BA/88 does not vary too rapidly in the small in-
terval 4(8), we can drop the higher-order deriva-
tives in Eq. (40).

The assumption of slow variation of BA/98 is
certainly not true in the neighborhood of t = 0. In
fact, at t = 0 the probability of having n photons is
5„0 and consequently A(8) is a very sharply peaked
function around 8 = 0.

Hence the differential equation we are deriving
will not describe the short-time behavior but, in
the sense we shall make precise in the following,
can be used to construct the wanted solution out of
the short-time solutions which have already been
derived in Sec. III. Therefore, we will use the
differential equation (2V) for times t & t*, where t*
is a time such that the amplitude distribution
A(8, t) is such a sufficiently smooth function that
the higher-order derivatives of Eq. (40) can be
neglected.

Afterwards t~ will be consistently determined
from the short-time solutions by the requirement
1« u(t )« iV [fol' pl'ac'tlcal pu1'poses 8(t ) can be
chosen to be of the order of a few hundred].

Thus, for sufficiently smoothly varying A(8),
Eq. (40) becomes

st '""'88 ='&A 8A

where

v(8) = [(r- M+1)+ (r+M) s1n'8]'"= G(8)~(8)

This equation has to be solved starting at the ini-
tial time t with an initial condition fixed by the
short-time solution.

Using the fact that, by definition, du/d8=1/v(8),
Eq. (42) is transformed to

8A(u, t) 8A(u, t)
Bt

(44)

The genexal integral of this equation is

A(u, t)=A, (u- t),
where Ao is an arbitrary function which has to be
determined by the initial condition. The relation
between 8 and u is specified by the integral in Eq.
(43), which turns out to be an elliptic integral of
the first kind with a negative parameter; i.e. , we
have

sin8 = en[(r —M+ 1) u i
—(r+ M)/(r M+ 1)],—

where sn is a Jacobi elliptic function. ~4

Using standard elliptic transformations in or-
der to have a positive parameter we get

»n8 = [(r-M+I)' "/(2r+1)]ad[(2r+ I)' "u in]

=cn[(2r+I)' 'u-Klk], (45)

where the parameter k of the elliptic function is

and K is a quarter of the real period of the ellip-
tic function. It is bounded by the relation"

ln4 & [K+ —,'lg(l —k)) & —,v .
In this relation the upper limit is approached if
k -0 and the lower limit is approached if k-1.

We write

Z(u) = a+ —,'in[(2r+ 1)/(r- M+ 1)],
where ln4 & a & —,'m. The previously introduced
quantities G(8), n(8), a(8), can now be expressed
in terms of u. In particular, from Eqs. (37) and
(45) we get

n=(r- M}nP[(2r+1)'"u„-lfi&],
which relates a discrete set of values u„ to the

We observe that A(8, t) is a probability amplitude
which propagates in the 8 space with a velocity
which depends on the "point" 8. This means that
the 8 space behaves like an inhomogeneous medium
that clearly will defoxm the initial shape of A. %e
can already see that this effect is much smaller in
the superradiant state M= 0 than in the fully excited
state r=M. In fact, if M=O, the "velocity" v(8)
varies from (r+1)' ' for 8 = 0 to (2r+ I)'~' for 8 = -,'v.
On the other hand, when M = ~, this variation is by
a factor (2r)'".

It is quite natural to study Eq. (42) using the
variable u(8) defined by

u(8) = 1' d8'/e(8') (43)
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discrete values of n from 0 to x+M. It is now im-
portant to calculate the variation of u„ for each
quantum step n -n+ 1. To a very good approxima-
tion we get

Eq. (48) we may write, approximately,

v(n, t)=2G(n}v(u, t)

= 2[(1+n)(r- M+n+ 1)(r+M-n+1)]'~ o(u, t).
&u &u &8 &(8) 1

~n 60&n 2v 2C ' (48) For M=O, relation (52) becomes
(52)

where Eqs. (42) and (34) have been used.
Hence, the 6 function approximately gives the

metrics which connect the u space to the n space.
We notice that, due to the smallness of 1/G(n),
we can consider u as well as 8 to be practically
continuous variables.

We can obtain the physical meaning of IA(u, t) I

from Eq. (48). In fact using Eq. (48) and the
definition (34), the normalization condition can be
written

Q„ I p(n, t)l = j IAa(u —t)l du= 1

for all times t. Hence (A. I is the probability dis-
tribution in the u space.

From the previous discussion, it is clear that a
compact way to calculate the kth moment of the
photon distribution at the time t is given by

r+N

(n (t))= Zn'Ip(n, t)I'= Jdun'(u)IA, (u —t)I', (49)
n=O

where n(u) is given by Eq. (47). The function
IA.,(u- t) I is determined by the initial condition

IA, (u —t") I'= G[n(u)] Ip[n(u), t*] I (50)

where p(n, t*)' is the short-time solution of Eqs.
(25) and (28).

A detailed use of Eqs. (49) and (50) is computa-
tionally quite cumbersome and is best done by
computer. However, taking into account the fact
that iso~' is quite a sharply peaked function, we

can give a simple approximate evaluation both of
the mean photon number n(t) and of the dispersion
v(n, t). In order to evaluate n(t), we notice that
since IA, (u-t)I is sharply peaked about u=t, the
mean value n(t) can be approximated by the most
probable value n(t), i. e., the value of n obtained

by setting u= t in Eq. (47).
Thus we have

v(n, t) = 2((1+n)[(r+ 1)'- n~]']' ~'v(u, t). (53}

Qn the other hand, we already know from Eq.
(25) that for times such that n«r, we have o(n, t)

[n (t )]1 /2

Specializing Eq. (53) in this region, we get

n
v(u, t)= 2~' 1+n

Hence, o(u, t) starts from zero at t = 0, and af-
ter a very short time t~, such that, say, n(t~)
-100, reaches the stationary value

o*=1/2r. (54)

After this time t*, A(u, t) is consistently unde-

formed so that v(u, t) = v*. Hence, by Eq. (53),
we get at any time

v(n, t) =(n(t)[l —n(t)'/r ]j' '. (55)

We remark on the consistency of our calculation.
First of all, in order to use the short-time dis-
persion a(n) = v'n to evaluate the stationary disper-
sion of n, it has been implicitly assumed that the
time t" after which o(u, t) is stationary is smaller
than the time t, after which the short-time solution
ceases to hold so the time regions of validity of the
two solutions do overlap. This assumption is per-
fectly consistent with our results since we had de-
fined t * and t, by n(t*)» 1 and n(t, ) «r.

To justify the use of the quasidifferential rela-
tion (52) between the dispersions of n and u, it is
clearly necessary that n, as a function of u [as
given by Eq. (47)], does not vary appreciably in an
interval v". This is well verified by Eq. (47),
which shows that n as a function of u varies on a
scale I/v"r, which is bigger than o*= 1/2r by a
factor 2v'r

We now turn to the fully excited state x=M; here
Eq. (52) becomes

n(t) =n(t) = (r+ M)an'[(2r+ 1)'
v(n, t)= ( 21+)(nr 2+ In)'~' (uv, t). (58)

xt -Jf ~(r+M)/(2r+I)] . (51)

We next proceed to calculate the dispersion of
the photon number around the value n(t). We know

that A(u, t), after some time t*, obeys the differ-
ential equation (44). This means that the disper-
sion a(u, t) of this curve around the value u= t is a
function of time which starts from zero at t = 0 and

after the time t* reaches some stationary value 0~.
We now calculate this stationary value. From

For n «2x, i. e. , for times much shorter than the
period, we know that v(n) = [n(n+ 1)]'~ . Hence,
Eq. (56) becomes

[n(n+ 1)]' '= 2(1+n)(2r+ 1)' "v(u, t),

from which one derives that as soon as n is of the
order of a few hundred we have

a(u, t)= o*=1/2(2r)'"
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This stationary dispersion is now bigger than the
dispersion o~ of the superradiant state by a, factor
(m&) . More precisely, from Eq. (47) one sees
that when n is near to the maximum value 2x,
i.e. , for u=K/(2m+1)'~', the variation of n cor-
responding to a variation o* of u is of the order of
2y'.

From all this we conclude that o(n, t) is always
of the order n; in other words, that the chaotic
nature of the short-time distribution is preserved
as the time elapses.

V. DISCUSSION AND CONCLUSIONS

We discuss here the results of the previous sec-
tions. We have found that the mean photon number
n(t) is approximately given by the Jacobi elliptic
function cn or sd as

(f)
(x+M)(r- M+ 1) d'[(2 + 1)' Elk]

2m+ 1

= (~+ M)cn'[(2~+ 1)'"(f—T) i a], (58)

where the elliptic parameter k is given as a func-
tion of the initial value of the inversion M and of
the cooperation number x by the relation

a = (r+ M)/(2~+ 1) .
The quarter of period T" is given by

T = (2m+ 1) ' ~ [a ——', ln(1 - 4)],

(59)

(60)

n(t) = (r+M)(r- M+ 1)t, (61)

which coincides with Eq. (21).
The behavior of n(t) as given by Eq. (58) depends

strongly on the relative magnitudes of M and x; if
M= x, it increases very slowly and reaches the
maximum value after a time

7 = In2~/(S )"' (62)

The time distance between two subsequent peaks is
2T.

One may ask what relation exists between these
and the classical hyperbolic secant pulses. We
observe that if M=~, the elliptic parameter k as
given by Eq. (60) is k= 2r/(2r+ 1), which is ex-
tremely near, but not exactly equal to, 1. Now,
when k -1, it is well known that the elliptic func-
tion cn approaches the hyperbolic function sech.

where ln4 & a & —,'m.
The number a is equal to —,'m in the trigonometric

limit k 0 and is equal to ln4 in the hyperbolic lim-
it k-1. The time T is the build up time of the
pulse, i.y. , the time in which the mean number of
photons increases from zero to the maximum value
x+ M. We first compare our formula with the
short-time solution (21). To first order in time,
the sd function of Eq. (58) is (2~ +)I'~ ts. Hence
we have

(h)'= (2- R,')+ (r+ R, ) (64)

We compare this equation with the classical
equation (13). If one identifies r, with R~ and the
cooperation number x with the total length of the
Bloch vector 4, the first term of Eq. (64) coincides
with the second member of Eq. (13); therefore the
quadratic terms of Eq. (64), which give rise to the
superradiant emission, are of classical origin.

However, the second term in Eq. (64) has no
counterpart in the classical equation (13). This
term, which coincides with the effective population
of the upper level n~, is the quantum spontaneous
emission source. This source is essential to set
the system into motion when initially no transverse
polarization is present, i.e. , R, (0)=M= r, asisthe
case when the system has been excited incoher-
ently.

On the other hand, the quantum term x+ R, be-
comes completely unessential when the system is
already prepared in the superradiant region R, «x

So we concludethatif M= x, we get a periodic
train of pulses separated by a distance 2T whose
shape is very close to

n(t) =2xsech (2x)'~ [f (2m-+1)T],

m=O, 1) ~ ~ ~ .
The shape of each pulse coincides with the clas-

sical one. The great difference is that the buildup
time T is not infinite, but is In(2x) larger than the
time of duration of the single spike (2r) '~~. In the
case M= x, the system radiates a series of well-
separated hyperbolic secant pulses. On the other
hand, in the superradiant case M=O, k= &, and we
get a train of pulses whose separation time is of
the same order as the duration time, and the shape
resembles very much the square of a sine function.
The quarter period T is given by

T = (2m+ 1) ' (lna+ —,
' ln2).

Finally, when only a few spins are excited, i.e. ,
when M = —x, one gets elliptic functions with pa-
rameter k 0, i.e. , pure trigonometric functions.
That is what we expect for the small oscillations of
a pendulum near the stable equilibrium point.

In order to elucidate the contribution of the quan-
tum spontaneous emission as well as the pendulum
analogy, we find the equation satisfied by the quan-
tity o.'(t)= [n(t)]' . This quantity is clearly the an-
alog of the classical amplitude of the field. Using
Eq. (58} and differentiating with respect to time,
we have

(~)'= (~ M+ I+o.')-(r+ M-o. ').
We know by definition that z + R, = M. Hence Eq.
(63}can be written



R. BONIFACIO AND G. PREPARATA

d n = 8y'Ply + S3 ~ (66)

We see that the ratio between the classical source
n, n, and the quantum source n, is equal to n, . This
means that the classical theory is able to describe
the para, metric effect only if a substantial number
of excitations are already present in the mode ]..

One may ask whether the quantum equation (64)
does or does not preserve the pendulum analogy.
To answer such a question, we define in analogy
with Eq. (37) the mean angle 8 as

n = (r+ M) sin'8(f) .

Using Eq. (64) we get

(66)

= (r-M+1)+ (x+M) sin 8.(
d8(t)

By differentiating both terms with respect to time,
we obtain

~ 0

28 = (x+M) sin28. (66)

Hence, the system is equivalent to a rigid pendu-
lum whose displacement from the unstable equilib-
rium point is 20.

However, from Eq. (67) we see that this pendu-

lum has a minimum kinetic energy r- M+ 1, and

because of this intrinsic energy, the quantum mo-
tion does not have an unstable equilibrium position.
We note that the pendulum angle 8 defined by Eq.
(66) is generally different from the angle p de-
scribed by the Bloch vector (14). In fact, using
the relation A~+ m =M one sees that p and 8 are
related by the equation

cos-,'p= [(M+ r)/2r]' ~' cos8 .

This relation reduces simply to 28= p if x=M. In

general, the equation for p, using Eqs. (68) and

(69), is quite complicated:

or when the system, starting from 83=x, reaches
this region by spontaneous radiation. Mathemati-
cally speaking, the structure of Eq. (64) is essen-
tially different from Eq. (13)because the only
equilibrium point of Eq. (64) is the stable equilib-
rium point 8, = —~.

Our result can be immediately translated to the
trilinear boson interacting using the effective pop-
ulation notation given by Eq. (7) and the simple
constant- of- motion relations

n, —n=n, (0), n~+n=n3(0).

In particular Eq. (64) takes the simple form

(), (M )(
1

)
(70)

We now compare this equation with the first-order
equation that one can easily derive, integrating
Eq. (16) with p(0) = 0. Observing that —,'M is the
initial value of cosy, we see that the first term
in large parentheses is the classical term, where-
as the second term is purely quantum mechanical.
The system behaves classically when the Bloch
angle is such that

2~sin —,y =-N, »1. (71)

Hence the range of y for which the quantum spon-
taneous emission is important is very small if x
is macroscopically large, but it is not at all small
if r is of the order of a few hundred. This may
serve as an explanation of the disagreement of our
solution (macroscopic r) with the various computer
computations.

Despite the fact that the quantum spontaneous
emission affects the mean photon number only at
the onset of the pulses when x= M and becomes
practically unessential a.s soon as cp satisfies Eq.
(71), its effects on the photon statistics are much

more dramatic.
In fact, in the case M =-x we found a dispersion

law which at any time is practically of a Bose
type: o(n) =n, whereas for the superradiant states
M«x, we ha,ve found

o(n) = [rz(I —rz'/r ')]"'. (72)

This dispersion within a factor [1+n/r]' coin
cides with that of binomial distribution, However,
for times f not too close to (2m+ l)T, we have
a(n) = V n, which is the characteristic dispersion of
a coherent field. '

We conclude by emphasizing that the chaotic and
coherent character of the short-time photon dis-
tributions is preserved by the dynamics of our
system and therefore that the different photon sta-
tistics in the case M= x and M«x are due to the
different nature of the initial state.

The state M=x is simply a state in which some
energy has been stored in the system. No phase
relation exists between the dipoles of each atom,
so the transverse macroscopic dipole x,~= x~ —M
is zero. This system starts radiating incoherently
by a purely quantum-mechanical spontaneous emis-
sion.

In the case M«x, the system has been prepared
in a correlated state with a large transverse polar-
ization. This polarization acts as a classical
source of spontaneous emission much larger than
the quantum source z+M and therefore the field
emitted has coherent pr quasiclassical properties,
as we expect for a field generated by a "classical
current. "
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The radiative decay of an atom with two excited states coupled by an external perturbation
is investigated. The differential equations of motion are Fourier transformed and the prob-
ability amplitudes are obtained by contour integration. The real parts of the poles in the com-
plex plane are the perturbed energies of the excited states, and the imaginary parts yield the
decay characteristics. The decay probabilities of the excited states contain three different
decay terms; two exponential decays and one modulated exponential decay. The probabilities
of the final states give the frequency distribution of the emitted photons as a function of time.
In an Appendix, the Heitler-Ma formalism is used to eliminate the final states of the system,
and the resulting equations which contain damping terms age compared with the phenomeno-
logical method.

I. INTRODUCTION

When Weisskopf and Wigner' considered the ra-
diative decay of multilevel coupled atomic sys-
tems, they showed that for a certain class of de-
cays it is possible to simplify the set of differen-
tial equations of motion for the system by elimin-
ating the final states. This procedure yields
equations for the decaying states only, with coup-

ling to the final state accounted for by the inclusion
of damping terms. Other authors ' have exten-
ded this method to cases of two or more excited
states which are coupled by external perturba-
tions, and which decay via several channels to a
common ground state despite the fact that the orig-
inal der ivation excluded such situations.

A formalism developed by Heitler and Mav' can


