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Basic Formulas

The radial Schrédinger equation for a modified Coulomb field is separated into two first-
order equations for a “phase” function and an “amplitude” function which vary only in the non-
Coulomb region »<#,. At r=7,, these functions are related to the mixing parameter and
normalization constant of quantum-defect theory. Integrals over the range [0, 7] give the
scattering phase shift and the wave function’s amplitude near the nucleus. Phase shifts for
negative energies serve to calculate the discrete eigenvalues of an atom or positive ion. A

numerical procedure for this approach is outlined.

I. INTRODUCTION

This paper originates from an attempt to ex-
plain the behavior of inner-shell photoabsorption
cross sections. Since these cross sections are
proportional® to the square of the final state’s am-
plitude near the nucleus, their interpretation re-
quires a suitable formulation of this amplitude in
terms of the factors that influence it. The phase-
amplitude method? (PAM) serves this purpose by
representing the inner amplitude in terms of a
definite integral over the non-Coulomb part of the
potential, provided one utilizes as basis functions

a pair of solutions of the Coulomb-field wave equa-
tion. The same method also produces a finite-
range integral expression for the exact scattering
phase shift.

In the last decade, Calogero and others® have
developed this method in the context of potential
scattering. However, this recent progress has
treated explicitly only potentials which vanish fast-
er than ! and has not yet applied the PAM to the
broader range of problems for which it is useful.

This paper further develops the PAM in three
ways: (a) It derives basic PAM formulas for the
case of a modified Coulomb field. (b) It describes



2 PHASE-AMPLITUDE METHOD IN ATOMIC PHYSICS. I-*"

the connection between this approach and the quan-
tum-defect theory (QDT). Specifically, the PAM
provides the mixing parameter which is the basis
for a QDT treatment of excited and ionized elec-
trons, whereas QDT furnishes the normalization
of the wave function at » =% from which the PAM
produces a description of penetrating orbits. (c)
It provides a framework for the application of the
PAM to several problems in atomic and molecular
physics, some of which will be pursued in subse-
quent papers.

The present discussion is limited to local cen-
tral potentials. The extension to nonlocal, com-
plex, and many-body potentials is outlined by Calo-
gero and others,® but its application will require
further work.

II. PHASE-AMPLITUDE METHOD

Consider a single electron whose radial motion
in a central field is described by a Schrddinger
equation whose Hamiltonian H(») can be partitioned
into two parts:

H(r)P(r)=[Hy(r) - Ulr)] P(r) = EP(r). (1)

This partition is chosen so that H, has a pair of
known independent solutions (u,u,), satisfying

Ho@u; w)=Eu;(v), i =1, 2
u1(0)=0 . (Z)

The magnitude of U(r) is not required to be small.
The PAM proceeds by the ansatz

P(r)=a@){u, cos[6(r)] —u,sin[6(r)]}

= a(»)P(r) (3)

and the constraint®
P’ (r)=arfu] cos[6(r)] —uj sin[6(M]}, (4)

where primes denote differentiation with respect
to », and a(r) and 8(r) are the “amplitude” and
“phase” functions, respectively. (3) and (4),
together with the Schrddinger equation, serve to
eliminate P(»). Combining Egs. (3) and (4), we
get

(u, sind +u, cosd)
(u,cosd —u,sind)

(5)

C!_’ :61
a
Similarly, Eqs. (1) and (4) combine to give

o' 8 (u] sind +uj cosd) - Ulx, cosd —u,sind).

a (#] cosd —uj sind)

(6)

Subtracting Eq. (5) from Eq. (6) shows that & is
independent of & and gives differential forms for
the equations which are solved in the application
of the PAM:

8 = Ulu, cosd —u,sind?/W(u,, u,) ,

("
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a’ U
s 5— 3
> ) (4, cosd —u,sind)

x(u, cos[d+3m] —uysin[6+37]) . (8)
W (u,,u,) indicates the Wronskian determinant of
u, and u,, which is nonzero if #, and u, are inde-
pendent solutions of Eq. (2). The quantity squared
in Eq. (7) is just P (), the radial wave function
stripped of its amplitude function. Equation (8)
contains this same function multiplied by a simi-
larly reduced wave function phase shifted by 3.
This product behaves like sin2¢, where ¢ is the
phase of P, so that the sign of o’ /a changes with
7, depending on the local sign of U and the quad-
rant of ¢. :
The appearance of U as a multiplier of the right-
hand side of both Eqs. (7) and (8) suggests that H,
should contain all long-range terms from the total
potential, In this way, the phase and amplitude
functions become constant at a finite distance 7,
from the nucleus so that Egs. (7) and (8) have in-
tegral forms involving definite integrals

ﬁ(r):W'lﬂ Ulu, cosd —u, sind)?dr | ()

alr)=alr,) exp[—W'lf:0 Ulu, cos6 — u,sind)

(8"
In order that the wave function remain finite at the
nucleus we have required 6(0)=0. Accordingly,
one generates the phase function by starting at

7 =0 and extending the range of integration in Eq.
(7') to increasingly large values of » until 7, is
reached. Thereafter, U vanishes and § remains
constant; the value of 6(;) determines the asymp-
totic phase shift. Under the same circumstances,
the constant a(7) in Eq. (8'), determined by nor-
malization at » =, depends only on 6(3p) (see Sec.
IV). Therefore, the amplitude function a(r) is ob-
tained by a simple quadrature over the interval
[7,%], once the phase function is known. By in-
cluding only short-range potentials in U, one also
incorporates the familiar behavior of the standard
long-range potentials into the basis set (u,u,),
while displaying explicitly in Egs. (7') and (8') the
effects of the low » potentials which distinguish
one atom from another,

X (u, sind +u,cosd)dr] .

III. COULOMB FUNCTIONS

The main purpose of Sec. II requires a set of
functions (u,, u,) which include the effects of all
long-range potentials. We will assume that in the
presence of a Coulomb tail, the asymptotic region
is dominated by the Coulomb and centrifugal forces
so that sufficient accuracy is achieved by truncat-
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ing all other forces at some radius » =7,. These
other forces, such as polarization, could be inclu-
ded in Hy by a modification of the QDT used below.
For now, H, will be the Coulomb Hamiltonian

dz
[HO—E]u,- =(—é17 +_—1’~2—_— - -EJu; =0, (9)

where 7 is in a.u., E is in rydbergs, and [ is the
angular-momentum quantum number.

Two alternative sets of Coulomb functions are
suited for construction of solutions in complemen-
tary regions of the (E,») plane. The first set con-
tains the independent Coulomb functions f and g
described by Seaton.’ Introducing the variables

p=z7,

€ =—1/k?= E/z?

k=v, fore<0 (10)
=iy, for €>0,

(f,g) are defined by the series expansions®

(20) " te?/* & T(+1-k+0) <2P>o
) b

T(l+1-k)oZy T(2l+2+0)0! \ &

flk,I;p
1y

In(2p) f (x,7; p) +

glk,1;p)= A(ﬁ’l)

(2p)* e
™

2 (=12 +1-0)T1-k+0) {20\
X“ZO (-1 -«)o! (7)

A(K, l)(2p)’ + 1e-P/K

T +1-«k)
S R (k, DT(L+1-k+0) (20
XGZ=:0 r(2l+2+0)0! (K ) ) (12)
where (13)
A(K l)— 0(1 pa//{) s
b=

ho(k,1)=[9p(l+1 =k +0)— 391 +1 k)

- 3U(=1-k) =92 +2+0)=P(o+1)] , (14)

) = 2] , (15)
W(f,8)-22/1. (16)

The Wronskian in Eq. (16) is evaluated by taking
derivatives with respect to 7.

The regular function f is related to more famil-
iar confluent hypergeometric functions’ by

(2p)“1 -p/k

f(Ka lap) 1"(2l 2) F(l+1“

k,21+2,20/k)

L. DEHMER AND U. FANO 2
Kl+1
:m M<,z+1/2(2P/K)~ (17)

The important feature of (f,g) is their behavior
at small p:

1 , 1 .
i, Lip)= ( r(zz+2)) (20)' 1‘(r(zz+3)1!) (20)'?

1 (1+1) . .
* (r(zz 1421 T4l (2 +4)) (2p)"* 2+ 0(0"**) ,(18)
ng(k,1;p)=A(k,1) In(2p) f (x,1; p)

-T2 +1)2) " +0+0(p7 "% , (19)

where

“Hﬁi_") @)+ (<p(2)

- [-(H2) oy ( X201y

12>(2p)2:| , for 1=0

X(Zp)"*ajl , for 1#0

(20)
and o@(x)=1/x+2p(x) .

In both cases, k-2 does not appear until the third
term. This choice of normalization causes ( f,g)
to be energy independent as p~0. From Eq. (9),
we see that this energy independence extends over
the combined range [—€ <€ <€, p <2/€] over which
€ is much smaller than the potential and kinetic
energies. In addition (f,g) are entire analytic
functions of energy.’®

Since Egs. (7) and (8) are solved in the interior
of the atom, they are best cast in terms of (f,g).
This makes the phase function § and the logarith-
mic derivative @’/ energy independent in the re-
gion described above, and thereby confines the
energy dependence of P(») as 7~ 0 to the value of
@(0).

Another set of functions (f, §) is useful for rep-
resenting scattering states in the asymptotic re-
gion. For p>2/¢>0,8 these functions have the
form

f—(2y/m)! %sin(w) , (21)
8 -~ (2y/m*?cos(w) , (22)
Where
w=p/y —slr+yIn(2p/y) +argl'(l + 1 —iy) . (23)

The pair of functions ( f, g) is obtained by a lin-
ear transformation on ( f,g):

fik,2;p)= Blk,1)*'? flx,1; p) (24)
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and
8(k,2;p) =Bk, 1) %[ glk,l;p)+ S (k,1)f(k,1;p)] ,(25)

where

B(k,1)=A(k,1)[1 - exp(- 277) St(e)]* , (26)
9(K,l)=é£2-%l-)— Re[p( +1+k)+ (=1 +k) —21In(x)] ,
(27)

At €=0, the two pairs of functions coincide because
B=1and §=0.

IV. CONNECTION WITH QDT.

In accordance with QDT, we write the normal-
ized wave function in the external Coulomb region
as a linear combination of (f,g),

P(r)=N(x,1){ far)cos[nt (k,1)]

—glzr)sin[nt(k,1)]}, forr=wg, (28)

where we have deleted the arguments « and [ from
the Coulomb function symbols. In this expression,
n¢ is a modified phase shift related to Seaton’s
mixing parameters B(k,l) and 7 (x,l)’ and to the
scattering phase shift 6., (k,7) by

B(k,l) =tan (n&), (29)
cot [m (k,1)] =cot (7€) + G, (30)
cot[6, (k,2)] =cot [ru(k,l)] =B [cot(nE) +G] .  (31)

Equation (31) introduces a function p(k,!) which is
defined for all energies and coincides with the
quantum defect for levels of the discrete spectrum,
The function p(k,!) also replaces &(x,7) when (28)
is replaced by the corresponding expression in
terms of the basis set (f,8),

P(r)=N(k,1){f(27) cos[mpu(k,1)]
-g(z7) sin[mu(e,0)]} . (28")

When P is normalized, so that

L Ple, ;7)P(e’, ;r)dr=b(e-€') , (32)

the normalization constants of (28) are given by

Nlk,1)= (4 z)V2p-¥2 (M) g-1/2

sinné
1 _\1/2pt1/2
= —(ﬁs-)m—é-— [(cotnt +§)2+B2]"V20"1/2, (33a)
RN(k,0)=(32)"20-2 (33b)
where
6=1, for € >0

[N

b3+ (g%) , for € <0. (34)
€= en
Since, for € <0, 6 is only required at discrete
eigenvalues, we use the subscript # to denote the
principal quantum number of a discrete state. The
nature of the quantity 6 is discussed elsewhere.®
Comparison of Eqs. (3) and (28) provides the
connection between 6(7,) and a(7,) and the param-
eters from QDT. The exact values of the PAM
parameters depend on the choice of Coulomb func-
tions used in Eq. (3) and are expressed for the
alternative sets defined in Sec. III by

5(ro)=n&, for (f,g) (35a)
=7, for (f,8), (35b)

and a(ry)=N, for (f,g) (36a)
=q, for (f,g) . (36b)

Using Eqs. (16)and (35a) in Eq. (7’), weobtain
£= _LfroU(v)[f(zr)cosd(r)
2z 0

- glz7) sind(r)] 2dr. (37)

This result from the PAM permits application of
QDT to atoms throughout the periodic table with
model potentials of the form U(r) + 22/ without re-
sorting to use of experimental data, The phase
shift £ also determines the value of the normaliza-
tion constant N so that the second PAM equation
may now be solved using the boundary condition
expressed in Eq. (36a), whereby Eq. (8’) becomes

a(r)=Nexp { - E’TE[TOU(V)[f(zr)cosé(r)

- g(z7) sind(1)] [ f(z7) sind (»)
+g(z¥ cosd(®)] dr} . (38)

Since for atomic systems U= 0, we see from Eq.
(7) that 6(») will be a monotonic function of 7.
Therefore, the relative energy dependence of the
phase shifts 7§ and mu reflect the relative energy
dependence of their respective phase functions.

An example of the energy dependence of 7& and mu
is shown in Fig. 1. The phase shifts are calcu-
lated for the /=1 channel of atomic sulfur using a
Hartree-Fock-Slater potential'® which becomes
pure Coulomb at #¢y~3. The function 77 is in-
cluded for comparison. Note that for € <3, #f is
more slowly varying than mu, whereas, for € >1,
mu varies more slowly. This remark illustrates
the value of introducing two alternative sets of
Coulomb functions in connection with modified
Coulomb potentials. Note that p, £ and 1 coincide,
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Phase Shift (Radians)

26 | ! 1 | L]

¢ (Rydbergs)

FIG. 1. &, wu, and 7 phase shifts for the =1
channel of atomic sulfur represented by a Hartree-Fock-
Slater potential.

like the function pairs, at €=0.
V. DISCUSSION

In problems of potential scattering, the impor-
tant quantity is the scattering phase shift 6, =7u.
When the phase function is calculated using (f,g)
as basis functions, the phase shift 5, is obtained
by substituting Eq. (37) into Eq. (31). Note that
this procedure avoids any explicit calculation of
the normalized wave function. Furthermore, a
plot of the integrand of Eq. (37) as a function of »
displays the contribution to the phase shift from
different parts of the potential.}! This approach
can show, for example, what regions of space pro-
duce the rapid phase increase by 7 near a shape
resonance. Note also that for § < 1, cos6~ 1 and
sind ~ 0 so that Eq. (37) reduces to the first Cou-
lomb-Born approximation for the phase shift,

The cross section for photoabsorption is propor-
tional to the square of the dipole matrix element
R(el, €'l"):

R(€l, Ell,) = fow 'Vpez (y)Pe'l' (’V)d’}"
= fow vP,(r)aNP.., @ dr . (39)

Mechanistically, one may distinguish two stages

of the photoabsorption process. The first one is
the photoabsorption “proper” during which the pho-
ton’s energy is transferred to the electron occupy-
ing P,;. This takes place in the region of space
occupied by P., and is followed by the “escape” of
the excited electron from this region. For inner
shell processes, the language of PAM serves to
factor Eq. (39) in a way which roughly corresponds

)

to these two stages
R(el, &'t )= {Nexpl [0~ (o' /a)ar']},

(40)
{fow 7P, (1) exp| fO' (a'/a)dr 1P, dr}

=a(0)R(el, e’'l')

where «(0) and R represent the two braces, re-
spectively. The reduced matrix element R corre-
sponds to the process in which an electron is ex-
cited from the initial state to a state normalized
to unit amplitude at the nucleus. This standard
normalization makes R independent of the behavior
of U beyond the region occupied by P,;. To form
the actual matrix element R, one multiplies R by
a(0), the amplitude of the final state at the nucleus.
It is @(0) which depends on Pand U in the outer-
most regions of the atom and, therefore, corre-
sponds to the probability of escape. This corre-
spondence is imperfect however, since «(0) per-
tains to an escape all the way from the nucleus
rather than from the initial subshell P,

For inner shell photoabsorption, the absorption
proper occurs in a region of high potential and ki-
netic energies so that R is virtually independent of
€ over tens to hundreds of eV, thus, confining the
energy dependence to the factor «(0). This is il-
lustrated in the case of K-shell absorption by com-
bining a variation of €, Ae¢, with U, i.e., by re-
placing U with

U’ =U(l+AE/U). (41)

In the K shell, U is of the order of Z2 so that P
and a'/a will be insensitive to energy changes of
A€ < Z% Therefore, the energy dependence of R
will result from the contribution to @(0) from the
range of integration outside the K shell.

The quantities «(0) and R in Eq. (40) are pre-
cise forms of the factors N,.;» and R described
qualitatively in Ref. 1. Their mathematical for-
mulation has been developed here as a preliminary
step to explain the inner shell spectra of the sul-
fur atom in molecular SF;. Since the absorption
proper occurs deep in the central sulfur atom, the
outstanding nonhydrogenic behavior observed'? is
due to the influence of the molecular field on the
outgoing wave and can, therefore, be represented
by a(0).

Equation (38) should also be useful for calculat-
ing the probability density of valence electrons in
the inner part of atoms, e.g., in connection with
hfs problems. Such calculations have been per-
formed in the past by means of the Fermi-Segré
formula'® which utilizes a WKB approximation,
However, it has not been readily clear to us how
(38) does in fact reduce to this formula,
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When € <0, wave functions must vanish for
In the language of QDT, this condition is
satisfied at energies for which

V=,

ple,l) +v(€)=n, n=1+1,1+2,+++ (42)
where (e, ) is defined in Eq. (31), v by Eq. (10)
and # is the principal quantum number of the dis-
crete state. If the left-hand side of Eq. (42) is
plotted against energy, its intersection with an in-
teger value # of the ordinate corresponds to the en-
ergy eigenvalue of the nth discrete state for the
potential

V)=l +1)/72= 22/v-Ul) . (43)

Regarding the numerical treatment of Eq. (37),
it is easy to show, using the low 7 form of U,

U=2(Z-z)/r, r-0, (44)
m(Z - 2) .
that 6(r) = ( zI‘(2l+2)1"(2l+3)> (2zn)***

PHASE-AMPLITUDE METHOD IN ATOMIC PHYSICS, I-:- 309

* (z r(;l(fz_)rz‘)(zz + 4)> (‘ 2 +§gl%%>

(22723 4een | (45)

This expansion serves to start the integration of
Eq. (37). The fact that U is usually positive or
zero everywhere for atomic systems means that

6 will increase monotonically, Therefore, it may
be calculated for increasing » by numerical inte-
gration of Eq. (7') utilizing a coarser mesh than

is required for an oscillating radial wave function,
Calogero and Ravenhall'* demonstrated this fea-
ture by using both the PAM and the wave function
approach to calculate phase shifts for s waves
scattered by an attractive exponential potential.
For all energies used, the PAMwas more accurate
and much less sensitive to the numerical mesh.
Finally, let us point out that Eq. (37) may be eval-
uated using the expansions in Eqs. (11) and (12) of
(f,g), since these expansions converge rapidly in
the range 7 <5 which encompasses the non-Coulomb
part of most atoms in the approximation of Ref. 10.

*Work supported in part by U.S. Atomic Energy Com-
mission, under Contract No. COO-1674-30.

TNational Science Foundation Trainee.
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