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The formulation of the van der %aals (VDW) interaction between atoms in terms of frequency-
dependent polarizabilities is extended to the problem of the long-range contribution to thehyper-
fine pressure shift in optical-pumping experiments. The requisite perturbed-energy expression
for the present problem involves two orders of VDW interaction and one order of magnetic
hyperfine interaction. This expression is recast in terms of integrals involving requisite
frequency-dependent response functions which are evaluated using the Brueckner-Goldstone
many-body technique applied earlier to VDW energy calculations. Specific applications are
made to H-He and H-Ne systems. The fractional shift 6@/@0of the hyperfine constant is
expressed in the form of DHX/B6, where R (a.u. ) is the separation between H and X atoms.
The values we obtain for DHx are 13.34 and 26.13 for X= He and Ne, respectively. This anal-
ysis removes one of theimportantuncertainties in hyperfine-pressure-shift calculations,
namely, the influence of coxrelation effects on the long-range part of 6 8/80.

I. INTRODUCTION

The Brueckner-Goldstone (BG) many-body per-
turbation theory has recently been adapted to the
problem of interatomic forces. ' The formulation
of the procedure utilized an expression for the van der
Waals (VDW) energy of the interacting atoms in

terms of the frequency-dependent polarizabilities,
n(&u) for the individual atoms, and BG theory was
applied specifically to the calculation of o.(u). It
is, however, straightforward to extend the BG
procedure to other properties of interacting atoms
besides the VDW energy, the only difference being
that one then has to handle other response func-
tions besides n(&u). In particular, as pointed out

in earlier work, " it is desirable to extend the
BG theory to the study of hyyerfine pressure shifts
(HPS) of atoms with unpaired spins (referred to
hereafter as paramagnetic atoms) in buffer-gas
atmospheres. Our present work is addressed to
the problem of calculating the long-range contri-
bution to HPS through the use of many-body theory.
The long-range contribution to HPS of paramagnetic
atoms has been evaluated in the past through the
use of variation-perturbation techniques. ' Results
obtained by this latter technique have the usual
disadvantage of being sensitive to the form of the
variation function chosen. The BG procedure, in
addition to removing this uncertainty, has three
other advantages. First, it allows us to include
conveniently the influence of intraatomic correla-
tion effects. Second, for the heavier buffer-gas
atoms which are more polarizable, the long-range
effect is of major importance and an accurate pro-
cedure for its calculation is desirable for compar-
ison with experiments. Finally, in the case of
smaller buffer-gas atoms, where short-(and in-

termediate-) range interactions are of importance,
one can derive the "experimental" values of such
contributions to HPS by subtracting the accurately
calculated value of the long-range contribution
from the experimental HPS. These derived, ex-
perimental values of the short-range HPS could
then serve as references for assessing the accu-
racy of theoretical procedures developed for their
evaluation. At the present time, short-range ef-
fects are included only partially through orthog-
onalization techniques that incorporate the influ-
ence of Pauli correlation of electronic orbitals of
the interacting atoms. Although the present paper
deals with the specific cases of hydrogen-helium
and hydrogen-neon systems, the procedure devel-
oped is quite general and should be easily appli-
cable to more complicated paramagnetic atoms
with a number of core states and more than one
valence electron outside the closed shell.

In Sec. II we present the essential features of
the HG theoryas applied to the HPS problem. Pre-
scriptions are obtained for deriving the requisite
response functions through the diagrammatic

. techniques of many-body perturbation theory. In
Sec. III we present results of our calculation on
H-He and H-Ne systems and discuss their signifi-
cance.

For the sake of simplicity, we shall assume the
atoms are spherical, which is adequate for the
specific systems to be studied here. The procedure
developed here can, however, be easily extended
to nonspherical atoms.

II. FORMULATION OF FREQUENCY SHIFT IN TERMS
OF FREQUENCY-DEPENDENT RESPONSE FUNCTIONS

In developing the theory for HPS, we start with
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the paramagnetic atom A located at a distance R
from the inert-gas atom B, the latter being in its
ground state. The internuclear distance R is as-
sumed to be large enough so that the charge clouds
associated with the individual atoms do not overlap
significantly. In the absence of interatomic inter-
actions, the atoms A and B are described by their
respective nonrelativistic atomic Hamiltonians
X"and K with corresponding eigenfunctions 4;&
and 4&B and eigenvalues E, and E&, respectively.
Then the zero-order approximation to the problem
is described by the Hamiltonian Ko:

Xo=X +X

with eigenvalues E,&= E, +E&A B

and eigenfunctions

(2)

To study the influence of the interaction between
the atoms on the hyperfine constant @, we have to
add two perturbing terms XvDw and Xo„ to Ko, lead-
ing to the total Hamiltonian X:

K= Xo+ K

with K = Kvnw+ Koio

Kvnw is the van der Waals interaction Hamiltonian
given by

Xvnw = (e /R ) Z (2zxz, -xi x„—yi y„)

+ [terms in (1/R ), (I/Rs), . . .] (4)

where the summations ~ and v are over the elec-
trons belonging to atoms A and B, respectively.
Xo„ is the Fermi-contact Hamiltonian for the atom
A, namely,

Xo„=(16w/SIA) Pii pIA Q s~5(ri ) (5)

In Eq. (4) the first term is the dipole-dipole inter-
action, while the succeeding terms represent di-
pole-quadrupole, quadrupole-quadrupole, and
higher -order multipole interactions. The elec-
tronic coordinates r~"(xi"„y"„,z"„) are measured
with respect to nucleus A and r„(xe,ys, z„) are
measured with respect to B. While in our present
work we shall consider only the first term in Eq.
(4), the process of calculation can easily be gen-
eralized to include other terms. In Eq. (5) I„and
p."„are the spin and magnetic moment of nucleus
A, s)„ is the spin angular momentum of the Xth
electron belonging to A, and P is the Bohr magne-
ton eb/2mc.

It has been shown elsewhere'& ' that the lowest
order in which the change in hyperfine energy oc-
curs for interacting atoms is third order (4'E) in
K'. On extracting the terms linear in Xo„ from
the perturbation expansion for 4'E and using the
angular momentum selection rules, the following
expression for the change in hfs energy results,
namely,

~sE» „s g &~oAI ~ l~;A& &q'iA IE I q'iA& &q'iA IXoi. l ~oA& I

&drool

2' i~so& I

i, l, s (Eoi +Eoo) Eo;

gsE 6 Rs Q &@OA I
& I +iA& &@ 'A INf I

@iA) &@iA I
~ I+oA& 1&@owl ~ I +os& I

iy j~o (Eo + E )(Eo()~+ Eoo )

&sE 6 Rs @ i &@ g' I &+OA I2'"I+iA& I'I &+oel2'Iq'i. &l'
(EA EB b2i)i p~ + pal

(8)

The quantity of interest to us is the fractional
shift 4@ (R)/ ao which is given by

&d (R) 6 Ei+dPEs+b, E, 1

where 8p is the hyperfine structure constant of the
isolated atom A. In Eqs. (6)-(9), 4'oA and C oii re-
fer to the exact ground-state wave functions of the
individual atoms A and B at infinite separation.
The symbols Ep& and E&& represent the excitation
energies: Ep~

= Ep E~ Epy
= Ep Ey ~ In Eqs.A A A B B B

(6)-(8), ZA and Z are given by

(IO)

and may be regarded as the total dipole operators
for the atoms A and B. The primes on the sum-
mations in Eqs. (6)-(8) indicate that in the sum-
mations over the states i,j of atom A and k of atom
B, only excited states have to be included.

For our present purposes, it is convenient to
express the shift of the hyperfine energy given in
Eqs. (6)-(8) in terms of integrals over imaginary
frequencies. Thus, using the well-known relation

1/(a + b) = (2/w) J (ab dpi)/(a + ops)(b + oP)
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haz) = (8/vfto) f d(o F",(i(o)(a (i(o)

aRZR= (8/2nafto) f do), f, do)RFA(i(o„io)a)pa

X (io))~ Rh)2) (12)

we can rewrite the expressions in Eqs. (6)-(8) as
3 (O

') ER=- a 0 (to d~) d~aP (i~„io)2)2m'
0 0

)( P'(i~ ), i~a),
where the response functions F"„F,",p", pe, and
a are similar to the response functions in yolar-
izability calculations ' ' and are defined by the
relations:

FA( ) 2&~(a)( )I~ I~ ( )& 2g &+OAI2' l~(A&&+(AI2' l~)A&EO)&+-la*. l+OA&(d =
Og &)0

[(EA. )2 +2]EA

FA ( ) 2 &@())( ) l~ I@())( )) 2Q &@OA l~ i@(A&EO(&@(AIN( l@)A& &@(AI~ l@OA&+of
2 OA ( fs OA 2 [(EA )2 ~2] [(EA)2 0)2]

p, ( ) 4&~(,)( )l~())(„)) 4g &qoAI&"I+, )&+ I2'"I+. &+'. )'
2 OA ) 0A 2 [(EA )2 2] [(EA )2 2]

P (~), (da) = 4 &+02(&() lq'oa((oa) &= 4~ &e„lz le„&&y„lz lt„&(E«)
gjp g 3 gB 3 Ra

&0& —&~ &0& 3

~ (~) 2&@ (~)I22)l@())(~)& 2p' &+0212' I+)R)& 8')al2' i@02&EO(

(ZoI —(0
(18)

In Eqs. (14)-(18), @OnA((o) and 4'O'A'((0) represent
first- and second-order perturbed wave functions
for atom A due to the external field defined by

0A (0 (ER)2 2 . (A

+oA'(~)

P Eo"(&@ AI&" I+(A& &@ Al~" I@.)A&
'

@ (20)EA [(EA )2 ~2] RA/ ~

The first-order perturbed wave function )1)os ((0)
is defined in the same way as 40'A'((d) in Eq. (19),
with the index A x eylaced by 8 to refer to atom
B. The function (aa((o) is the familiar frequency-
dependent yolarizability that is used in the VD%
energy calculation. ' The development of the many-
body formalism for handling these additional re-
sponse functions follows broadly similar lines as
those for (2 ((0). However, some additional con-
siderations are necessa1y 1n view of the greater
complexity of the form compared to (2 ((0). The
many-body theory for calculating these resyonse
functions %1ll be sketched 1n the remainder of this
section.

In Eqs. (11)-(15)for the response functions, the
hyyerfine operator occurs only in the expectation
value expressions. The situation is thus broadly

(22)

(28)

(24)

and K,'(f) = Z ((Nto&i la Ij& e'"'+ c.c.)re(al, , (25)

where 28'0 is the amplitude of the eternal elec-

I

analogous to that in the theory of hyyerfine con-
stant of isolated atoms, except that we now need
atomic wave functions perturbed by a time-depen-
dent external field. Since the ground-state wave
functions %0~ for the atom A are not known exactly,
one has to start as usual with the zero-order wave
function I 0A (and 4»), which is an eigenfunction of
the zero-order Hamiltonian QA and handle both
the difference Q'A between the actual Hamiltonian
XA and QA and the electric field Hamiltonian Xa (f)
as yerturbations, and make use of the double-
perturbation formalism. The same yrocedure is
applied to obtain the ground-state wave function
4'0& for atom B. For the sake of uniformity, we
use notations similar to that in the calculation of
(a((d), ' namely;

X,=Q (r, +V,)=Re()IR()I(, (21)
4

with T( = —0 V( N/r(-1 P
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&1((t)=lim U (t, —~)@o
w p

(a6)

tromagnetic field. We have omitted suffix A in
the above expressions, since we are dealing with
atoms A and B individually. The wave function
4(t) for the atom, incorporating the combined ef-
fects of K,' and K&t can be written in the interaction
representation in the form

x f dt„T[K,' (t,) K,' (t„)] (as)

and K, (t) =e ' o'K'(t)e' o'e (a9)

In performing the time integrations in Eq. (28)
one utilizes the usual limiting procedures de-
scribed by Eq. (30):

f' e'"'dt= lim f' e""""dt=e' '/i(o (3.0)
where U (t, tp) = 1+Z V„(t, tp)

n=1

U „(t, t(&) = [(-i)"/nl] f dti ~ ~ ~

to

(a7)

Thus, Eq. (26) for 4(t) becomes

40

1xx,' . &o& C'o
Ep — ' +(p

+ Q i(ppp- zp sprat&t

f1=0

1, , 1 1
Ki '''Ki Spa hpzep

Eo-Koala(0

Zo Xp +ao& Zo Ko +P&

i(3o- so& i 1, , 1 1

z, -x, &' "K'z, -x, ''z, K... 'o"o

e (( Xp 8p k 3 (u & i
n=0

1, , 1 1 1
Kl' "Ki' Sos SpS Spsep+ " ~

Eo —Xp 73(d Ep —Kp %3(p Ep —Kp +a(p Zp Xp +(4 (31)

In the diagrammatic representation of various
terms in Eq. (31) there will be two characteristic
vertices associated with K,' and Xp'(t). In the con-
struction of the diagrams for &I (t) and diagrams
associated with the response functions, it is help-
ful to note that the time dependence connected with
Ki' vertices does not involve the frequency, where-
as each of the vertices associated with the opera-
tor Xp(t) introduces characteristic frequencies
(d and —&. Another point that should be noted
here is that the normalization condition for &1((t)

1s

(Sa)

in view of the unitarity of the evolution operator
U and the normalization of the zero-order func-
tion(Co]go) = 1. Proceeding to the diagrammatic
representation, typical terms in the perturbation
expansion of 4(t) involving one and two orders in
K(' and Kp(t) can be represented as those in Fig.
1. Each of these diagrams actually represents the
sum of a set of diagrams obtained by permuting
over all the possible relative positions of the X&'

and Xp (t) vertices, corresponding to similar per-
mutations among the K, (t, ) terms in Eq. (a8).

(e)

FIG. 1. Some diagrams for the perturbation ex-
pansion of the exact wave function 4'(t).
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The rules for energy denominators are simply ex-
tensions of rules for the polarizability problem
with an addition of a characteristic frequency a co

after each 3@(t;)vertex. In keeping with our con-
vention used in Eqs. (19) and (20) in Sec. II,
where exact wave functions of the time-dependent
problem were being considered, one can define
4'0"' to be the sum of all contributions to the wave
function, in which the time-dependent perturbation

acts n times while the number of X,' interaction is
unrestricted. In this sense, Figs. 1(a)-1(d) belong
to O'P', while 1(e)-1(h) belong to 4'O'". Using the
rules for the denominators and time dependence
associated with the vertices, the algebraic ex-
pressions associated with Figs. 1(a), 1(c), and

1(e), for examples, can be shown to be, respec-
tively:

Fig. 1(a),

—[&k, l
z lm(&/(&, —c,, —~)e'"'+ (k, le lm, &/(a~ —e,, + (o) e '"'] Soq~q, @0

Fig. 1(c),

( 4 tz tk3& (k3m2 Irfg Ikgka& &kgk2 Irfg Im fm2& g,„,
(

.„)
(em, A&4 ~)(em, &a, )(&m, +&~ —ea, &a )

4 3 3 1 2 2 2 1 2

Fig. 1(e),

—l &mile I»& &» l~ lk2) """'i(~., —e., +~)(~., —e., +»)+ &m~le Ikey& &» le lk2&i(~.,
—~„+~)(~., —~„))

~o lk~lkg~kg imp@0

The sign in front of each of the expressions is ob-
tained from the usual rules for many-body dia-
grams. ' Thus, the combination of sets of dia-
grams similar to those in Fig. 1 yield the per-
turbed wave functions 40& and C~&, which occur
in Eqs. (14)-(18). To evaluate the response func-
tions E, , Eq, P", and P, we then have to calcu-
late the matrix elements in Eqs. (14)-(lV). In
diagrammatic language we thus have to construct
the appropriate diagrams for the response func-
tions using the wave function diagrams 40'&, 40g
and introducing the necessary vertex represented
by a wiggly line terminating with a triangle for
+„at the requisite location. A few additional
remarks are appropriate here before proceeding
to response function diagrams. First, from
Eqs. (14)-(18), Q'(f) vertices are expected to
occur twice in the diagrams for all five response
functions involved, albeit in different relative
locations for different diagrams. Since these
functions are real and time-independent, the two
vertices associated with the two +'(t) bear a
complex-conjugate relationship to each other,
namely $0ze'"' and $0ze '"', respectively. Sec-
ond, in view of the normalization condition in
Eq. (82), all the response functions are expected
to involve linked diagrams as in earlier work on
the polarizability of neon. '

Figures 2-4 represent some typical diagrams

t

for response functions E"„E„andPs. The dia-
grams for the polarizability n (&u) are the same

(c)

(e)

FIG. 2. Some typical diagrams for the response
function E&.
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as those already discussed in our earlier work
on n(&o) for neon' and helium, ' and will not be
repeated here. The algebraic expressions that
correspond to these diagrams can be written

down using the rules discussed for the wave func-
tion diagrams. A few of the expressions corre-
sponding to Figs. 2(a), 2(b), and 2(c) are pre-
sented here, respectively, as:

Fig. 2(a),

Fig. 2(b),

Fig. 2(c),

To make the distinction between Il", given by Eq.
(14) and other response functions Il~ and P" in
E(ls. (15) and (16) with respect to the additional
denominator involving m, which occurs in the lat-
ter, we have drawn the diagrams in Fig. 2 some-
what differently from the diamond shaped ones for
others. In the expressions for the diagrams, the
summation implies sum over discrete excited
states and integration over the continuum. As in
earlier work, '~ y & y the basis set is generated
by the zero-order Hamiltonian corresponding to
the restricted Hartree-Fock and V" ' potential.
Since the response functions that occur in Eqs.
{11)-(13)involve the imaginary fre(luency i~ in

place of +, we have to replace e& and ez by —ro,
and —&va, respectively, in E(ls. (14)-(18).

III. RESULTS AND DISCUSSION

The method of evaluation of diagrams discussed
in Sec. II. is very similar to that used for time-
independent and time-dependent properties of
atoms in earlier literature. '&'y y ~ The basis-
set wave functions and eigenvalues for hydrogen,
helium, and neon with V" potentials were all
taken from earlier work on polarizabilities. We
remark here that the response function F", ((0) could
have been evaluated exactly by recasting it in the
form

FA((g) 2 &y(()((d) lg (g e(ddt + g e ill() y(1) {(g))

where 4'0~ (&u) is the first-order perturbed wave
function due 'to the external perturbation Q (f) and

40&„is the first-order perturbed wave function due

(b)

FIG. 4. Some typical
diagl ams fox' the x'esponse
functions P and P .

PIG. 3. Some typical diagrams fox' the x'esponse
function I' +2.
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to the Fermi contact operator +„. An exact solu-
tion can be derived from this and is known in the
literature. However, in line with our earlier
work' for VDW forces involving the hydrogen atom,
where the result obtained by BG method is in ex-
cellent agreement with the exact VDW coefficient,
we have also utilized here the usual BG expansion
in terms of the basis set. This procedure is easi-
ly extendable to more complex atom where an ex-
act solution for F", is not obtainable. In addition
to this term, we get a further contribution from
the third term. The second term does not make
any contribution since it involves the excitation of
a 1s electron of hydrogen atom to the p orbitals,
where the Fermi contact hfs matrix element van-
ishes. For both e and P, which involve polar-
izabilities of hebum and neon atoms, diagrams in-
volving up to the second order of 3C,

' were utilized
in the calculation. Second-order effects in 3C,

'
have already been shown to be sufficient in VDW

calculations in helium' and earlier work on the dy-
namic polarizability of neon. 7 Our calculated re-
sults for VDW constant C involving H-Ne and Ne-
Ne are presented in Table I where, for the sake of
completeness, we have also included CII s, C II

and C „, „,from earlier work. ' A critical compar-
ison of the results of VDW constants in the latter
three systems with experiment and other calcula-
tions has been presented earlier. ' There appears to
be some difference between our results for C„
CHe- Neo Cge- Ne& and the most recent semiempiri-
cal values obtained by Davison, "which utilized
experimental oscillator strengths to evaluate the
matrix elements involved for the first few excited
states in perturbation sum and approximated the
rest of the perturbation series through the use of
the dipole sum rule. This approximation is likely
to be the main source of the discrepancy between
his and our results. We believe that the excellent
agreement noted earlier & between our calculated
refractive indices and experiment testifies to the
accuracy of the VDW constants we have obtained.

Our results for the long-range hyperfine pres-

TABLE I. van der %'aals constants C~ between in-
teracting atoms A, and B in a.u. ~

H He Ne

H

He
Ne

6.499
2.820
5.794

2.820
1.50
3.399

5.794
3.399
6.925

'All values are in atomic units (eaga~).

sure shift parameters D„„,and D„„,are pre-
sented in Table II together with the values obtained
by earlier variational calculations and semiem-
pirical results of Davison. ' The contribution to
D is composed of D, and Ds referring to the first
and the third terms in the expression (9). D, is
small compared to DI in both cases, in keeping with
a similar conclusion from variational'& ' and
semiempirical results. "' ' D, involves Fg and
~, and the relative contributions of various pos-
siMe diagrams to n have already been dis-
cussed. ' In the case of hydrogen, Fj involves
only a single diagram since we have only one elec-
tron to consider. The other diagrams in Fig. 2
would make finite contributions if we had more than
one electron; these and other additional diagrams
would take account of core polarization and corre-
lation effects as in the case of isolated atoms. The
expression for Da involves p"(&I, &os ) and p (+I, &a).
For these latter functions in hydrogen atoms, only
the first diagram in Fig. 4 survives; for helium
and neon, the relative contributions from these
latter diagrams compared to the first one in Fig.
4, are much smaller than in the case of similar
diagrams for n (&o), a' I presumably because of the
occurrence of additional energy denominators in
p (aII, (da) diagrams.

Our final results are in satisfactory agreement
wit both variational" and semiempirical results. "
The agreement mith variational calculation indi-
cates that the variational function chosen mas rea-
sonably adequate at least for the present systems.
A deeper insight into the relationship between the

TABLE II. Coefficients of the fractional frequency shift of atomic hydrogen in inert gases. ~

System

One-electron
variational "

Present work
One-electron
Final results

with consistency
and correlation

Semiempirical '
See Eqs. (6)—(9).

12.20

12.334

11.419

11.36

H-He
—D3

2.07

2.137

1.918

1.90

"See Ref. 13.

14.27

14.471

13o337

13.26

23.67

23.264

22.710

'See Ref. 11.

3.36

3.488

3.420

3.4

27.03

26.752

26.130

25.9
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present calculation and the variational results may
be obtained by collecting the contributions from
the diagrams for ae and P, which represent
purely one-electron effects and computing D using
these contributions. These results are presented
in the second row of Table II. One notes that these
one-electron contributions are in better agreement
with variational results' than those including
many-body effects. While it is difficult to pinpoint
the reason for the remaining difference between
one-electron-diagram contributions and variational
results, part of the source could be that small un-
certain amounts of correlation may be included in
the variational function due to the form of the vari-
ational function chosen.

The semiempirical results are in better agree-
ment with our values of D including correlation ef-
fects, the agreement being much better than in the
case of VDW constants referred to earlier. This
situation does appear somewhat puzzling. A pos-
sible way out of the dilemma is through noting that
whereas the approximate use of the sum rule in-
volving oscillator strengths was applied twice by
Davison" in the VDW constant calculation, it was
only applied once in the HPS calculation to e in
Eq. (11), E& being calculated by the exact solution
4'o„"z(~) and variationallydeterminedby+0& (&u). The

comparison between Davison's results and ours
thus indicates that one can use his results for D
in H-Ar, H-Kr, and H-Xe with greater confidence
than the corresponding semiempirical VDW con-
stants.

In summary, we have presented a procedure for
calculation of the long-range hyperfine frequency
shift due to VDW interaction, without resort to
any semiempirical assumptions. The present
method allows the separation of one-electron and
many-electron effects in a systematic manner so
that the relative importance of these effects can
be assessed in a manner similar to the manner
used in assessing the properties of isolated
atoms. y" '~ Thus, one of the uncertainties in
earlier pressure-shift calculations has been re-
moved, namely the role of intraatomic correlation
effects on the long-range contribution to the fre-
quency shift. Also, the procedure can be eas.' I

extended to include contributions from higher-
multipole interactions between atoms to the hyper-
fine frequency shift. The remaining stumbling
block to quantitative calculation of HPS is the lack
of a proper treatment of the shift in the short and
intermediate ranges so that the arbitrary cutoff
procedure used in statistical averaging4~ '3 over
interatomic separations may be dispensed with.
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